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Abstract: Laser-Induced Breakdown Spectroscopy (LIBS), having reached a level of maturity during 

the last few years, is generally considered as a very powerful and efficient analytical tool, and it has 

been proposed for a broad range of applications, extending from space exploration down to terres-

trial applications, from cultural heritage to food science and security. Over the last decade, there 

has been a rapidly growing sub-field concerning the application of LIBS for food analysis, safety, 

and security, which along with the implementation of machine learning and chemometric algo-

rithms opens new perspectives and possibilities. The present review intends to provide a short over-

view of the current state-of-the-art research activities concerning the application of LIBS for the 

analysis of foodstuffs, with the emphasis given to olive oil, honey, and milk. 
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1. Introduction 

Laser-Induced Breakdown Spectroscopy (LIBS) has been firstly introduced and pro-

posed for analytical applications almost immediately after the invention of the laser in 

1960 [1]. Since then, it has been proposed and today is widely used as an alternative ana-

lytical method for numerous applications [2]. The operating principle of LIBS is quite sim-

ple and is based on the interaction of a powerful enough laser beam, focused usually on 

or in a sample, inducing a dielectric breakdown of the material, thus resulting in plasma 

formation consisting of excited and non-excited atoms and molecules, fragments of mo-

lecular species, electrons and ions, and emitting characteristic radiations, whose spectro-

scopic analysis can in principle provide the elemental composition fingerprint of the ma-

terial. The required instrumentation consisting basically of a laser source, and a spectrom-

eter/monochromator equipped with the appropriate light detector (nowadays being al-

most exclusively some CCD or ICCD type detector) is relatively simple and economically 

affordable, while significant progresses have been achieved to small size and/or portable 

equipment, facilitating largely the in situ operation [3,4]. 

The main attributes of LIBS are its capability to provide the simultaneous multi-ele-

mental composition of a sample, of any state of matter (i.e., solid, liquid, or gas, dielectric 

or conductive), with either little sample preparation or none at all, and due to develop-

ments in photonic technology, its instrumentation is of relatively low cost and allows for 
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in situ and on-line applications, as well as applications where the measurement is per-

formed remotely [3]. LIBS-based instruments, either portable or even handheld are now 

commercialized and are readily available; they are used mainly for the detection of me-

tallic elements in alloys, paints, rocks, soil, etc. [5]. 

For many years, LIBS was considered mainly for applications related with industrial 

diagnostic purposes [6]; however, later, it has been applied to environmental, cultural her-

itage, and space applications [7,8]. Despite the vast field of applications for which LIBS 

has been proposed, two important issues arise that are considered as drawbacks: the re-

producibility and the relatively large detection limits, at least compared with other com-

peting technologies (as e.g., ICP, atomic emission/absorption, etc.). Both these issues are 

attributed to the relatively lower reproducibility of the laser-induced plasma that take 

place during the plasma formation [9] and very often to matrix effects [10]. 

During the past decade, the scientific interest about LIBS-related applications has 

been importantly revived, mostly due to the implementation of chemometric and machine 

learning tools for the analysis of the LIBS spectroscopic data [11,12]. In comparison with 

other spectroscopic techniques, LIBS is superior in terms of collected data, as it can pro-

vide enormous datasets with thousands of variables in very short acquisition times. In 

that sense, the first LIBS benchmark dataset has been published by Képeš et al. [13] which 

contains LIBS spectra from 138 soil samples belonging to 12 classes. Moreover, based on 

this benchmark dataset, a comparative classification contest has been performed during 

the EMSLIBS 2019 conference by Vrábel et al. [14]. 

Recently, a challenging application of LIBS that received considerable attention is the 

implementation of LIBS for foodstuff analysis. Specifically, LIBS was employed for the 

detection of heavy metals in various foodstuffs, for the detection of adulteration and for 

determining the designation of origin for various types of foodstuffs [15,16]. In particular, 

during the last decade, more than 100 scientific articles have been published that cover 

various aspects of LIBS applications in food related analysis. Despite this renewed inter-

est, the related research efforts performed so far concerning the most commonly adulter-

ated foods (i.e., olive oil, honey, and dairy products) are rather limited, to the best of our 

knowledge. 

In the present work, a review is attempted on the recently emerging research and 

literature regarding the applications of LIBS in the analysis of various types of food, 

mainly focusing on olive oil, honey, and some dairy products, the main emphasis given 

to reviewing the chemometric/machine learning methods assisting LIBS analysis. The first 

section of this review gives a brief overview of the physical phenomena occurring during 

the implementation of LIBS, as well as a brief overview regarding the related instrumen-

tation. The second section examines some of the most common chemometric and Ma-

chine/Deep Learning methodologies that have been applied in order to assist the analysis 

of LIBS spectroscopic data. Then, the third section presents some recent and innovative 

research activities of food analysis that employ LIBS. Finally, the last section summarizes 

some very recent progress concerning LIBS applications for the analysis of olive oil, 

honey, and dairy products. 

2. Laser-Induced Breakdown Spectroscopy 

LIBS is based on the spectroscopic analysis of the plasma-emitted radiation resulting 

from the interaction of a strong enough and focused laser beam with a sample. A typical 

LIBS setup requires a laser, a lens for the focusing of the laser radiation, a lens system or 

a fiber optic for the collection of radiation emitted from the plasma, and a spectrometer to 

analyze the collected plasma emission. A schematic of the setup is shown in Figure 1a. 

When a strong enough laser beam is focused on the sample’s surface, the material is 

heated, vaporized, and finally removed; i.e., laser ablation is occurring. The amount of 

material that is removed depends on the intensity and the wavelength of the laser beam, 
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the laser pulse duration, as well as the material itself (i.e., color, reflectance, surface mor-

phology, etc.). Then, the vaporized ablated material is rapidly expanding above the sam-

ple’s surface, forming the so-called high-temperature plasma plume [17]. 

In general, the laser-induced plasmas contain various species, namely atoms and 

molecules (excited or not), ions, electrons, and often small diatomic molecules. The latter 

are either formed following the fragmentation of the sample’s constituents or can be 

formed through chemical reactions occurring within the plasma volume [18]. The radia-

tion emitted from the plasma usually exhibits several spectral features, arising from radi-

ative transitions of the plasma species, and radiative recombinations and bremsstrahlung, 

presenting the form of discrete or continuous spectra. Discrete spectra of radiation are due 

to transitions occurring between bound states of atoms, ions, and molecules. Atomic and 

ionic transitions exhibit spectral lines, while molecular transitions exhibit band-shaped 

spectral features. These types of transitions are well studied, and their characteristics (e.g., 

wavelength, energy levels, etc.) can be found in various databases such as the NIST atomic 

and molecular spectra database [19,20]. On the other hand, continuous spectra of plasma 

radiation are due to processes such as Bremsstrahlung and/or to a recombination of elec-

trons with atoms [3,17,18]. A schematic of the atomic and molecular emissions, Brems-

strahlung, and recombination processes are shown in Figure 1b.  

The laser-produced plasmas are in general short-lived, typically lasting up to a few 

microseconds. Their temporal evolution and analytical description are governed by rather 

complex dynamics and are out of the scope of this paper. However, for the sake of com-

pleteness, a simplistic description of the temporal evolution of the plasma-emitted radia-

tion will be given. So, within few tens of nanoseconds, after the plasma creation, the emit-

ted radiation is basically due to Bremsstrahlung and recombination of electrons with ions, 

corresponding to a continuous spectrum. A few hundred nanoseconds after the plasma 

creation, ionic and atomic spectral lines start to emerge and increase in intensity while the 

continuum decreases rapidly, thus becoming clearly observable, together with the molec-

ular bands. 

The analysis and treatment of LIBS data can be demanding, making the extraction of 

qualitative and/or quantitative information not a trivial task. For instance, LIBS spectra 

may be complex, containing a large number of features not allowing for the extraction of 

valuable information about the sample characteristics, whereas spectra from different 

samples may exhibit the same spectral features, thus impeding the sample discrimination. 

To overcome such difficulties and by exploiting the ability of LIBS to create large datasets, 

machine learning and chemometric techniques can be employed. Machine learning algo-

rithms and chemometrics can perform tasks suitable for categorizing/classifying data into 

desired and distinct classes, calibration measurements, pattern recognition, and outlier 

detection. These algorithms have been widely applied on LIBS data, for industrial, envi-

ronmental, cultural heritage, space exploration, and food analysis applications (see, e.g., 

Figure 1c). 
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Figure 1. (a) Schematic of a LIBS setup. (b) Radiative processes occurring in the plasma (atomic emissions, Bremsstrahlung, 

and recombination). (c) Typical applications of LIBS. 

3. Chemometrics and Machine/Deep Learning for LIBS 

Chemometric and machine/deep learning algorithms can be categorized into three 

main classes: supervised, unsupervised, and reinforcement learning. Supervised learning 

algorithms are employed to associate the data with a specific characteristic/attribute, e.g., 

a class membership or some continuous value that describes them. Specifically, super-

vised algorithms are mainly used for classification and regression problems. Unsuper-

vised learning algorithms are used to find patterns within the dataset, for dimensionality 

reduction, for data clustering, and to detect anomalies [21,22]. Supervised and unsuper-

vised learning approaches adapted to the case of LIBS spectroscopic data are summarized 

in Figure 2.  

As schematically depicted in Figure 2a, the supervised learning algorithms employ 

the raw spectroscopic data, i.e., the elemental spectral fingerprints, for which there is a 

priori knowledge of their class designations. Subsequently, the spectroscopic data are in-
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troduced to a machine learning algorithm for training. A validation procedure for the re-

sulting predictive model is usually performed, where the algorithm validates the data in-

troduced to it (by performing cross-validation), and its optimum parameters are deter-

mined (by hyper-parameter optimization). It is common practice to pre-process the data, 

as for example normalizing them, scaling them, as well as selecting certain spectroscopic 

features (feature selection) or extracting features from them (feature extraction). Common 

supervised machine learning algorithms that have been used in LIBS studies, are, among 

others, Support Vector Machines (SVMs) [23,24], Linear Discriminant Analysis (LDA) 

[25], Partial Least Squares (PLS) [26], Partial Least Squares Discriminant Analysis (PLS-

DA) [27], Random Forests (RFs) [28], and k Nearest Neighbors (k-NN) [29]. Moreover, 

deep learning algorithms have been also used in LIBS studies, with the most popular type 

being the multi-layer perceptron (MLP) neural networks [12,30]. 

In contrast to the supervised learning case, in unsupervised learning, there is no a 

priori knowledge of any class designation [22]. The spectroscopic data are used for train-

ing the algorithm that is used to find patterns within the dataset. As a result, the algo-

rithm’s output can be used for various tasks, the most common being clustering and di-

mensionality reduction(see, e.g., Figure 2b). Common supervised machine learning algo-

rithms that have been used in LIBS studies comprise Principal Component Analysis (PCA) 

[31] and k-Means Clustering [32], while there have been some works that employ some 

neural network architectures for unsupervised learning, such as Self-Organizing Maps 

(SOMs) [33] and Restricted Boltzmann Machines (RBMs) [34]. Less commonly, graph the-

ory-based algorithms have been also used for the treatment of LIBS spectra in an unsu-

pervised manner, with impressive results [35]. 
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Figure 2. (a) Schematic of supervised and (b) unsupervised learning algorithmic training. 

An important issue, often omitted however, regarding the algorithmic training for 

supervised algorithms is the validation of the predictive models. The most common 

method is cross-validation (also known as internal validation), which is denoted as CV in 

the rest of this work. CV is used to assess how a predictive model can generalize to an 

independent dataset (i.e., to assess if there is any bias in prediction that is due to either the 

training procedure or the data) and is schematically explained in Figure 3. During the 

training of the spectroscopic data, CV is used to split it into training and testing sets. In 

the related literature, its implementation appears in many variants [36]. The simplest form 

of CV is to simply split the data into two subsets and use one for training and the other 

one for testing. The most commonly used type of CV is the k-fold CV, where the entire 

dataset is split into k subsets and the algorithm is iteratively (k times) trained with the k-

1 subsets, while the remaining dataset is used for testing purposes. The procedure is sche-

matically depicted in Figure 3a. A value between 5 and 10 has been shown that is the most 

suitable for k [36]. This can be seen in Figure 3 (b), where a five-fold CV is used to train a 

dataset consisting of 100 spectra (bottom axis stands for the spectrum index), from eight 
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samples that belong to three distinct classes. For each CV iteration, the subset used for 

training is blue colored, while the subset used for testing appears as pink colored. 

Some other variants of CV, which are not used so often in treating LIBS spectroscopic 

data, are shown in the rest of Figure 3. These are group k-fold (in which the same group 

is not appearing in two different folds), stratified k-fold (where the folds are selected so 

that the mean response value is approximately equal in all the folds), shuffle-split (ran-

dom selection of the train and test sets and does not guarantee that all folds will be differ-

ent, especially for relatively small datasets), group shuffle-split (provides randomized 

train/test indices to split data according to a third-party provided group), and stratified 

shuffle-split (is a merge of stratified k-fold and shuffle-split, which returns stratified ran-

domized folds. The folds are made by preserving the percentage of samples for each 

class.). These CV variants are readily implemented in most of the available chemometrics 

and machine learning libraries and packages [37]. 

A rather important and common problem may occur when performing CV that con-

cerns the data itself and the implementation of CV, as well, i.e., data leakage. Data leakage 

means that information is revealed to the predictive model in such way that it attributes 

it with an unrealistic advantage to make better predictions. This leakage occurs, mainly, 

at the pre-processing steps where normalization/standardization and/or dimensionality 

reduction are applied to the data. The aforementioned steps must be performed after the 

data splitting to the training and test set; otherwise, data leakage will occur, and non-

trustworthy results will be obtained. 

Accordingly, for the proper evaluation of a constructed algorithmic model, internal 

validation (i.e., cross-validation) must be accompanied with an external validation as the 

final step. In order to perform an external validation, a set of samples must be excluded 

totally from the training procedure and used only for prediction purposes after the algo-

rithmic training. This is the only way to make sure that the constructed predictive model 

is well-trained, effective, and robust. 
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Figure 3. (a) Schematic of cross-validation. (b) Types of cross-validation (Adapted from ref. [37]). 

4. LIBS Applications in Food Analysis 

Over the last few years, Laser-Induced Breakdown Spectroscopy (LIBS) has demon-

strated its potential as a useful spectroscopic tool for food analysis and diagnostics [15,16]. 

Along with the plethora of the food products found in the market and the issues regarding 

food safety, a significant number of studies have appeared using LIBS. Some of these stud-

ies that have been conducted very recently, after 2019, are briefly described below. 

A rather interesting topic of food science is the food products obtained from genet-

ically modified organisms and crops. These types of foodstuff (the most common being 

corn, soy, zucchini, milk, etc.) need to follow specific regulations and guidelines before 

being allowed on the market. Considering the above, in an interesting work from Liu et 

al. [38], LIBS was combined with machine learning techniques, including Principal Com-

ponent Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA), for 

discriminating genetically modified maize. As a result, the discrimination of 120 trans-

genic and 120 non-transgenic maize samples with 100% accuracy has been succeeded, and 

spectral features of high importance have been identified and were reported.  
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Another topic of interest is the detection of heavy metals, pesticides, fungicides, and 

toxic substances in foodstuff. In a recent study by Wang et al. [39], cadmium (Cd) content 

on rice roots was determined by LIBS assisted by different machine learning algorithms 

(i.e., Partial Least Squares Regression (PLSR), Least Square Support Vector Machines (LS-

SVM), and Extreme Learning Machine (ELM)). The investigation was focused on the spec-

tral lines of atomic and ionic cadmium (Cd (I) at 228.80 nm, Cd (II) at 214.44 and 226.50 

nm). In comparison with conventional chemical procedures, such as ICP-OES, LIBS per-

formed rapid analysis, much faster that ICP-OES, thus being an attractive method for real-

time analysis of crops. In the same direction, Wu et al. [40] used LIBS aided by Hyper-

spectral Imaging (HSI) in order to perform fast detection of thiophanate-methyl on the 

surface of some mulberry fruits, employing PCA and PLSR analysis. Thiophanate-methyl 

is a fungicide, i.e., a biological chemical compound, often used for exterminating several 

parasites in a large variety of crops. In another study by Gamela et al. [41], ICP-OES and 

LIBS have been used for the quantitative determination of the concentration of elements, 

such as Ca, K, Mg, Na, and P, in edible seeds. In addition to LIBS and ICP-OES, hyper-

spectral imaging was used for mapping the presence of the aforementioned elements on 

the seeds’ surface or inside them. Larios et al. [42] discriminated low and high-vigor soy-

bean seed lots, using LIBS along with machine learning techniques such as Principal Com-

ponents Analysis (PCA), Support Vector Machines (SVMs), Linear Discriminant Analysis 

(LDA), Quadratic Discriminant Analysis (QDA), and k-Nearest Neighbors (k-NN). Fur-

thermore, LIBS has been used for discrimination of both the cultivar [43,44] and geograph-

ical origin [45] of different kinds of foodstuffs. In that view, Perez-Rodriguez et al. [43], 

after selecting the emission lines of carbon (C), calcium (Ca), iron (Fe), magnesium (Mg), 

and sodium (Na) and using the Extreme Gradient Boosting (XGBoost) algorithm, devel-

oped a k-NN model able to predict the cultivar of brown rice with accuracy up to 86%. 

Similarly, Megalhães et al. [44] used LIBS combined with some machine learning algo-

rithms (i.e., PCA, PLSR, etc.) and achieved the successful discrimination of some sweet 

oranges, with similar DNA, with high accuracy. Finally, Zhang et al. [45] have succeeded 

in classifying some Ginkgo biloba leaves based on their geographical origins utilizing the 

LIBS technique aided by some machine learning algorithms (PCA, LDA, and SVM). 

From this short literature review of the very recent LIBS-related applications con-

cerning foodstuffs, it becomes clear that LIBS applications are rapidly expanding in food 

science and technology, and that LIBS is gradually established as an attractive diagnostic 

tool for foodstuffs and related security issues. In the next section, we will focus on related 

research that concerns some foodstuffs that are very common and very largely consumed 

and thus, their quality control and safety are of great importance and of high socioeco-

nomic implications. Such foods are the edible oil and its various types, the honey and the 

milk. 

4.1. Olive Oil 

Olive oil is a highly reputable foodstuff mainly produced and consumed within Med-

iterranean countries (e.g., Spain, Italy, Greece), and its use is widely spread to several 

countries around the world. In comparison with other vegetable oils, olive oil stands out 

for its unique taste and color, delicate aroma, and its potential health and therapeutic ben-

efits [46–48]. High-quality olive oils are branded as extra-virgin (EVOO) and virgin 

(VOO), while monovarietal olive oils have unique characteristics resulting from the olive 

cultivar, geographical origin, and climatic conditions. The knowledge of cultivar and ge-

ographical origin can be of high commercial interest, especially for premium olive oils 

that can bear marks such as the protected designation of origin (PDO), protected geo-

graphical indication (PGI), and traditional specialty guaranteed (TSG). However, olive oil 

is a food prone to food fraud such as mislabeling and adulteration due to its increasing 

demand and higher market values, especially for EVOOs and VOOs. 

In that view, a plethora of analytical techniques such as HPLC, FT-IR, and NMR [49–

52] have been applied in recent years not only to study the adulteration of olive oil but 
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also for the verification of its geographical origin and variety, its content of fatty acids 

(palmitic, oleic, linoleic, and linolenic) and/or several other compounds, such as polyphe-

nols, tocopherols, sterols, etc. However, although these techniques exhibit high sensitiv-

ity, they are costly in terms of equipment and usually demand highly qualified personnel 

for their operation, while they require time-consuming procedures for sample prepara-

tion. Therefore, a rapid, lower cost, reliable, and accurate enough method can be of great 

interest and importance for olive oil quality control and other analysis needs. The LIBS 

technique fulfills the above-mentioned requirements and recently has been proposed to 

be applied for olive oil discrimination/classification issues, providing so far very promis-

ing results. In this review, we focus on the application of the LIBS technique for the dis-

crimination/classification of olive oil in terms of geographical origin, type of cultivar, and 

adulteration with other vegetable much cheaper oils.  

In Figure 4a, a representative LIBS spectrum of an olive oil is shown. As shown, it 

contains the typical spectral features of elements found in organic matter, i.e., carbon (C), 

nitrogen (N), hydrogen (H), and oxygen (O), as well as the molecular bands of CN and C2. 

On the Figure 4 (b), an enlarged view of the CN band’s Δν = 0 and Hα Balmer line are 

shown.  

 

Figure 4. (a)Typical LIBS spectrum of olive oil. (b) Enlarged view of the olive oil spectrum indicating 

the CN band and the Hα line. (c) Typical LIBS spectrum of honey. (d) Enlarged view of the honey 
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LIBS spectrum indicating the atomic line of C and the ionic lines of Mg and Ca. (e) Typical LIBS 

spectrum of milk. (f) Enlarged view of the milk LIBS spectrum indicating the ionic lines of Mg and 

Ca and the atomic lines of Na and K. 

To the best of our knowledge, the work by Caceres et al. [53] is the first one using 

LIBS for olive oil analysis. In this work, different types of edible oils (olive, sunflower, 

hazelnut, and corn oil) from four different countries were studied, and a total of 118 oil 

samples were studied by means of a neural network algorithm for classification purposes, 

achieving accuracies as high as 95%. 

In another work, Kongbonga et al. [54] studied the classification of some vegetable 

oils (extra virgin olive oil, refined sunflower oil, refined and crude palm oil, and refined 

corn oil) based on their saturated fatty acids content. For this purpose, they studied the 

spectral features of edible oils and correlated the LIBS signal with the saturated fatty acids 

content of the samples. Interestingly, a relationship between the oils’ saturated fatty acid 

content and the C2 molecular emissions was reported to hold. One-way analysis of vari-

ance (one-way ANOVA) was performed using the ratio of the emission intensities of the 

C2 band and the C (I) 247.9 nm spectral line and a Tukey’s honest significance test was 

performed to determine which vegetable oils, from the studied ones, were significantly 

different from the others. 

Gazeli et al. [55], suggested, as a proof of concept, the capability of LIBS to classify 

olive oil samples of different acidities and designation of origin. The major spectral fea-

tures of olive oil LIBS spectra were thoroughly discussed, and various machine learning 

algorithms were used to classify these spectra, i.e., Linear Discriminant Analysis, Support 

Vector Machines, and Random Forests. It was shown that Principal Component Analysis 

can indicate the variance of each spectral feature, while it can be used as a feature extrac-

tion method as well by using the obtained principal components as inputs to the machine 

learning algorithms. Using this methodology, high classification accuracies were ob-

tained, with LDA being the most successful algorithm, attaining a (99.2 ± 1.5)% correct 

classification. The same methodology was applied in another work by Bellou et al. [56], 

more focusing on the effect of the experimental conditions on the clustering and classifi-

cation of the olive oil LIBS spectroscopic data. In that view, three different experimental 

configurations for handling of olive oil samples were employed and tested, where the 

laser-induced plasma was created in an olive oil spray, on a thin laminar flow of olive oil 

and on the free surface of few grams of (liquid) olive oil. In addition, the effect of the 

experimental parameters (i.e., laser energy, gating parameters, etc.) on the collected LIBS 

spectra and their subsequent classification by PCA and LDA were thoroughly investi-

gated and assessed. 

In another work by Gyftokostas et al. (2020) [57], LIBS assisted by several different 

machine learning algorithms, namely, Linear Discriminant Analysis (LDA), k-Nearest 

Neighbors (k-NN), and Support Vector Classifiers (SVC)) was applied for the classifica-

tion of some olive oils from different regions of Crete island, based on their designation 

of origin. In addition, in this work, the Principal Component Analysis (PCA) was assessed 

as a feature extraction method, which can assist the classification procedure as it retains 

information regarding spectral features with high variance. Comparative assessment of 

the various algorithms was performed for both PCA-processed and raw data. The optimal 

model was found to be LDA combined with pre-processing using PCA to focus on the 

variables with the highest discrimination capability, minimizing the computational time 

required for the model. Despite the relatively small geographical footprint, a discrimina-

tion accuracy of (94.0 ± 1.1)% was achieved. 

In another work, Gyftokostas et al. (2021) [58] performed classification of olive oil 

LIBS spectra based on their designation of origin and employed some machine learning 

algorithms to determine the importance of their spectral features. More specifically, 139 

extra virgin and virgin olive oil samples were studied, originating from three different 

regions of Greece, i.e., Peloponnese, Crete, and Lesvos. The algorithms that have been 
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employed were Linear Discriminant Analysis (LDA), Extremely Randomized Trees Clas-

sifier (ERTC), Random Forest Classifier (RFC), and eXtreme Gradient Boosting Classifier 

(XGBoost). ERTC, RFC, and XGBoost being ensemble methods were used both as classifi-

ers and as feature selection algorithms that reveal the importance of each spectral feature. 

Spectral features of carbon (C), oxygen (O), and nitrogen (N) spectral lines, as well as CN 

and C2 molecular bands were found to contribute the most to the classification. An im-

portant parameter that has been carefully examined in this work was the effect of the 

number of important features on the classification accuracy. Although all employed algo-

rithms attained high classification accuracies, the most successful model was found to be 

the XGBoost one, since it succeeded in both reducing the initial dataset by thousands of 

times, retaining only two spectral features, while maintaining a very high accuracy up to 

99%.  

In another very recent study by Gyftokostas et al. (2021) [59], the classification of olive 

oil samples based on their geographical origin was studied employing two spectroscopic 

techniques, namely LIBS and absorption spectroscopy. The former technique provided 

the emission spectrum revealing the elemental composition of the olive oil samples, while 

the latter one provides spectroscopic information related to the chlorophylls and carote-

noids content of the olive oil sample, corresponding to the absorption bands appearing 

within the 350–750 nm spectral region. In this comparative study 143 Greek olive oil sam-

ples from three different regions were studied. The study included mixtures of samples 

with different origins as well. Both emission (i.e., LIBS spectra) and absorption spectra 

were initially pre-treated by Principal Component Analysis (PCA) and then were intro-

duced in the algorithms of Linear Discriminant Analysis (LDA) and Support Vector Clas-

sifiers (SVC). For each spectroscopic method, the number of PCs that provide the most 

efficient classification accuracy was assessed. The accuracies obtained were as high as 

100% with the algorithmic training being evaluated and tested by means of classification 

reports, confusion matrices, and by external validation procedure as well.  

As the instrumentation of both LIBS and absorption spectroscopy has reached a high 

level of maturity, both methods having low operational costs, with the latter being much 

more widely spread and routinely used in labs, the combination of the datasets each one 

provides was attempted very recently. So, in the work by Stefas et al. [60], as a natural 

continuation of the work of ref. [59], data fusion of LIBS and absorption spectroscopic data 

was performed for the discrimination of olive oils based on the olive cultivar origin. In 

that view, LIBS and absorption spectra were collected from two different olive oil cultivars 

that are quite wide spreading and popular in Greece, namely the Koroneiki and Kolovi 

cultivars. The two types of spectra were fused appropriately and used to develop classifi-

cation schemes employing Linear Discriminant Analysis and Gradient Boosting, the latter 

allowing the computation of feature importance. The resulting models contained spectro-

scopic information regarding the emission and absorption profiles of each sample (i.e., 

elemental composition and carotenoid/chlorophyl content). The obtained accuracy was 

found exceeding 90%, suggesting that data fusion can significantly improve the correct 

classification of olive oils being a reliable innovative approach. 

4.2. Honey 

Honey is the sweet viscous substance made by bees that collect nectar from the sweet 

secretions of trees and plants. Its major constituents are carbohydrates and water, with 

the main types of carbohydrates being sugars, i.e., fructose, glucose, and sucrose. It also 

contains several other substances at low concentrations, such as proteins, vitamins, min-

erals, salts of organic acids, and naturally occurring trace elements. Since its composition 

is related with various health benefits, honey usually attains high prices in the market, 

and because it is easy to adulterate with other types of syrup, or lower quality honey, it is 

inevitably one of the most commonly adulterated foods [61]. LIBS has been recently pro-

posed as an alternative technique to assess honey quality, such as for detecting adultera-

tion and determining its botanic and geographic origin. 
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In Figure 4 (c), a representative LIBS spectrum of honey is shown. As can be seen, it 

exhibits the usual spectral signatures of elements commonly found in the LIBS spectra of 

organic matter, i.e., carbon (C), nitrogen (N), hydrogen (H), and oxygen (O), and the mo-

lecular bands of CN as well. Moreover, honey LIBS spectra exhibit the spectral lines of 

several inorganic species, such as magnesium (Mg), calcium (Ca), sodium (Na), and po-

tassium (K). On Figure 4 (d), an enlarged view of the spectral lines of these inorganic spe-

cies are shown.  

Recently, Stefas et al. [62] studied the characteristics of the plasma created on some 

honey samples and the temporal evolution of the spectral lines of the inorganic ingredi-

ents of honey, among other things, in view of optimizing the experimental conditions to 

achieve high classification accuracy of honey samples based on their floral origin. For the 

classification of the honey LIBS data, several machine learning algorithms were utilized 

such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Sup-

port Vector Machines (SVMs), and Random Forest Classifiers (RFCs). The implementation 

of PCA on the acquired LIBS data showed a clear discrimination between the ten different 

types of honey studied, while the PCA loadings showed the features with the largest var-

iance, namely the emissions of oxygen (O), nitrogen (N), potassium (K), hydrogen (H), 

magnesium (Mg), calcium (Ca), sodium (Na), as well as the CN molecular band. The im-

plementation of Random Forests indicated the feature importance of K, Mg, Ca, and Na 

spectral lines. Moreover, the constructed models using both the LDA and SVC algorithms, 

carried out the classification of the samples of different botanical origin, with accuracy of 

99.8%, while the RFC model had an accuracy of 97.8%. In a similar work, Se et al. [63] 

created a Partial Least Squares Regression model predicting the concentration of calcium 

(Ca), magnesium (Mg), and sodium (Na) by using LIBS spectra from 30 stingless bee 

honey samples. The constructed PLSR model was subsequently evaluated by inductively 

coupled plasma-optical emission spectrometry (ICP-OES) measurements in order to de-

termine the concentrations of Na, Ca, and Mg. The effectiveness of the predictive model 

was tested by three kinds of tests, including coefficient of determination R-square (R2), 

standard error of calibration (SEC), and standard error of cross validation (SECV). In an-

other work, Nespeca et al. [64] performed the classification and regression of the LIBS 

spectra of some adulterated honey samples by means of Partial Least Squares Discrimi-

nant Analysis (PLS-DA) and Partial Least Squares Regression (PLS), respectively. Specif-

ically, after performing LIBS assisted by spark discharge (SD-LIBS) on 236 unadulterated 

and adulterated honey samples, PLS-DA was used to identify the type of the adulterant 

and PLS was used to quantify the percentage (%) of adulteration. In more detail, the honey 

samples used were from three botanical origins, i.e., Eucalyptus, Citrus sinensis, and mul-

tifloral, and the adulterants were high-fructose corn syrup (HFCS) and sugar cane syrup 

(molasses). To improve the performance of the PLS and PLS-DA models and reduce their 

complexity, the SD-LIBS data were pre-processed with various methods and were evalu-

ated by means of cross-validation, external validation, and other methods as well. After 

that, variable selection was performed and assessed with different methods including the 

interval partial least squares (iPLS) and some genetic algorithms (GA), concluding that 

the most important emissions are those arising from the inorganic species of honey, such 

as those of Ca and Fe. In the same spirit, Lastra-Mejías et al. [65] used LIBS assisted by k-

NN algorithm in order to classify some honey samples adulterated with rice syrup. As a 

feature selection method, a relief-based algorithm was chosen which results to a set of 

chaotic parameters extracted from the LIBS spectra. In another work, Peng et al. [66] cre-

ated a PLS regression model using the LIBS spectra of adulterated acacia and rape honey 

samples by two kinds of high-fructose corn syrups, focusing on the aforementioned, spec-

tral features of the inorganic ingredients of honey (i.e., Mg, Ca, Na, and K). Zhao et al. 

focused on the discrimination of honeys originating from different geographical regions 

[67] and achieved the classification of 120 acacia honey samples from three different geo-

graphical regions, utilizing SVM and LDA algorithms after pre-treatment of the data us-

ing PCA. Moreover, one-way ANOVA was performed using the intensities of the various 
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spectral features to investigate whether they can be used for the geographical discrimina-

tion of honeys. In another very recent work by Stefas et al. [68], the utility of LIBS for the 

detection of honey adulteration with some glucose syrup via LDA and Extremely Ran-

domized Trees algorithms was demonstrated. In there, it was shown that instead of the 

entire LIBS spectrum, only the spectral lines of the inorganic ingredients of honey (i.e., 

calcium, sodium, and potassium) can be employed for the successful detection of adulter-

ation, with classification accuracies exceeding 90% of correct classification. 

4.3. Dairy Products  

Undeniably, milk is among the most important foods. Not only because of its nutri-

tional value, but because it is the primary food that mammals need from the time they are 

born. Most importantly, in the case of babies, breast milk is essential for the healthy 

growth and the formation of antibodies. Regarding the nutritional values, milk and milk 

products are rich in protein, fat, and carbohydrate and are a very important source of 

nutrients, including calcium, phosphorous, potassium, magnesium, etc. [69]. 

In Figure 4 (e), a representative LIBS spectrum of milk is shown. As shown, it con-

tains several spectral features, corresponding to nitrogen (N), hydrogen (H), and oxygen 

(O), while several other spectral lines attributed to its inorganic ingredients are also prom-

inent, as e.g., those of magnesium (Mg), calcium (Ca), sodium (Na), and potassium (K). 

An enlarged view of these spectral lines is shown in Figure 4 (f). Therefore, it is obvious 

that these spectral lines will be of interest for milk analysis via LIBS. 

To the best of our knowledge, the work of Abdel-Salam et al. [70] is most probably 

the first study about milks and dairy products employing LIBS. In this work, a comparison 

of maternal milk and commercial infant formulas is presented, studying milks from moth-

ers and commercial infant formulas, which are suitable for newborns (< 3 months). From 

the acquired LIBS spectra, correlations between maternal milk and infant formulas were 

found. The study showed that trace elements, such as magnesium (Mg), calcium (Ca), 

sodium (Na), and iron (Fe), appeared with stronger intensities in infant formulas than in 

maternal milk. The same pattern was reported for the molecular bands of CN and C2. 

Next, in a continuation of the previous work, Abdel-Salam et al. [71] studied the different 

farm animals’ milk, as e.g., buffalo, camel, goat, and sheep milks; their analysis focusing 

on the spectral lines of magnesium (Mg), calcium (Ca), sodium (Na), iron (Fe), strontium 

(Sr), and barium (Ba). According to this report, the spectral lines of Mg and Fe were found 

to be stronger in goat milk, while Ca and Sr spectral lines were found to be stronger in 

camel milk. The same trend was also reported for the Ba and Na lines in buffalo milk. In 

addition, the CN band, correlated to the protein content (e.g., casein), was found to be 

stronger in camel milk, suggesting a higher concentration of proteins in this type of milk. 

Along the same lines, Abdel-Salam et al. [72,73] used LIBS to discriminate milk samples 

from healthy cows and cows suffering from mastitis, the latter being an inflammatory 

infection, which has serious implications on milk, breaking down its proteins. So, in ref. 

[72], two different spectroscopic techniques were used, namely LIBS and LIF (Laser-In-

duced Fluorescence), and several milk samples from healthy cows and from cows with 

observable signs of mastitis were studied. Again, significant variation of the Ca and Na 

spectral lines intensities were reported between healthy cows and cows suffering from 

mastitis, the Ca emissions being stronger in healthy cows, while the Na emissions were 

stronger in cows with mastitis. In a similar study [73], the CN and C2 emissions were used 

for the discrimination of milk from healthy and mastitis’ suffering cows. In another work 

from the same group [74], LIBS was employed assisted by Principal Component Analysis 

(PCA) for the discrimination between colostrum and mature sheep milk. The analysis of 

LIBS spectra suggested a reduction of the intensities of the Ca, CN, and C2 emissions, cor-

related to the degradation of proteins, vitamins, lactoferrin, minerals, etc. which are char-

acteristic ingredients in sheep colostrum milk. 
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In a different direction, Bilge et al. [75] investigated the use of LIBS for the detection 

of milk adulteration. Specifically, they employed LIBS implementing some PCA algo-

rithms to discriminate between non-adulterated milk powder and milk powder adulter-

ated with sweet and acid whey powders. Moreover, using some Partial Least Squares 

(PLS) models, they have constructed calibration curves and reported limits of detection 

(LOD) of 1.55 and 0.55% for adulteration with sweet whey powder and acid whey powder 

respectively. 

In another work, Cama-Moncunill et al. [76] studied the quantification of trace met-

als, such as copper (Cu) and iron (Fe), in some infant formula premixes with lactose and 

various minerals of Cu and Fe employing LIBS and some linear, multilinear, and partial 

least squares regression analysis methodologies. The best results were obtained by partial 

least squares regression and were validated by atomic absorption measurements.  

Similarly, Chen et al. [77] employed LIBS assisted by some chemometric algorithms 

for the quantification of potassium (K) in infant formulas, validating the results by atomic 

absorption. Based on these measurements, a predictive model based on partial least 

squares has been constructed. The spectra were pre-processed by a novel strategy that 

included normalization of the data, a wavelet transform, and feature selection based on 

the random frog algorithm. 

In the same spirit, Lei et al. [78], used Calibration-Free LIBS (CF-LIBS) for the deter-

mination of the concentration of some mineral elements, such as calcium (Ca), magnesium 

(Mg), and potassium (K), in powder milks. The determined concentrations were validated 

by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Employing the 

same methodology, Rehan et al. [79] studied the determination of the content of several 

elements in milk powder samples by LIBS, including elements such as cadmium (Cd), 

chromium (Cr), copper (Cu), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), so-

dium (Na), phosphorous (P), sulfur (S), and zinc (Zn). 

In a different direction, aiming to fraud detection, Moncayo et al. [80] studied two 

common practices of milk adulteration. Specifically, the mixing of milk of different animal 

origin and the adulteration of milk powder with melamine were examined. In the first 

case, cow, goat, and sheep milk were used to create binary and ternary mixtures in various 

concentrations. Then, the obtained LIBS spectra were classified into three classes, i.e., pure 

milks, binary mixtures, and ternary mixtures, by employing principal component analysis 

and multilayer perceptron neural networks, with a classification accuracy of 100%. In the 

second case, mixtures of milk powder with melamine were created, and a calibration 

curve was constructed correlating the CN band emission with the adulteration content. 

Specifically, it was reported that the CN band’s intensity increased with the addition of 

melamine in the milk sample. In addition, by analyzing the spectroscopic data by some 

neural networks, the prediction of the adulteration content was succeeded with correla-

tion coefficients as high as 0.999.  

Finally, for the detection of fraud, Sezer et al. [81] used LIBS coupled with some 

chemometrics algorithms for determining the ratio of milk mixtures from different animal 

origins as well as to discriminate between milks of different animal origins. Specifically, 

spectra of ovine–bovine and caprine–bovine binary mixtures were analyzed successfully 

by partial least squares and the discrimination of ovine, caprine, and bovine samples was 

performed successfully by means of principal component analysis. 

5. Conclusions 

LIBS, being a simple, versatile, and powerful technique, has gained significant pop-

ularity during the last decades, and it has been proposed for a plethora of applications in 

different scientific fields. It is only during the last few years, that LIBS applications for 

food analysis-related applications have emerged. However, this advancement would 

have remained limited unless modern machine learning and chemometrics methods are 

implemented, as the complexity of organic matter and the similarities of the respective 

LIBS spectra do not allow for safe conclusions. So, LIBS assisted by machine learning and 
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chemometrics started to become an accepted method for food control and quality assur-

ance. In the present review, the current state-of-the-art of food-related analysis via LIBS 

aided by machine learning algorithms is briefly presented. Finally, a special emphasis is 

given for the applications of LIBS assisted by machine learning for the analysis of LIBS 

spectroscopic data, for olive oil, honey, and dairy products, which are essential foodstuffs 

for human nutrition and health, and thus, they have important societal and economic im-

plications and impact. 
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