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Abstract: Investigations into the structures of gas hydrates, the mechanisms of formation, and
dissociation with modern instruments on the experimental aspects, including Raman, X-ray, XRD, X-
CT, MRI, and pore networks, and numerical analyses, including CFD, LBM, and MD, were carried out.
The gas hydrate characteristics for dissociation and formation are multi-phase and multi-component
complexes. Therefore, it was important to carry out a comprehensive investigation to improve
the concept of mechanisms involved in microscale porous media, emphasizing micro-modeling
experiments, 3D imaging, and pore network modeling. This article reviewed the studies, carried
out to date, regarding conditions surrounding hydrate dissociation, hydrate formation, and hydrate
recovery, especially at the pore-scale phase in numerical simulations. The purpose of visualizing
pores in microscale sediments is to obtain a robust analysis to apply the gas hydrate exploitation
technique. The observed parameters, including temperature, pressure, concentration, porosity,
saturation rate, and permeability, etc., present an interrelationship, to achieve an accurate production
process method and recovery of gas hydrates.

Keywords: gas hydrate; microscale porous media; dissociation; formation; recovery

1. Introduction

Gas hydrates are components, such as ice crystals, configured from water molecules
under high-pressure and low-temperature conditions, from the bonding interaction be-
tween the confined water molecules with guest molecules and hydrogen bonds in the
water molecule structures [1,2]. Natural gas hydrates (NGH) are a promising energy source.
Several studies have looked into gas production from natural gas hydrate reservoirs as
renewable energy resources [3–5].

Methane hydrates (MH) are natural gas hydrates, abundantly obtainable in sediment
hydrates, and are currently being explored [6–9]. With an enormous global resource
volume of about 3000 trillion m3, and a high-energy storage capacity of 170 CH4 v/v of
methane hydrate, energy recovery from natural methane hydrate is technically feasible
and economically viable [10]. Research on NGH exploitations involve production and
recovery of gas hydrates carried out by several approaches, i.e., numerical simulations,
and experimental and field trial exploitation for different technologies [3,11].

One of the most challenging problems is producing stable methane hydrates from
seabed located in complex flows and transportations, mostly in unconsolidated porous
layers [12,13]. Therefore, insight into MH formation and dissociation processes is es-
sential to establish appropriate technologies for safe and efficient energy recovery and
production [14].

Considerable works have been conducted throughout the years, involving experi-
mental and numerical research on the dissociation [3,6,15,16] and formation of methane
hydrates [14,16]. Numerous methods, such as thermal stimulation, depressurization, in-
hibitor injection, or a combination of these methods, have been promoted; they refer to the
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breakdown of the thermodynamic equilibrium of the gas molecule [6,14,17,18]. In order
to assess a prospective method of feasible gas production or exploitation from hydrate
reservoirs, various data are needed to examine the dissociation and formation process
in porous media, including saturation, porosity, and permeability [3,19–21]. Besides gas
production of methane from the extensive hydrate resource, an attempt to sequester CO2 in
porous sediments is also concerning, due to the massive potential of a safe CO2 mitigation
method [9,22,23].

An experimental approach can present essential parameters for the exploration and
exploitation of gas hydrates. In recent years, the modern analytical instruments and
techniques on the experimental aspects, including Laser Raman spectroscopy (Raman), X-
ray diffraction (XRD), X-ray computed tomography (X-CT), scanning electron microscope
(SEM), nuclear magnetic resonance (NMR), high pressure differential scanning calorimetry
(DSC), were conducted in the study of gas hydrate structure, formation mechanisms, and
phase equilibrium [24–29]. However, using the experimental aspect, there was difficulty
exploring some critical information (involving gas behavior), such as evaluating the state
of porous medium channels during methane hydrate dissociation, due to inadequate
experimental equipment, such as a lack of accurate measurements or observations on the
experimental equipment capacity, unrepresentative experimental conditions, for example,
due to samples not fitting to the real field, or damaged original field samples, human error,
and other variables [15,25,26,30]. Hence, numerous studies have conducted modeling or
numerical analysis to complete the relevant factors for the exploitation of gas hydrates.

One numerical simulation that has potential (when investigating the conditions of the
gas hydrate complexes) is the Lattice Boltzmann Method (LBM). LBM can solve the coupled
multiple process problems due to its capacity in computing the complex geometrical
boundaries [31]. Considering gas hydrate conditions for dissociation and formation are
multi-phase and multi-component complexes, particular attention should be paid to the
microscale effects of the gas hydrate processes in the microporous media channels [7].

In addition, the molecular dynamics (MD) simulation was implemented as a robust
method to overcome microporous media modeling by studying the performances of the
different systems and chemicals at the molecular stages [15,32]. Nowadays, MD simu-
lation is carried out to investigate the radial distribution function (RDF), mean square
displacement (MSD), thermal expansion coefficient, diffusion coefficient, heat capacity, and
thermal conductivity for different structures of gas hydrates at the various processes and
thermodynamic conditions [33–35].

Therefore, comprehensive research is needed to better understand the processes
and mechanisms involved, including hydrate dissociation conditions, hydrate formation,
hydrate recovery in microscale porous media, emphasizing micro-modeling experiments,
and 3D imaging [4]. The purpose of visualization of pores in sediments on a microscale
is to obtain a robust analysis of the characterization of the physical structure of marine
sediments, to model complex processes in sediment pores, such as the phenomenon of
multi-phase fluid flow and particle transport in applying gas exploitation techniques.

2. Natural Gas Hydrate in the Sediment

Natural gas hydrates (NGHs) are ice-like crystalline solids, consisting of water and
natural gas, referred to as burning ice. High pressure and low temperature conditions are
needed to form gas hydrates. The process occurs when water molecules are connected
to each other in an open structure and encage gas molecules to stabilize the clathrate
structure [2]. The trapped gas molecules are dominated most by methane—abundant
in nature with attractive energy potential [36]. Moreover, the affluent availability of gas
hydrates around the globe make them promising options as fuel resources [37].

Hydrate structures consist of three known structures; structure 1 (sI), structure 2 (sII),
and structure H (sH), as shown in Figure 1 [38]. Each structure has a distinct set of water
molecule cages that form a unit cell. The existence of any structure depends on crystal
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lattice parameters, van der Waals force, and free diameters of cavities. Thus, gas hydrate
crystal structures are linked to their formation.

Figure 1. Structure of natural gas hydrate [38].

The cubic sI clathrate can only accommodate small-sized hydrocarbon molecules, such
as methane and ethane. It is the vastest spread structure in nature. Besides, sI can hold
non-hydrocarbon molecules, such as CO2 and H2S [38]. The sII clathrate can accommodate
both small hydrocarbon molecules, such as C1, C2, propane (C3), and isobutene (i-C4). On
the other hand, sH clathrate called “large cage” can even hold molecules with significantly
more diameter than isobutene (i-C4), such as i-C5 [39]. In general, sII and sH are more
stable than sI [38].

Approximately 99% of the NGHs are found in oceanic sediments and remains in
onshore artic environments [40]. The NGH exploitation is generally emphasized on the
disturbance of the thermodynamic equilibrium of the hydrates, via depressurization,
thermal stimulation, and inhibitor injection, implemented independently or combined [14].

3. Modeling Regarding Dissociation and Formation of Gas Hydrate

Gas hydrate production on a commercial scale, from natural hydrates, remains chal-
lenging, due to poor understanding of hydrate–host sediment interactions for its existence
under low-temperature and high-pressure conditions [41]. Simulation modeling has been
widely used based on technology breakthroughs to design, operate, control, and optimize
the processes of exploitation and recovery of natural gas hydrates [42].

One of the main barriers in exploiting gas hydrates is hydrate reformation, which
needs to be handled adequately [14]. Hydrate dissociation involves an endothermic
process, which is strongly dependent on external energy supply. When the energy supply
is inadequate, the temperature will decrease during the hydrate dissociation process, to lead
the hydrate reformation [43]. Various methods have been proposed to assure safety and
efficiency in gas hydrate exploitation, including CH4 gas leakage and wellbore blockages
due to hydrate reformation or ice formation [7]. According to Wang, Dong [30], the hydrate
dissociation stage has the potential to form ice, which could inhibit the dissociation process
due to the thickened ice. Variations of the pressure may indicate the possibility of hydrate
reformation or deformation in porous media. Moreover, heat change is a crucial factor
for hydrate dissociation or reformation; it shows a complex change as a result of the ice
formation or melting.
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Furthermore, many studies have focused on the formation of carbon dioxide. Carbon
capture and storage (CSS) is a credible technology used to mitigate CO2 emissions [44–47].
There is the potential of a blockage pipe during CCS. Nakashima and Sato [48] performed
the formation of CO2 hydrates by injecting CO2 into the underwater sand sediments
under high pressure and low temperature conditions. However, the formation of these
hydrates can reduce the permeability, which has the potential to block the gas flow. It is
important to ensure that the injected gas expands over a large area, while maintaining
sufficient permeability to maximize the sequestration space. Another study based on Yu,
Sato [49] investigated the blockages by predicting the morphology of sediment hydrate
formation under gas–liquid two-phase flow conditions. The simulation results showed
that the formation of CO2 hydrates (in the hydrate film behind the gas front) contributes
greatly to the saturation of CO2 hydrates near the boundary, thereby occupying the pore
space of the sand sediments, resulting in reduced permeability and blocking the gas flow.
Takahashi, Sato [50] noted that the formation of gas hydrates on the interface between
gas and water consists of two stages: gas diffusion through the CO2-hydrate film and
the consequent CO2-hydrate formation on the interface between the film and water. It
also leads to a new reaction interface, which is part of the interface between the gas and
aqueous phases and is not covered with CO2-hydrate. Zatsepina and Pooladi-Darvish [51]
note that adjusting the injected CO2 temperature could evade the hydrate formation in the
production pipeline, which often has formation clogging issues. Their results show that,
at the top and bottom, more hydrates are formed. The hydrate formation heat vanishes
to the cap and bedrock. Eventually, the CO2 hydrate quantity is many times greater than
the original gas, in-situ. Apart from managing the injection rate, the presence of gaseous
hydrocarbon, in-situ, or injected impurities, CO2 and reservoir cooling after the CO2
injection process, could intensify CO2 storage capabilities in depleted gas pools. Besides
the blockage pipe, CO2 leakage in hydrates is also considered. However, the probability of
that incident is immensely low, such as a massive earthquake or other catastrophes [47]. If
there is a CO2 leak on the seabed, it will lower the pH of the seawater and can affect the
marine ecosystem [44]. Therefore, to predict the sealing potential of the CO2 hydrate, it is
necessary to observe the effective permeability of the sediment after the CO2 hydrate is
formed [23].

In addition to blockages and leakages, an important factor to predict the gas produc-
tion rate is the surface area of the gas hydrates [16,52,53]. Nakayama, Ogasawara [52]
proposed a model equation for the hydrate-specific surface area, by comparing the tempo-
ral change of the measured total gas production and its rate. Similarly, Ruan and Li [53] also
observed the surface area of methane hydrate by comparing experimental and numerical
simulation results during hydrate dissociation. The conceptual model for the hydrate
dissociation surface area is proposed based on the hydrate morphology, which is related to
the surface area of hydrate dissociation with the porosity, saturation, and average diameter
of the sand sediment particles. They discovered that the proposed model formula (for
the hydrate dissociation surface area, presenting the grain coating surface area) modeled
very well at low hydrate saturation, while the high hydrate saturation was suitable for
the pore-filling surface area. In addition, it was stated that the surface area of hydrate
dissociation had a significant impact on cumulative gas production.

Development of microscale devices integrated with modern analytical technologies
have been widely carried out, including laser Raman spectroscopy (Raman), X-ray diffrac-
tion (XRD), X-ray computed tomography (X-CT), scanning electron microscope (SEM),
nuclear magnetic resonance (NMR), high pressure differential scanning calorimetry (DSC);
these were conducted in the study of gas hydrate structures, formation mechanisms, and
phase equilibrium [24–29].

Using the MRI and X-ray computed tomography (X-ray CT), the main factors con-
trolled are the nucleation and growth of hydrates in the pore spaces of the sediments,
microscopically [24]. Whereas Raman spectroscopy, X-ray diffraction (XRD), and nuclear
magnetic resonance (NMR) are recognized as the three main methods used to evaluate
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the microstructures of gas hydrates [24]. Raman spectroscopy is the most prevalent way
to identify hydrate structures, formation and dissociation kinetics, and even gas storage.
Meanwhile, XRD is effectively used to determine the hydrate crystal structure. Moreover,
NMR is commonly applied to the study of multi-component gas hydrates. It has a high
sensitivity in observing guest molecular dynamics of various types of gas hydrates, so it
can be used to study the complex and multicomponent structures of gas hydrates [24–26].

Raman is a spectroscopic technique used to investigate the chemical bonds of guest
molecules and water molecules to obtain the configuration of the hydrate [24]. Zhang,
Du [25] reported the discovery of gas hydrates on the South China Sea by investigating
the in-situ chemical configurations and cage structures of hydrates using Raman. It is
stated that natural hydrate deposits, especially those in early formation stages, are not
monolithic single structures. However, they exhibit significant small-scale heterogeneities
due to the inclusion of free gas and surrounding seawater. The inclusions also serve as
indicators of possible mechanisms of hydration formation. Truong-Lam, Cho [54] observed
the formation and dissociation processes using in-situ Raman. They mentioned that, at the
beginning of the hydrate growth phase, the Raman peak intensity of methane (occupying
large and small cages) increased after a sudden drop of dissolved methane. Thereto, the
large cage encapsulation rate was faster than the small cage rate during the formation
of hydrates.

Moreover, Liu, Meng [55] demonstrated an exploitation gas hydrate in the Pearl River
Mouth (PRM) basin using Raman and XRD. Their results showed that the typical structure
1 (sI) with methane cage occupancy was more than 99.5% in large cages and 91.4% in
small cages, according to the hydration number of 5.90 by thermodynamic calculations.
The molecular composition of the hydrate bound gas indicated that the guest molecule
was predominantly methane (>99.9%), with trace amounts of ethane (0.04%) and propane
(0.01%). Liu, Meng [26] performed a systematic analysis of modern instruments, including
laser grain size analyzers, X-ray CT, scanning electron microscopy (SEM), XRD, Raman
spectroscopy, gas chromatography, and isotope mass spectrometry, on hydrate-carrying
sediment samples found from the Shenhu area of the South China Sea in 2016. Their result
showed that the sediment is much more refined than that recovered from the Shenhu area
in 2007. Based on Raman data and XRD analysis, gas hydrates exhibited a typical structure
1 (sI) hydrate, with methane molecule occupancy higher than 99.3% in large cages and
81.5–91.4% in small cages, respectively. The crystal lattice parameter was 11.89 A with a
hydration number of about 6.0. Methane was clearly the dominant component, ranging
from 97.6% to 99.95%.

X-ray computed tomography (CT) and magnetic resonance imaging (MRI) was re-
cently used to visualize MH dissociation in porous media. Fan, Sun [56] performed MRI
visualization and analysis for the dissociation of methane hydrate by controlling the de-
pressurization rate gradually to production pressure to avoid ice formation or hydrate
reformation during the depressurization process. MH dissociates spatially at the onset
of depressurization. Low production pressure can supply more sensible heat, and MH
dissociates rapidly under low production pressure. Due to insufficient heat transfer from
the surrounding thermostatic bath, a large amount of ice is generated spatially. Then ambi-
ent heat transfer promotes ice melting and dissociation of hydrates from the surrounding
walls. In addition, Lv, Jiang [57] presented the formation and dissociation of CH4 hydrate
using MRI to understand the pore habits of CH4 hydrate and gas seepage behavior in
hydrate-bearing sediment (HBS). The results showed that homogeneous sand packs of CH4
hydrates are preferably formed in the lowest water saturation. For heterogeneous sand
packs, the hydrate nucleation occurs in small grain sizes, and the final hydrate saturation
is the highest. In addition, the dissociation process of CH4 hydrate consisted of three
stages—the initiation stage, the rapid dissociation stage, and the post dissociation stage. In
addition, Almenningen, Gauteplass [58] visualized CO2-water drainage flow followed by
hydrate formation using high-field MRI. It is important to identify CO2 flow and hydrate
growth patterns in sediment pores in order to obtain an effective hydrate sealing process.
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The image results interpret the nucleation of the hydrate at the liquid–liquid interface,
whereas the aqueous phase occurs only due to the presence of dissolved CO2. Furthermore,
the growth pattern of the pore-filling hydrates effectually lowers the permeability of the
sandstone and demonstrates the potential of CO2 hydrates as a sealing process during
CO2 sequestration.

As discussed above, effective permeability is a critical factor to predict gas produc-
tivity from CH4 hydrate in underwater sand sediments as it affects the hydrate distribu-
tion [19,59]. Permeability is an important characteristic in hydrate-bearing porous media
to investigate the mobility of CH4 and water can pass through the pore structure [3,45,60].
The permeability variation caused by hydrate dissociation will allow for further under-
standing on hydrate exploitation or gas production [19,20,59,61,62]. Chen, Yamada [59]
used thermal stimulation and found that the dissociation time is 2.23 times and 7.02 times
longer when the permeability is lowered. They also suggested that suitable warm-up and
increased permeability should be applied for an effective dissociation process based on
the temperature and permeability results. According to Gao and Li [63], by describing the
effect of effective stress and water saturation on the relative permeability of gases in tight
sandstones, the presence of water, and the effective stress, increased. The permeability jail
concept could be used to present field observations under the conditions of little water or
gas production. Since the relative permeability of the gas phase gives the opposite result to
water, hydraulic fracturing without water has great potential in effectively unlocking tight
gas resources.

As mentioned above, the permeability of HBS is one of the essential factors in ob-
serving the behavior and distribution of the fluid, as well as gas performance during
hydrate exploitation. The wettability of porous media dramatically influences the relative
permeability of two phases (gas–water) [64–66]. In addition, the wettability of HBS is a
critical factor for accurate numerical simulations to investigate multi-phase flow prediction
and seepage behavior in porous media in hydrate sediment, including CO2 sequestration,
gas transportation, and storage [67]. In accordance with Wang, Zhao [64] investigated
the effects of the wettability of hydrate-bearing porous media on their seepage properties
using a pore network model combined with X-ray computed tomography (X-ray CT). The
simulation results showed that increasing the contact angle reduced the wettability of
hydrate-bearing porous media, thereby increasing the relative permeability of the water
phase and decreasing the gas phase of relative permeability at certain water saturation.
Furthermore, the study authors noted that the relative permeability of the gas–water phase
was influenced by the increases in the diameter of quartz sand particles. In addition,
increased wettability and connectivity could reduce the residual gas saturation. Finally, it
highly affects capillary pressure.

X-ray CT is one of the most reliable techniques to apply in examining the process
of dynamics in-situ and exploring the formation and dissociation mechanisms of gas
hydrates in the sediment matrices [21,45,68–71]. Moreover, micro-CT imaging analysis
presents essential information for establishing an accurate numerical model to observe
the permeability and other seepage factors of hydrate-bearing porous media [64,72,73].
Han, Kwon [70] utilized an X-ray CT to investigate the mechanism of fine migration of
HBS during depressurization. They found that fine migration was more prominent in the
coarse sands and with silty fine grains. Finally, depressurization of HBS can cause fine
particle movement (migration), which affects the fluid flow behavior in the sediments.
These factors will influence the long-term hydrocarbon production and wellbore stability,
or may reduce sediment strength [17,70].

In some research cases, observations were conducted on hydrates stored in microstruc-
ture sediments under the seabed or rock reservoirs [72]. X-ray CT imaging methods can
be used to accurately investigate the complex processes of formation, dissociation, and
migration of hydrate [74]. Furthermore, the color difference phase separation approach
can be used to separate the hydrate phase from the pore phase and grain phase [8,41,75].
Zhao and Zhou [8] conducted X-ray CT imaging experiments to evaluate the formation,
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migration, and dissociation of hydrates in sand pack specimens, at a microscale. The results
indicate that accumulated hydrates migrated over time increases, and the gas hydrate ratio
decreases by increasing the depth. In addition, the gas hydrates gradually accumulate
in the pore phase with the growth of the hydrates, and the hydrates increase to a certain
saturation. Then, due to the continuous growth of the hydrates, there will be a change from
gas hydrates to the water hydrates. Therefore, it can be concluded that increases in relative
porosity, relative pore size, and relative grain size can increases hydrate saturation due to
the gas hydrate conversion to water hydrate. In addition, permeability may decrease while
the hydrate phase in porous sediments increases due to occupation of the pore space by
the hydrates. Moreover, Gao-Wei, Cheng-Feng [75] observed the in-situ pore scale of the
gas hydrate distribution directly during the hydrate formation and dissociation process.
In the first phase of hydrate formation, most of the processes are sediment particles con-
nected to each other by hydrates or cementing models. In the next phase, the hydrates are
typically shaped like floating or contact models. Since saturation increases, the floating
hydrates begin to fuse with each other, and then the sediment particles cement again.
On the other hand, it is indeed necessary to study the evolution of pore structures and
fluid flow properties in HBS, which can be implemented by X-ray CT and pore network
models [72,76–79].

Mahabadi, Dai [79] applied the pore network extracted from micron-resolution CT
images to various morphologies and hydrate saturations, as shown in Figures 2 and 3.
Then the processes of gas invasion, gas expansion, hydrate dissociation, and gas and
water permeability were simulated. The results showed that excellent hydrate saturation
pursued higher gas inlet pressure, higher residual water saturation, as well a steeper water
retention curve. Increasing hydrate saturation allows gas permeability to decrease, but
has marginal effects on water permeability in sediments with homogenously distributed
hydrates. Under relative permeability conditions, it has impacts that are more apparent on
hydrate morphology than hydrate saturation. Meanwhile, sediments with heterogeneously
distributed hydrates tend to produce lower residual water saturation but higher gas and
water permeability.

Figure 2. Pore-network modeling of hydrate distribution. (a) Specimen grain size distribution. (b) The 3D pore space was
presented by µCT scan. (c) Pore network model. (d) Various hydrate morphologies for hydrate saturations (Sh = 0.2). It was
clarified that the model consists of hydrate pores (gray color) and water pores (transparent blue color) [79].
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Figure 3. Illustrations of gas and water flow behavior during gas expansion in sediment hydrates under the dissociation
process. The gas pores forming conductivity paths are represented in red, and the isolated gas pores are interpreted as
yellow. Water pore forming conductivity paths are colored blue, and isolated water pores are colored light blue [79].

A pore network model combined with X-ray CT was also applied to evaluate the
index properties and percolation characteristics of hydrate-bearing sediments [60,80,81].
According to Wang, Zhao [60], with the same level of water saturation, it was found that a
larger porosity induced a larger relative permeability of the water phase but provided a
smaller value of relative permeability of the gas phase. Wang, Zhao [80] declared that the
hydrate saturation increases and the absolute permeability decreases. In addition, under
the same water saturation, lower hydrate saturation leads to a larger relative permeability
of the water phase, whereas it did not apply to gas relative permeability. Moreover, Wang,
Wang [81] showed that the formation and dissociation of gas hydrates could lead to the
change of pore structures and flow properties. An increase in gas hydrate saturation can
induce a sharp decline in relative permeability of water, more immense irreducible water
saturation, and a smaller gas–water percolation zone, while inversely proportional to the
gas relative permeability. Finally, the gas hydrate dissociation will significantly affect the
flow properties when compared to gas hydrate formation.

Since the application of the experimental approach is limited to exploring some
important information on the complexity of real-scale condition surveys, it is necessary to
develop numerical studies that can be joined and compared with experimental results to
obtain more valid and accurate data [15,30]. By establishing numerical model for hydrate
dissociation in porous media, gas production can be modeled and compared with the
experimental data [6]. The hydrate dissociation process occurs by a heat and mass transfer
process in porous media with a multi-phase flow and reaction. Computational fluid
dynamics (CFD) is one numerical analysis technique that could be used to investigate
the problem. Yu, Sean [82] established a pore-scale model by considering porosity by the
CFD method and an unstructured grid to study the dissociation rate of methane hydrate
inhomogeneous porous media. Application of the very thin layers (VTL) method is possible
to calculate momentum, concentration, and thermal boundary layers by considering the
porosity factor. It was found that, as the porosity increases, the flux increases due to the fast
transport in large quantities. Indeed, the surface flux becomes saturated if the transport
process in bulk flow is faster than the dissociation rate.
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Similarly, Jeong, Chiang Hsieh [83] used the CFD method to establish a pore-scale
model of surface dissociation of CO2 hydrates through Lagrangian periodic boundary
conditions. In this study, the finite volume method (FVM) with unstructured mesh was
constructed in a representative, regular, face-centered cubic unit. Observations were con-
ducted by considering the surface mass transfer of CO2H and the heat transfer between the
hydrate and water. The results indicated that the overall flux dissociation distribution was
influenced by porosity in terms of water temperature. Thus, the higher water temperature
can lead to higher dissociation flux at the hydrate surface.

Gas hydrate (i.e., methane) is a complex multi-component and multi-phase fluid
flow process accompanied by mass transport and heat transfer in porous media [81]. One
method that can be implemented to analyze that process is LBM [31,61]. Due to its attractive
advantages, such as simplicity in coding, dealing with complex solid boundaries, and
parallelization, LBM has become a very popular CFD method in many fields, such as multi-
phase and multi-component flow, reactive flow, microscale, and nanoscale flow [66,84]. The
micro-flow simulation was also conducted via the Lattice Boltzmann method (LBM) with
pore-filling to evaluate the effect of hydrate on seepage characteristics in hydrate-bearing
sediment grain-coating habits in porous media [61]. In work by Hou, Ji [61], to better
understand the effects of hydrate on seepage properties in HBS, the micro-flow simulation
was applied via LBM with pore-filling and grain-coating habits in porous media. The
authors found that the mineral particle arrangement did not affect permeability variation.
However, the permeability variation was sensitive to the habit of hydrate-formation habit
and the morphology of hydrate-distribution morphology. According to Fuji, Kamada [44],
microscopic computational domains consisting of sand grains and water-CO2 two phases,
using LBM, were used to investigate the distribution of microscopic hydrates, which
essentially controlled the effective permeability. The calculation results indicated the
differences in the distribution of hydrates in the pore space, and the value of effective
permeability depends on hydrate saturations, initial water saturation, and contact angles
of water on the sand surface. In addition, it can be concluded that the difference in gas
solubility has an impact on the difference in hydrate growth between CO2 and methane
near the gas–water interface.

In addition, the reduction of permeability by quicksand blockage was, clearly, directly
related to natural gas production [85]. Mitsuhori, Sato [86] simulated a numerical analysis
using LBM coupled with micro-CT for the two-phase flow of solid water in a frame sand
sediment. At first, the relatively larger particles were trapped by the frame sands, and
then smaller particles filled the space between the larger particles. Hence, the mean size
and the deviation as distribution factors are crucial parameters for the blockage. Zhang,
Zhang [31] used LBM by combining the gas hydrate dissociation kinetic model, the single-
phase flow LB model, the mass transport LB model, and the conjugate heat transfer LB
model. The results showed that the simulation using LBM could easily evaluate the reactive
transport framework effect to the coupled physicochemical thermal process and provide
an understanding of the methane dissociation process at the pore scale. Endothermic
reactions and heat transfer in porous media during the dissociation process result in
temperature changes. Dissociation is accelerated with increasing inlet temperatures for
both the pore-filling hydrate and the grain coating hydrate.

In addition to the studies discussed above, many studies have demonstrated the com-
bination of LBM and X-rays in the two-phase flow [62,65,84,86–89]. According to Zhang,
Kang [87], by simulating the gas distribution at different times, the high-density ratio
accentuated the fingering phenomenon. As the density ratio increases, the displacement
efficiency decreases. Moreover, as the density ratio increases, the gas saturation decreases in
big pores and becomes zero in small pores or even in big pores followed by small channels.
Meanwhile, due to the wettability of liquid, the residual liquid particularly distributes
in the small pores and the edge of big pores. In addition, lowering the viscosity can be
influential, increasing the recovery of the fluid.
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Chen, Verma [88] estimated the relative permeability of gas (krg) as a function of
the hydrate saturation curve (Shyd) using digital models of hydrate-bearing sand based
on the implementation of grain-attaching, coarse pore-filling, and dispersed pore-filling
hydrate habits. The pore-scale measurements and modeling showed that the krg-Shyd
curves were similar regardless of the hydrate crystal conditions. The krg data in hydrate-
bearing sand could decrease (quite impressively) in the presence of porous hydrates, as
shown in Figure 4.

Figure 4. Hydrate-bearing sand model. (a) Grain-attaching. (b) Coarse pore-filling. (c) Dispersed pore-filling habits. (d) Gas
relative permeability versus hydrate saturation data from the experimental and computational HBS [88].

Sand production greatly affects the reservoir stability and safety during gas hydrate
exploitation in HBS. The formation and dissociation of trapped gas structures were affected
by sand-bridge structures as a result of sand migration [85]. Yoshida, Yamaguchi [90]
developed a numerical simulation method in the pore-scale computational domain to
predict mud erosion caused by water flow. The simulation results showed that the erosion
rate decreased to zero in less than 10 days under the conditions of an average velocity
several times greater than the critical value for mud erosion. This can be inferred due to the
surface of the mud with large shear stress eroded first, resulting in a large enough space in
the pores of the sand grains, thereby slowing the water velocity to a value smaller than the
critical value.

The molecular dynamics (MD) simulation is seen as an effective method to provide a
molecular level of understanding on microscopic mechanisms, in regard to structural and
dynamical properties [33,91–93]. The MD method is needed to understand the molecular
structure of hydrates and the mechanism of dissociation or hydrate formation [15,34,94].

Yan, Li [92] observed the mechanism of methane hydrate dissociation by depressur-
ization using MD. The concentration gradient between the H2O molecules in the hydrate
surface layer and the inner layer forced the driving force of dissociation. The clathrates
gradually collapse, and then the hydrates dissociate, layer-by-layer. On the other hand,
it was also explained that the hydrate dissociation rate by depressurization was slower
than the thermal stimulation and the inhibitor injection as hydrates have low thermal
conductivity and temperature sensitivity [52,95]. Guo, Pan [95] used the MD simulation to
simulate methane hydrate in a porous medium by considering the thermal conductivity.
The authors noted that the thermal conductivity of methane hydrate increased with a tem-
perature increase and grew faster near the freezing point. Moreover, thermal conductivity
increases gradually under the same temperature as the decreases of the porous media pore
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sizes. It can be concluded that the different porous media pore sizes have a great effect
on the thermal conductivity of the hydrates. Eventually, at the rapid increase in thermal
conductivity, the dissociation process will begin immediately.

Moreover, MD was also used to investigate the mechanism/microscopic phenomena
and intermolecular forces in the methane hydrate dissociation [96,97]. Kondori, Zende-
hboudi [33] observed the stability of the water cage at various dissociation times, tempera-
tures, and pressures. They found that, based on the radial distribution function and the
mean squared displacement of oxygen–oxygen and carbon–carbon atoms, the stability of
the hydrate cage decreased with increasing temperature. However, with increasing cage
occupancy and pressure, the hydrate stability also increased. Moreover, the addition of an
inhibitor to a small cavity in the hydrate structure, such as methanol, can accelerate the dis-
sociation of the hydrate by creating new hydrogen bonds between the water molecules and
the inhibitor. In addition, Liu, Zhou [98] observed CO2 dissociation with inhibitors using
MD. They found that the rate of dissociation of CO2 hydrate increased in the presence of
two inhibitors, i.e., glycine, with a maximum concentration of 10% by weight and glucose,
1.2% by weight. Glycine aggregates on the solid–liquid surface of the initial structure, and
the clathrate hydrate structure is wrecked due to -OH single bonds and -NH2 single bonds
with water hydrogen bonds in the hydrate structure. Meanwhile, glucose has a ring-shaped
structure and impaired functional groups, accelerating the hydrate dissociation due to
the synergistic impact of steric hindrance. Yagasaki, Matsumoto [97] investigated the
dissociation rate of methane with methanol and NaCl inhibitors. They found that the
dissociation rate of methane hydrate increases with the formation of methane bubbles
carried out by methanol and NaCl in the aqueous phase, because the bubbles absorb the
surrounding methane molecules. However, the mechanisms of the two inhibitors are very
different from each other. The bubbles from the NaCl solution increase the hydrophobic
interactions between the methane molecules. In contrast, bubbles in methanol are formed
due to it is amphiphilic.

Furthermore, a study on the constant energy of MD in the hydrate dissociation in
contact with water was also carried out to investigate the role of mass and heat transfer in
the dissociation rate [99–101]. According to Alavi and Ripmeester [100], under adiabatic
conditions, the rate of dissociation of methane clathrate is influenced by heat and mass
transfer from the breakdown of clathrate hydrate and methane gas discharge at the solid–
liquid interface and the diffusion of methane through water. The results show that the
temperature gradient between the clathrate and solution phases during the dissociation
process is crucial, since it provides significant heat transfer. In addition, it turns out that
the dissociation of clathrate does not occur gradually through the rupture of each cage but
rather is integrated with a row of structure 1 cages parallel to the interface, and dissociates
simultaneously [99,100]. Thus, huge amounts of methane gas are discharged close to the
surface, and bubbles can form, which affects the mass transfer rate close to the clathrate
phase surface.

In addition, MD has been considered a robust technique used to investigate crystal
growth mechanisms [102,103], the solid/liquid and gas/liquid interfaces [104–107]. Several
parameters were observed, such as potential energy changes, MSD of molecules, the
number of methane molecules close to the solid/liquid interface, and the position of
liquid/solid interfaces with time. Naeiji, Varaminian [105] demonstrated the kinetic growth
of hydrate using MD. Their results showed that the potential energy and MSD of molecules
in the layers close to the interfaces clearly reduced, indicating that the growth took place in
these layers. Furthermore, the model can interpret the whole process of hydrate formation
since the affinity as a driving force of the process exhibits that hydrate formation is a
process that proceeds on a natural path. Naeiji, Varaminian [104] studied the different
properties between methane/water and methane/water/hydrate systems. Their results
indicated that the thermodynamic properties of the methane/water/hydrate system were
lower than other systems, so the hydrate structure was more stable and reduced the system
energy surface.
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Moreover, the dissociation kinetics of CO2 hydrates were investigated by molecular
dynamics (MD) [93,98,108]. Sarupria and Debenedetti [93] presented the results of a
molecular dynamics study of the dissociation behavior of CO2 hydrates. The results
showed that the dissociation rate depends on the fractional occupancy of each type of
cage but is difficult to interpret in terms of overall hydrate occupancy. In particular, it was
found that hydrates with overall occupancy depend on the emptying of large or small
cages. For the same overall dwelling, small and large filled cages will dissociate more
quickly with an empty large cage than with an empty small cage. Meanwhile, Zhang,
Zhao [109] investigated the formation of CO2 hydrates by using MD; they stated that the
most influential factors were temperature and molecular numbers. Hydrates are more
likely to form in systems with a relatively large number of CO2 molecules and relatively
low system temperatures.

4. Replacement Process of CH4 by Injection of CO2

The replacement of CH4 by CO2 in methane hydrates is a feasible way to achieve CH4
production and CO2 storage in the respective efforts of energy recovery and global warming
mitigation [110–115]. Energy reserves from fossils continue to decrease, leading to the
energy crisis and global warming [37,109,116–119]. Using CO2 to replace CH4 in hydrate
sediments could either utilize CH4 or store CO2 as an embodiment of renewable energy
and environmental protection [120,121]. As part of the replacement process, it is crucial
to observe the formation of CO2 hydrates [51,122]. Research advances and numerical
analyses in replacement processes that focus on laboratory studies have been carried out.
The methods used to study the CH4–CO2 replacement processes are the same as in the
formation and dissociation of hydrates, i.e., Raman spectroscopy, X-ray diffraction (XRD),
magnetic resonance imaging (MRI), and X-ray CT [122–124]. While, numerical analysis can
be simulated precisely using CFD and MD [89,94,125–127].

Replacement feasibility is interpreted from kinetic and thermodynamic factors, as
well as various forms of CO2 [23,102,123,124]. In addition, the difference in the phase
equilibrium for methane hydrates and CO2 hydrates can decrease the possibility of replace-
ment reactions [121,123]. Figure 5 shows the equilibrium diagram of the CH4–CO2–H2O
system [121]. In the diagram, areas A and B lie above the equilibrium curve of H2O–
hydrate–CO2 and below the H2O–hydrate–CH4 curve. Therefore, theoretically, CH4 gas
and CO2 hydrate can coexist in this area, but it was found that the CO2 hydrate is more
stable than the CH4 hydrate under certain conditions. For example, at 280 K, and a pressure
of 2 MPa, CO2 can exist as a hydrate, but does not occur in methane. The replacement
reactions that occur between CO2 replace methane in the clathrate compound allows be-
ing conducted at different phase behavior. For the development of hydrate treatment
technology, it is necessary to estimate the phase equilibrium data [22,43,46].

Zhou, Long [128] characterized the CH4–CO2 hydrate using in situ Raman spec-
troscopy to analyze the dissociation and crystal reformation processes that occur in the
replacement of CH4–CO2 hydrate. The results of the X-ray diffraction analysis showed
that the crystal structure of the CH4–CO2 hydrate mixture was structure 1. This study
showed that the hydrate crystal unit collapsed as a single unit, without clear dependence
on the gas distribution in the hydrate phase. Moreover, for hydrates containing CH4,
Raman peaks of CH4 and CO2 in the hydrate phase showed a transient increase during the
hydrate dissociation process, indicating the reformation of the hydrate below the hydrate
dissociation surface. According to Ota, Saito [129], there was a replacement of CH4–CO2
in hydrate CH4 with high-pressure CO2. These results indicated that the replacement
rate was affected by pressure and phase conditions where the driving force was directly
influenced by the difference in fugacity of the two guest components, between the fluid
and hydrate phases. When CH4 hydrate was contacted with CO2 under flow conditions,
measurements of the hydrate phase indicated the differences in the decomposition rate of
cages between medium (M-cage) and small (S-cage) cages in CH4 hydrate, with M-cage
decomposition is faster than the S-cage. Furthermore, Xu, Cai [22] demonstrated the rela-
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tionship between total operating pressure and CH4 partial pressure in a CH4–CO2 binary
system with a CH4–CO2 replacement rate and CH4 recovery efficiency. On the other hand,
the replacement of CH4–CO2 can occur well when the partial pressure of CH4 was lower
than the equilibrium pressure for the formation of pure CH4 hydrate, and vice-versa for the
CO2 parameter. In addition, lower partial pressure of CH4 leads to a higher replacement
rate for a certain pressure condition. It can be concluded that the temperature and pressure
conditions constantly change in the replacement process, so these results are important as
a reference for the successful CH4–CO2 replacement. Meanwhile, Ersland, Husebø [130]
investigated the replacement process of CH4 and CO2 by MRI. The process of replacing
CH4–CO2 in the hydrate, without the addition of heat, has potential as a viable strategy
for thermodynamically stable long-term CO2 sequestration, with the added benefit of
associated natural gas production. The MRI proved to provide great information on the
spatial distribution of hydrate growth, rate of hydrate formation, and rate of CH4–CO2
replacement.

Figure 5. CH4 -CO2-H2O phase equilibrium diagram. Areas A, B, C and D indicate the possibility of
phase changes for CO2 and CH4 hydrates which are affected by temperature and pressure [121].

For numerical modeling on CO2 injected into methane hydrate, Sean, Sato [125]
modeled the dissociation process of methane hydrate under-water flow conditions, where
the hydrate thermodynamic was stable under pressure and temperature conditions. A
relatively low rate of dissociation without the formation of methane bubbles was obtained,
where the concentration of methane was dissolved in water and kept below the equilibrium
solubility. By combining the experimental results and numerical simulation of flow with the
CFD method, the dissociation rate constant was determined based on the ambient flow rate,
pressure, and temperature conditions. The results showed that the dissociation process
on the surface took place under isothermal conditions. Moreover, Fukumoto, Sean [131]
conducted an experiment of CO2 hydrate dissociation under-water flow, obtaining hydrates
that were thermodynamically stable. In the model, hydrate dissociation was driven by
a low CO2 mole fraction in water flow. The dissociation rate between the hydrate phase
and the aqueous phase was considered as the driving force. As a result, the intrinsic
dissociation rate constant of CO2 hydrate was established.

Molecular dynamics (MD) simulation is an ideal method to study nucleation at the
molecular level since the size of the critical nucleus and formation rate occur on the
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nanoscale [89,94,106,132–134]. According to Bai, Zhang [133], the replacement pathway
included the melting of CH4 hydrate near the hydrate surface and the subsequent formation
of an amorphous CO2 hydrate layer. In the dynamic aspect, the replacement process took
place near the surface of CH4 hydrate relatively easily. However, as the replacement process
proceeds, the formation of the amorphous layer of the CO2 hydrate provided a significant
barrier to the mass transfer of the guest CH4 and CO2 molecules, which prevented the
CH4 hydrate from further dissociation and slowed the replacement rate. MD simulations
and stabilization energy calculations were carried out to understand the stability of CH4
hydrate, CO2 hydrate, and CH4–CO2 hydrate mixture. Hydrate stability decreased with
increasing temperature and time [135]. Based on the ratio of stabilization energy of small
and large cavities containing CH4 and CO2, it can be concluded that CO2 molecules are
suitable for large cavities and vice-versa for CH4 molecules [127,136]. In addition, during
the growth process, CH4 and CO2 molecules often replaced each other at certain cage
locations adjacent to the hydrate interface [136]. The replacement process occurred during
CO2 injection into the CH4 hydrate reservoir, due to the difference in chemical potential,
so the CH4 molecule left the hydrate cage, and the empty cage was filled by the CO2
molecule [4]. Kossel, Bigalke [137] confirmed that the exchange of guest molecules and
gas hydrate dissociations also contributed to the dissociation of CH4. Approximately half
of the amount of CO2 was bound by the exchange of CH4 molecules, while the rest was
bound by the new CO2 hydrates formation.

Other studies [127,133,135,137,138] investigated the dissociation and formation pro-
cess of methane and carbon dioxide hydrates by MD simulation. Kondori, James [135]
evaluated the stability and dissociation of gas hydrate structure 1 for CH4–CO2 cases
using MD simulation, by considering various properties for gas hydrates, such as radial
distribution function (RDF), mean square displacement (MSD), lattice parameters, density,
potential energy, and molecular diffusion coefficient. Hydrate structures were obtained at
different conditions of pressure, temperature, and composition for CH4–CO2. The result
was concluded that the structure with the composition of CH4 (25%) + CO2 (75%) was
stable below 300K at 5MPa. This composition is the best configuration to achieve a stable
structure when the carbon dioxide and methane molecules are in large and small cavities,
respectively. Furthermore, for the bubble formation and evolution of CH4/CO2 molecules
after dissociation, the size of CH4/CO2 bubbles is different; however, the shape of both
methane and carbon dioxide molecules are almost cylindrical. In addition, Tung, Chen [138]
used MD simulations to analyze the replacement that could occur without melting the
hydrogen-bonding network of water molecules. Their results suggest that replacement
occurs either through a direct exchange of methane and CO2 or through the transient
co-location of methane and CO2 in a single cavity. It was affected by the interfacial distance
between the liquid CO2 and the solid clathrate hydrate. Based on numerical analysis, it
was feasible to replace methane hydrate with CO2 in the solid phase without any attempt
to alter geological stability.

5. Conclusions

Comprehensive research is needed to understand hydrate dissociation mechanisms,
hydrate formation, and hydrate recovery conditions in microscale porous media. The aim
was to obtain a valid analysis when applying exploration and recovery techniques for gas
hydrates, based on the characteristics of the complex physical structures of hydrates in
sediment pores, such as multi-phase, multi-component fluid flow, and particle transport.
Analyzing dynamic temperatures, concentration distributions, and surface area is effective
when evaluating variations in hydrate decompositions, geological characteristics, and flow
field limitations of various types. Observations were emphasized on a numerical scale
or modeling on a microscale, and compared with experimental studies to obtain precise
data. The main points of the development of microscale numerical models are summarized
as follows:
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1. Microscale devices integrated with modern analytical technologies include Laser
Raman spectroscopy (Raman), X-ray diffraction (XRD), X-ray computed tomography
(X-CT), scanning electron microscope (SEM), nuclear magnetic resonance (NMR) and
high pressure differential scanning calorimetry (DSC).

2. Numerical analysis can be simulated using CFD, Lattice Boltzmann Method (LBM),
and molecular dynamics (MD). MD simulations consist of the radial distribution
function (RDF), mean square displacement (MSD), thermal expansion coefficient, dif-
fusion coefficient, capacity of heat, and thermal conductivity for various gas hydrate
structures under particular thermodynamic conditions.

3. Simultaneous analysis of hydrate dynamic numerical models is performed for tem-
perature, concentration, porosity, saturation rate, and permeability under different
hydrate formation coatings (sand coating, bridging, or spacing).

4. The gas hydrate exploitation process not only focuses on the formation, dissociation,
and recovery processes, but also considers the blockage and leakage of hydrates.

5. Dynamic analysis of impurities, such as salinity and mud, could be added to bulk
fluid; it can specifically correspond to the following:

• Analysis of the effective surface area of the gas hydrate in the formation attached
to the sandstone in different forms.

• Analysis of the influence of factors related to the pore size distribution of mineral
particles and hydrates on permeability changes in porous media.

• Considering the formation characteristics of different hydrates, particle coating,
and pore-filling; the relationship between relative permeability and hydrate
saturation is proposed.

• In the process of hydrate conversion, gas hydrate is transformed into water phase
hydrate. The hydration saturation increases with the increase of relative porosity,
relative pore size, and relative particle size. The hydrate will reduce the porosity
due to the pore space occupied by the hydrate. Then, the permeability decreases
with the increase of the hydrate phase in porous sediments.

• In the pore space with capillary pores, micromorphic hydrates occur sponta-
neously, and the permeability decreases approximately linearly with the increase
of hydrate saturation during the nucleation process of the crystal grain sur-
face; the permeability is often higher than predicted by previous analysis model
values.

• In the transition zone simulation, the downward trend of permeability is con-
verted from the particle coverage model to the pore filling model, and the tortu-
osity and surface area are analyzed to understand the mechanism of permeability
reduction.

• Mud erosion is a result of the mud surface with tremendous shear stress; a
moderately wide space appears in the pores of the sand particles, which slows
down the water flow to less than the critical value.
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