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Abstract: CO2 enhanced oil recovery (CO2-EOR) has become significantly crucial to the petroleum
industry, in particular, CO2 miscible flooding can greatly improve the efficiency of EOR. Minimum
miscibility pressure (MMP) is a vital factor affecting CO2 flooding, which determines the yield and
economic benefit of oil recovery. Therefore, it is important to predict this property for a successful
field development plan. In this study, a novel model based on molecular dynamics to determine
MMP was developed. The model characterized a miscible state by calculating the ratio of CO2

and crude oil atoms that pass through the initial interface. The whole process was not affected by
other external objective factors. We compared our model with several famous empirical correlations,
and obtained satisfactory results—the relative errors were 8.53% and 13.71% for the two equations
derived from our model. Furthermore, we found the MMPs predicted by different reference materials
(i.e., CO2/crude oil) were approximately linear (R2 = 0.955). We also confirmed the linear relationship
between MMP and reservoir temperature (TR). The correlation coefficient was about 0.15 MPa/K in
the present study.

Keywords: minimum miscible pressure; CO2 enhanced oil recovery; molecular dynamics

1. Introduction

Global warming has caused great changes such as continued sea level rise, which is
irreversible over hundreds to thousands of years. CO2 is the culprit of this phenomenon.
CCUS (CO2 capture, utilization, and storage) is a new technology developed from CCS
(CO2 capture and storage) that can bring economic benefits while reducing CO2 emissions
and alleviating global warming [1]. CO2 enhanced oil recovery (CO2-EOR) is one of the
effective ways of CCUS. The captured CO2 is squeezed into the oil reservoirs that have
been exploited, and the interaction between CO2 and crude oil is used to improve the
properties of the crude oil, thereby displacing more crude oil from the crust [2]. Research
has shown that CO2-EOR can improve crude oil recovery significantly and extend the
life of oil reservoirs [3,4]. Hence, CO2-EOR has been fundamentally well researched in
laboratories and applied in industries as an efficient approach since the 1970s [5].

There are two different miscible and immiscible states in CO2-EOR. Under the former
condition, CO2 and crude oil can completely integrate into one phase, resulting in a much
higher recovery rate than the latter. For the former, there is a minimum pressure above
which CO2 and crude oil can be miscible. This minimum pressure value, also called
the minimum miscible pressure (MMP), is a vital parameter in the process of CO2-EOR.
Nevertheless, considering the massive influencing factors, the accurate determination of
MMP remains a major challenge [6].
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To date, there are various ways to predict MMP such as experimental measurement
and computational methods. The former has been widely used due to their high precision.
Within them, slim-tube experiments [7–9], as a necessary test in the industry, is considered
to be the standard experimental procedure. Rising-bubble apparatus (RBA) [10,11] and
vanishing interfacial tension (VIT) [12–15] are also frequently utilized to determine MMP
because of their simplicity and flexibility. Although these experimental measurements have
accurate techniques, they still suffer from some disadvantages including time-consumption
and operation cost. Furthermore, it is difficult for any experimental method to simulate
the real conditions of the crude oil reservoirs completely so that their results are greatly
influenced by the instruments.

The application of computational techniques is an available alternative approach
to experiments. In 1960, the first empirical MMP correlation was proposed by Benham
et al. [16]. The reported equation was correlated using three pseudo-components presenting
a multi-components system, and some satisfactory results were obtained based on this
model. Thereafter, an increasingly number of correlations were developed for MMP
prediction [17–20]. Researchers found that the more useful parameters an equation used,
the better performance the model had [21]. These parameters generally included reservoir
temperature (TR), composition of drive gas (CO2, H2S, N2, and C1–C5), molecular weight
of C5+ fraction in crude oil (MWc5+), and the ratio of volatile (C1 and N2) to intermediate
(C2–C4, H2S, and CO2) in crude oil (Vol./Int.).

In addition to the conventional empirical formula models, the parameters above are
often used in some intelligent algorithms based on machine learning. For instance, artificial
neural networks (ANNs) can learn from large amounts of input data, and reflect their
relationships more effective than conventional techniques [22]. Determination of network
structure and its parameters are two crucial steps in achieving high performance from
ANN. One part of the data is used to train and look for a suitable structure and optimal
parameters, while the other tests the prediction accuracy of the model. Based on the
principle, back propagation (BP) [23] and radial basis function (RBF) [24] are proposed.
Beyond that, a series of optimization methods such as genetic algorithm (GA) [25], particle
swarm optimization (PSO) [26], support vector machine (SVM) [27], and hybrid-ANFIS [28]
have also been developed for MMP determination. In a previous study [29], we compared
four estimation methods and found that the machine learning intelligent algorithm had
a higher precision to the MMP than pure linear model. In addition, some reports that
combined multiple approaches showed better results [30–34].

However, all of the above methods cannot give a direct explanation of the MMP from
a microscopic view. They are all based on the existing oilfield data, which means that the
established model will inevitably be affected by specific situation. To put it another way,
these methods can be considered as pure mathematical statistics methods that have low
levels of universality for different CO2-EOR.

Against this backdrop, the current study proposes a novel MMP prediction model at
the molecular level, and the research process was not affected by other external objective
factors. Therefore, the model represents a new strategy. First, we built a simulation box
that contained CO2 and crude oil with an obvious phase interface. To mimic the contact
between CO2 and crude oil, these molecules were gradually mixed until they were miscible
with time evolution by using molecular dynamics. After calculating the ratio of CO2/crude
oil atoms that passed through the initial interface, we found the connection between the
ratio value with the miscible state. When the ratio changes from decreasing to stable, it
indicates that the system has entered a miscible state, while the pressure corresponding
to the inflection point is MMP. Figure 1 is a flow chart that shows all the main steps
of modeling. The main objective of this study was to reveal the principle of the MMP
formation at the molecular level and provide more feasible ideas for the prediction of
the MMP.
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temperature coupling method [40]. Berendsen pressure coupling with 1.0 ps time constant 
was selected as the pressure coupling method. The isothermal compression factor was set 
to 4.5 × 10−5 bar−1 [41]. The time step was 2 fs, and periodic boundary conditions were 
applied in the XY directions [42]. Walls were set at the top and bottom of the Z-direction 
in the simulated box to ensure that all atoms passed through the initial interface to achieve 
the miscibility. Bond lengths were constrained by the LINCS algorithm [43]. During the 
simulation, van der Waals interactions with the Lennard–Jones potential was cut off at 1.4 
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Figure 1. Flowchart of proposed MMP prediction model. (i) Construction of the simulation system,
(ii) Extracting number density data after MD simulation, (iii) Determination of initial miscible time,
(iv) Reconfirmation of initial miscible time, (v) Processing data from initial miscible time to the end,
(vi) Processing data from P1 to P6 at T, (vii) Acquisition of MMP.

2. Simulation Method
2.1. Simulation and Force Field

The molecular dynamics simulation was performed by the GROMACS 4.6.7 pack-
age [35,36], and AMBER 03 all-atom force field [37]. Parameters set for all components
of crude oil and CO2 were generated from Automated Topology Builder and Repository
databases [38,39].

The convergence criterion of energy minimization was 1000 kJ/(mol·nm). In the
simulation, a velocity rescaling thermostat with a 0.1 ps time constant was selected as the
temperature coupling method [40]. Berendsen pressure coupling with 1.0 ps time constant
was selected as the pressure coupling method. The isothermal compression factor was set
to 4.5 × 10−5 bar−1 [41]. The time step was 2 fs, and periodic boundary conditions were
applied in the XY directions [42]. Walls were set at the top and bottom of the Z-direction in
the simulated box to ensure that all atoms passed through the initial interface to achieve
the miscibility. Bond lengths were constrained by the LINCS algorithm [43]. During the
simulation, van der Waals interactions with the Lennard–Jones potential was cut off at
1.4 nm. Coulomb interaction used the particle-mesh Ewald summation method [44,45]. The
Verlet list was updated every 10 steps. The Maxwell–Boltzmann distribution was employed
to set the initial atomic velocities of the systems [46]. The trajectories were integrated by
the leapfrog Verlet algorithm [47].

2.2. Simulation System

In a real situation, the chemical components of crude oil are highly complex. Under
the current experimental conditions, it is time-consuming to precisely analyze the exact
constitution of its components. In order to get as close as possible to the real situation, the
oil model was designed based on Miranda’s works [48,49], which were used to explore the
interface properties between crude oil and different fluids. Their model contained alkanes
(72 hexane, 66 heptane, 78 octane, and 90 nonane molecules), cyclanes (48 cyclohexane and
78 cycloheptane molecules), and aromatics (30 benzene and 78 toluene molecules), and has
been proven reliable by Song et al. [50].
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At 333 K and 10 MPa, all alkanes, cyclanes, and aromatics were added into a cubic
box (x = 9 nm, y = 9 nm, z = 9 nm) randomly. Then, energy minimization was performed to
eliminate opposed-conformation. In order to mimic the state of crude oil in the reservoir,
we performed a 30 ns NPT ensemble simulation to obtain its equilibrium state. After
equilibration, the size of simulation box changed to 5.2 nm × 5.2 nm × 5.2 nm.

Furthermore, we built a box of the same size, stochastically adding 561 CO2 molecules
to mimic the supercritical CO2 fluid (333 K, 10 MPa). Energy minimization and 30 ns NVT
ensemble simulation enabled the CO2 to reach its equilibrium state. To simulate the contact
between CO2 and crude oil, the two boxes were integrated into one rectangular simulation
box, and the height of new box in the Z-direction was slightly increased to 11.2 nm to avoid
intermolecular overlap, as shown in Figure 2. After that, at least 10 ns NPT ensemble MD
simulation was performed.
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3. Results and Discussion

In the last NPT ensemble simulation, the size of the box gradually stabilized over
time. When CO2 was miscible with crude oil, the NPT ensemble achieved equilibrium
and the box size remained unchanged. However, the change in the size of the box cannot
intuitively reflect the miscibility process. Therefore, we introduced the number density of
CO2/crude oil.

The product of number density and volume of a box is the total number of atoms.
When the system achieves equilibrium, the ratio of CO2/crude oil atoms in the upper or
lower half of the box should be 50%. In our simulation system, the Z-direction height will
not change due to the presence of walls. Therefore, the integral change in the number
density in the Z-direction (i.e., the integral bars in Figure 2d) can reflect the change in
the size of the box and further reflect the mixing progress. When the system achieves
equilibrium, the integral of the number density in Z-direction will also be constant.

3.1. Definition of Initial Miscible Time

First, the initial miscible time was defined. It refers to the moment when CO2 and the
crude oil phases just reach the miscible state during their mixing progress, and they can
keep the miscible state afterward. The purpose is to ensure that data after this time are
miscibility data. We used the CO2 phase as an example to illustrate the calculations. Its
number density data were extracted along the Z-direction of the box from 0.5 ns to 10.0 ns
every 0.5 ns after the NPT ensemble was run. Hence, there were 20 sets of data in total.
We can obtain the number of CO2 atoms in the lower half of the box by integrating the
density of CO2 along the Z-direction below the initial interface at each cut-off time. Since
CO2 was not distributed in the box below the initial interface at the beginning, the integral
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values we obtained corresponded to the number of CO2 atoms passing through the initial
interface at the cut-off time. More vividly, it is an integral bar in the three-dimensional
space of the box along the Z-direction, as shown in Figure 2d.

Furthermore, a curve of the number of CO2 atoms passing through the initial interface
over time can be plotted. Figure 3 shows the change in the number of CO2 atoms in
the lower half of the box at 333 K and 10 MPa: it gradually increased from zero to a
stable value (about 49.09), and then tended to be stable. It is worth noting that each
molecule always kept in continuous random motion, thus it is normal to have positive and
negative fluctuations after miscibility. For the selection of the initial miscibility time, the
establishment standard is to find the time when the curve becomes stable and the change is
very gentle after the miscibility reference line (i.e., the 49.09 line in Figure 3a). This is also
the time when the miscibility has just been achieved. The first-order variance of data with
time evolution (Figure 3b) reflects the trend of data changes more intuitively. It should be
noted that it is not the “initial miscibility” that is already zero, but the time corresponding
to the point relatively close to zero. Based on the situation in Figures 2 and 3, it can be
guaranteed that the time at 4 ns: (i) the vertical axis value is already very close to the
reference line, and (ii) the curve’s upward trend has slowed down.
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Based on similar treatments, crude oil atoms passing through the initial interface
with time evolution (Figure S1) and its first-order variance (Figure S1b) can also be drawn.
Figure 3 and Figure S1 show that the changes in CO2 and crude oil were quite similar.
Combined with the analyses above, we can preliminarily conclude that 4 ns is the initial
miscible time, and is also the time when the CO2–oil system achieved miscibility.

3.2. Reconfirmation of Initial Miscible Time
3.2.1. Solvent Accessible SURFACE Area (SASA) Analysis

To confirm the initial miscible time discussed in previous parts, solvent accessible
surface area (SASA) was calculated. SASA represents the hydrophobic, hydrophilic, and
total solvent accessible surface area for each component of the simulated system. Figure 4
shows the change in the hydrophilic area of CO2 from 0 ns to 10 ns and went through
roughly three processes: (i) At the beginning, SASA increased rapidly and reached the
highest point (from C1 to C2); (ii) SASA dropped to the lowest point in a short period of
time (from C2 to C3); and (iii) SASA gradually rose to basic stability and attained a state of
dynamic balance (from C3 to C4, and the time was after about 4 ns).

C1 and C2 are adjustments to the initial configuration in the molecular dynamics NPT
ensemble, which was not our focus. This can be contributed to the molecular dynamic
method being able to readjust the molecular conformation in the model under the NPT
ensemble, and we focused more on the change in conformation after being readjusted. With
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the blending of CO2 and crude oil phases, both gradually achieved the best coexistence
state (after C4).

Similarly, the changing trend of hydrophobic surface area of crude oil can be obtained
by the same method. As shown in Figure 4b, a similar SASA change was observed in
which the area increased and then decreased rapidly with time evolution (from O1 to O3 in
Figure 4b). From Figure 4, it is reasonable to select 4 ns as the initial miscible time, and the
data after 4 ns can be used to discuss the miscibility.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 4. SASA analysis for CO2 (a) and crude oil (b). 

C1 and C2 are adjustments to the initial configuration in the molecular dynamics 
NPT ensemble, which was not our focus. This can be contributed to the molecular 
dynamic method being able to readjust the molecular conformation in the model under 
the NPT ensemble, and we focused more on the change in conformation after being 
readjusted. With the blending of CO2 and crude oil phases, both gradually achieved the 
best coexistence state (after C4). 

Similarly, the changing trend of hydrophobic surface area of crude oil can be 
obtained by the same method. As shown in Figure 4b, a similar SASA change was 
observed in which the area increased and then decreased rapidly with time evolution 
(from O1 to O3 in Figure 4b). From Figure 4, it is reasonable to select 4 ns as the initial 
miscible time, and the data after 4 ns can be used to discuss the miscibility. 

3.2.2. Root Mean Square Deviation (RMSD) Analysis 
Root mean square deviation (RMSD) compares each molecular structure in the 

simulation from the trajectory to the initial reference structure, reflects the change in its 
conformation, and is calculated by Equation (1). 

( ) ( ) 2

1

1 ( 0 )
N

i i
i

RMSD r t r
N =

= −  (1)

where N is the total number of atoms (CO2/crude oil); and ri(0) and ri(t) are the initial 
position and the position of atom i at time t. Figure 5 displays the RMSD of CO2/crude oil 
during NPT ensemble as a function of time. It is interesting to note that CO2 has a higher 
RMSD value than crude oil at the beginning, which indicates that CO2 has better mobility. 
From 4 ns to 10 ns, the RMSD of CO2/crude oil in the box fluctuated with time evolution. 
Both were gathered around 4 nm of RMSD, which signifies that the system achieved equi-
librium after 4 ns. 

Figure 4. SASA analysis for CO2 (a) and crude oil (b).

3.2.2. Root Mean Square Deviation (RMSD) Analysis

Root mean square deviation (RMSD) compares each molecular structure in the sim-
ulation from the trajectory to the initial reference structure, reflects the change in its
conformation, and is calculated by Equation (1).

RMSD =

√√√√ 1
N

N

∑
i=1

(|ri(t)− ri(0)|)2 (1)

where N is the total number of atoms (CO2/crude oil); and ri(0) and ri(t) are the initial
position and the position of atom i at time t. Figure 5 displays the RMSD of CO2/crude
oil during NPT ensemble as a function of time. It is interesting to note that CO2 has a
higher RMSD value than crude oil at the beginning, which indicates that CO2 has better
mobility. From 4 ns to 10 ns, the RMSD of CO2/crude oil in the box fluctuated with time
evolution. Both were gathered around 4 nm of RMSD, which signifies that the system
achieved equilibrium after 4 ns.

Molecules 2021, 26, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 5. RMSD analysis for CO2 and crude oil. 

3.2.3. Interaction Energy Analysis 
The energy changes can reveal the changes in conformation in the simulated system 

and represent the miscibility process between CO2 and crude oil phases. Interaction 
energy is a type of non-bonding interaction including long-range Coulomb interaction 
and short-range van der Waals interaction. As shown in Figure 6, the system was 
dominated by van der Waals interaction, while Coulomb interaction accounts for only 
about one-tenth of the former. This is because both CO2 and crude oil are non-polar 
molecules and do not have forces such as strong hydrogen bonding interaction. The 
intermolecular forces are mainly dispersive forces. The dispersion forces increased with 
time evolution, and the van der Waals potential energy and the total intermolecular 
potential energy increased accordingly. 

When the system achieved equilibrium, the total interaction energy between CO2 and 
crude oil also reached its maximum and remained dynamically stable. Figure 6 clearly 
indicates that van der Waals interaction and Coulomb interaction both remained stable 
after 4 ns. 

 
Figure 6. Interaction energy analysis. 

3.3. Acquisition of MMP 
Once the initial miscible time system at 333 K and 10 MPa has been successfully 

determined, the number of CO2 atoms in the lower half of the box and crude oil atoms in 
the upper half of the box after 4 ns were taken as the arithmetic mean respectively. It needs 

Figure 5. RMSD analysis for CO2 and crude oil.



Molecules 2021, 26, 4983 7 of 14

3.2.3. Interaction Energy Analysis

The energy changes can reveal the changes in conformation in the simulated system
and represent the miscibility process between CO2 and crude oil phases. Interaction energy
is a type of non-bonding interaction including long-range Coulomb interaction and short-
range van der Waals interaction. As shown in Figure 6, the system was dominated by van
der Waals interaction, while Coulomb interaction accounts for only about one-tenth of the
former. This is because both CO2 and crude oil are non-polar molecules and do not have
forces such as strong hydrogen bonding interaction. The intermolecular forces are mainly
dispersive forces. The dispersion forces increased with time evolution, and the van der
Waals potential energy and the total intermolecular potential energy increased accordingly.

Molecules 2021, 26, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 5. RMSD analysis for CO2 and crude oil. 

3.2.3. Interaction Energy Analysis 
The energy changes can reveal the changes in conformation in the simulated system 

and represent the miscibility process between CO2 and crude oil phases. Interaction 
energy is a type of non-bonding interaction including long-range Coulomb interaction 
and short-range van der Waals interaction. As shown in Figure 6, the system was 
dominated by van der Waals interaction, while Coulomb interaction accounts for only 
about one-tenth of the former. This is because both CO2 and crude oil are non-polar 
molecules and do not have forces such as strong hydrogen bonding interaction. The 
intermolecular forces are mainly dispersive forces. The dispersion forces increased with 
time evolution, and the van der Waals potential energy and the total intermolecular 
potential energy increased accordingly. 

When the system achieved equilibrium, the total interaction energy between CO2 and 
crude oil also reached its maximum and remained dynamically stable. Figure 6 clearly 
indicates that van der Waals interaction and Coulomb interaction both remained stable 
after 4 ns. 

 
Figure 6. Interaction energy analysis. 

3.3. Acquisition of MMP 
Once the initial miscible time system at 333 K and 10 MPa has been successfully 

determined, the number of CO2 atoms in the lower half of the box and crude oil atoms in 
the upper half of the box after 4 ns were taken as the arithmetic mean respectively. It needs 

Figure 6. Interaction energy analysis.

When the system achieved equilibrium, the total interaction energy between CO2 and
crude oil also reached its maximum and remained dynamically stable. Figure 6 clearly
indicates that van der Waals interaction and Coulomb interaction both remained stable
after 4 ns.

3.3. Acquisition of MMP

Once the initial miscible time system at 333 K and 10 MPa has been successfully
determined, the number of CO2 atoms in the lower half of the box and crude oil atoms in
the upper half of the box after 4 ns were taken as the arithmetic mean respectively. It needs
to point out that the number of CO2 molecules under different pressures are different for
333 K system (Table S1). In order to reflect the general laws, the ratio of mean value to their
respective total number of CO2 and crude oil atoms in the box was calculated. Similarly,
the ratio of CO2/crude oil passing through the initial interface to their respective totals at
333 K for 15 MPa, 20 MPa, 25 MPa, 30 MPa, and 35 MPa were also calculated, as shown
in Table 1.

Table 1. The ratio of CO2 and crude oil atoms passing through the initial interface to their respective
totals.

CO2 Crude Oil

10 MPa 0.0292 0.0300
15 MPa 0.0231 0.0236
20 MPa 0.0219 0.0221
25 MPa 0.0216 0.0217
30 MPa 0.0204 0.0207
35 MPa 0.0205 0.0208
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From 10 to 35 MPa, the data of ratio decreased first and then became stable. We
believe that this is because the system reached its peak pressure at 333 K. When the system
exceeded this pressure, the additional simulation will not affect the value of each ratio.
Therefore, the pressure is the theoretical MMP at 333 K.

For the sake of confirming the MMP, we handled the data according to its regularity.
The first three decreasing points were fitted linearly, representing the systems before MMP,
and an equation in the form of y = kx + b was obtained. The last three nearly equal
points were regarded as stable points, representing the systems after MMP, thus, another
equation of y = x can be acquired by taking their arithmetic mean. We can subsequently
obtain an intersection point as a consequence of simultaneous equations, and the abscissa
corresponding to this point is the exact MMP at 333 K. As shown in Figure 7a,b, it was
20.31 MPa for CO2 and 20.21 MPa for crude oil.
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3.4. MMP in Different Temperature Systems

We continued to simulate and analyze the data under the condition of 343 K, 353 K,
363 K, and 373 K at 10 MPa, 15 MPa, 20 MPa, 25 MPa, 30 MPa, and 35 MPa, respectively.
It is worth pointing out that the density of CO2 varies greatly at different temperatures
and pressures, therefore we computed the number of CO2 molecules under different
conditions. The amount of CO2 molecules added to each simulation system are listed in
Table S1. Afterward, a summary of initial miscible time in different systems can be obtained
according to the methods in Sections 3.1 and 3.2, as listed in Table 2. Table S2 summarized
all the integral values in this study.

Table 2. Summary of initial miscible time (ns) in different systems.

333 K 343 K 353 K 363 K 373 K

10 MPa 4.0 5.0 3.5 4.0 3.0
15 MPa 4.5 6.0 3.5 3.0 2.5
20 MPa 4.5 5.0 4.0 3.0 3.0
25 MPa 4.0 3.5 4.0 3.0 3.5
30 MPa 3.5 4.0 4.0 3.0 4.0
35 MPa 4.5 4.0 4.5 3.5 4.0

The ratio of CO2 and crude oil atom numbers that passed through the initial interface
to their respective totals when they achieved miscibility can be obtained. Consequently,
MMP of 343 K, 353 K, 363 K, and 373 K were obtained according to the method described
in Section 3.4 by plotting and curve fitting (Figure S2). Table 3 summarizes the results.



Molecules 2021, 26, 4983 9 of 14

Table 3. Summary of MMP (MPa) obtained from CO2/crude oil in different systems.

CO2 Crude Oil

333 K 20.31 20.21
343 K 21.08 20.89
353 K 22.12 22.36
363 K 24.43 23.84
373 K 26.25 24.52

3.5. Model Assessment

We fitted the MMP obtained from CO2/crude oil to TR, respectively, and obtained two
prediction equations (Figure 8). It can be compared with the experimental results to check
the predictive performance of the model. Recently, Yu et al. used a combination method
of slim-tube experiments and interfacial tension (IFT) to perform MMP measurements on
tight oil from the Long Dong region of the Ordos Basin. This method has higher credibility
than slim-tube experiments [51]. Afterward, we compared our model with several famous
empirical correlations to illustrate its accuracy by employing the experimental method
proposed by Yu et al. as the benchmark. Table 4 reports the relative error. Details of these
empirical correlations are summarized in Table S3.
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Table 4. Summary of MMP (MPa) and relative error predicted by experimental and different empirical
correlations.

Model Number of
Parameters

Predicted MMP
(MPa)

Relative Error
(%)

Yu et al. [51] - 22.75 -
CO2 (this study) 1 19.63 13.71

Crude Oil (this study) 1 20.81 8.53
Lee [52] 1 20.84 8.32

Alston et al. [53] 4 19.72 13.22
Shokir [54] 8 20.03 11.89

Emera and Sarma [25] 2 30.11 32.44
Cronquist [55] 3 26.59 16.96

Glaso [56] 2 27.60 21.41
Yellig and Metcalfe [57] 1 16.55 27.18

The relative error obtained from crude oil was similar to Lee [52], and the CO2 relative
error was similar to Alston et al. [53]. The equation proposed by Shokir [54] was based
on an alternating conditional expectation algorithm, and had a relative error of 11.89 %.
The model of Emera and Sarma [25] can be employed to calculate the MMP of impure
CO2 injection, but has poor accuracy. Beyond that, the performances of Cronquist [55],
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Glaso [56], and Yellig and Metcalfe [57] were also unsatisfactory. The overall results can
prove that even if only the influencing factor of TR is considered, the model proposed in
this study had satisfactory prediction accuracy.

3.6. Comparison of MMP Predicted by CO2 and Crude Oil

The relationships between MMP predicted by CO2 and crude oil can be compared. It
is more intuitive to reflect the data in Table 3 to Figure 9. In Figure 9, the blue line represents
the curve whose analytical formula is y = x, and the red line is the fitting curve for the
data. It can be found that the MMPs predicted by CO2 and crude oil were approximately
linear (R2 = 0.955). Furthermore, in the same simulation system, the MMP values obtained
from different reference materials (CO2/crude oil) were not identical as there was a slight
difference between them (i.e., an included angle of about 8◦).
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3.7. Relationships between TR and MMP

However, the real situation of each oil reservoir varies, and the composition of injected
gases is also different in EOR, so it is meaningless and almost impossible to obtain the accu-
rate relationship between each influence factor and MMP. For a certain influencing factor,
we can explore the qualitative relationship between the factor and MMP. Oil reservoir tem-
perature (TR) is usually regarded as one of the most important factors affecting MMP [58].
Exploring the influence of TR on MMP is the core of many studies (such as the fitting of
empirical formula). Recently, Zheng et al. [59] proposed a novel oil droplet volume mea-
surement method (ODVM) to measure the multiple contact minimum miscibility pressure
(MCMMP) and first contact miscibility pressure (FCMP) in the CO2/n-hexadecane (C16H34)
and CO2/liquid paraffin systems. Their experimental data showed that the measured
MMP values of two CO2–oil systems increased linearly with TR. Furthermore, Mostafa et al.
found that the MMP is a linear function of temperature with a slope of 0.15 MPa/K [60].

The modeling method of this study shows that the relationship between TR and MMP
can be identified in the principle of miscibility because it is not affected by other external
objective factors. As shown in Figure 8, for both CO2 and crude oil, the change in TR
and MMP basically conformed to a linear relationship, thus a fairly good fitting result
can be obtained by using the first-order linear equation. This is because the increase in
TR can effectively reduce the solubility of CO2 in crude oil, which is not conducive to the
mixing progress of CO2 and crude oil, ultimately leading to the increase in MMP. During
the temperature range (333–373 K), it is a linear change with a slope of 0.15 MPa/K and
0.12 MPa/K and consistent with the experimental results.

4. Conclusions

In this paper, a novel molecular dynamics-based model to determine minimum mis-
cible pressure of CO2–oil system was developed. The model characterized the miscible
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state by calculating the ratio of both CO2 and crude oil atoms that passed through the
initial interface to their respective totals. These ratio values dropped rapidly and fluctuated
after a certain value with the increase in pressure at a fixed TR. The value is the MMP of
TR. In comparison with conventional prediction approaches, the present work proposed a
straightforward model to simulate the complex miscibility of CO2 and crude oil, and the
miscible principle was clarified at the molecular scale.

Based on the above studies, the newly proposed model is believed to be reliable for
the prediction of MMP. However, there still remain some distinctions when compared to
the real situation, which may have a certain impact on the prediction [61]. We have begun
to adjust the model to enhance its application. For example, we plan to introduce silica slab
and asphaltenes to mimic the real situation of crust and heavy oil, respectively. To sum up,
the following conclusions can be drawn:

(1) The molecular scale mixing progress of CO2 and crude oil was investigated in prin-
ciple for the first time, and the research process was not affected by other external
objective factors. Results showed that the ratio of CO2/crude oil atoms that passed
through the initial interface to their respective totals was always the same when the
system was miscible. The proposed model had good prediction capabilities.

(2) In the process of the simulation, the SASA, RMSD, and interaction energy of CO2/crude
oil changed obviously, thus they can be used as criteria of miscibility between both
phases.

(3) The MMP predicted by CO2 of the CO2–oil system were 20.31 MPa, 21.08 MPa,
22.12 MPa, 24.43 MPa, and 26.25 MPa at temperatures of 333 K, 343 K, 353 K, 363 K,
and 373 K, respectively, and MMPs predicted by crude oil were 20.21 MPa, 20.89 MPa,
22.36 MPa, 23.84 MPa, and 24.52 MPa at the same temperatures. The two sets of data
had a linear relationship.

(4) MMP and reservoir temperature (TR) had a linear relationship in the present work,
and the slope was about 0.15 MPa/K, which are in agreement with theoretical analyses
and literature results.

Supplementary Materials: The following are available online. Figure S1: The number of crude oil
atoms passing through the initial interface. Figure S2: Acquisition of MMP in different systems.
Table S1: The number of CO2 molecules added in different systems. Table S2: Integrated values of
CO2 and crude oil at different temperatures. Table S3: Summarization of some famous empirical
correlations.
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