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Abstract: Air is the most crucial and life-supporting input from nature to the living beings of the
planet. The composition and quality of air significantly affects human health, either directly or
indirectly. The presence of some industrially released gases, small particles of anthropogenic origin,
and the deviation from the normal composition of air from the natural condition causes air pollution.
Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor
pollutants. Such pollutants represent acute or chronic health hazards to the human physiological
system. In the environment, such polluted gases may cause chemical or photochemical smog, leading
to detrimental effects such as acid rain, global warming, and environmental pollution through
different routes. Ultimately, this will propagate into the food web and affect the ecosystem. In this
context, the efficient removal of volatile organic compounds (VOCs) from the environment remains a
major threat globally, yet satisfactory strategies and auxiliary materials are far from being in place.
Metal–organic frameworks (MOFs) are known as an advanced class of porous coordination polymers,
a smart material constructed from the covalently bonded and highly ordered arrangements of metal
nodes and polyfunctional organic linkers with an organic–inorganic hybrid nature, high porosities
and surface areas, abundant metal/organic species, large pore volumes, and elegant tunability of
structures and compositions, making them ideal candidates for the removal of unwanted VOCs from
air. This review summarizes the fundamentals of MOFs and VOCs with recent research progress
on MOF-derived nanostructures/porous materials and their composites for the efficient removal of
VOCs in the air, the remaining challenges, and some prospective for future efforts.

Keywords: VOCs; MOFs; nanomaterials

1. Introduction to the Metal–Organic Framework

Metal–organic frameworks are inorganic–organic porous crystalline materials with
extremely high surface areas and significant chemical diversity. Metal ions or their clusters
coordinated with organic ligands or linkers forming a one-, two-, or three-dimensional
porous or void structure constitute a metal–organic framework (MOF) [1–3]. They are
also called porous coordination polymers (PCPs) [4]. Ions of metal such as cobalt, copper,
cadmium, zirconium, and iron, etc. can act as the central metal ion while organic moieties or
compounds with carboxylates (e.g., benzene-1,3,5-tricarboxylate, 1,4-benzenedicarboxylate,
etc.) or nitrogen-bearing compounds (e.g., bipyridines, imidazoles, azoles, etc.) can behave
as the ligand (electron pair donor) or linker in MOF [5–7]. The bonding between metal ions
(nodes) and linker could be oxygen coordinated or nitrogen coordinated. Various types of
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metal–organic frameworks are devised for different applications. For instance, Pang et al.
developed “Quasi-Ce-MOF” as an electrocatalyst for the urea oxidation reaction [8]. In
another work, Pang’s team synthesized nitrogen-doped hexagonal NiCoO nanoplates from
Ni-Co-MOF for the application in electrochemical energy storage [9]. Besides the fabrication
of nanomaterials, MOFs have been exploited as a sacrificial precursor for the synthesis
of carbon nanomaterials, metallic compounds, and their composites with a tunable and
controllable nanoarchitecture for various applications [10]. Besides the aforementioned
applications, MOF-based materials are also being used for catalysis [11].

In MOFs, the metal ions act like nodes to bind the arms of the organic ligand to form
a repeating cage-like structure with a profound internal surface area (1000–10,000 m2/g).
Therefore, it can be regarded as a composition of metal nodes and organic linkers [12].
The effect of the cavity and pore size distribution (a few nanometers to several angstrom),
functional groups, hydrophilic–hydrophobic properties and surface unsaturation impart
significant applications of MOFs in various fields including the adsorption of gas molecules,
volatile organic compounds, the catalytic degradation of various gaseous pollutants,
etc. [13]. MOFs are structurally different from other traditional inorganic porous ma-
terials such as zeolite, mesoporous carbon (2–50 nm), and silica in terms of uniform pore
structures, atomic level, structural uniformity, tunable porosity, extensive varieties and flex-
ibility in network topology, dimension, and chemical functionality. MOF can be regarded as
a synergistic feature of structure and compositions enhancing the high surface-to-volume
ratio, low density, higher loading capacity and micro-reactor environment. Compared to
inorganic microporous material such as zeolites, controlled architecture and pore function-
alization impart flexible rational design for MOFs. In contrast to zeolite, MOFs differ in
their construction having bridging organic ligands intact throughout the synthesis. The
coordination number of metal ions dictates the number of binding ligands and their ori-
entation influencing the shape, size, and orientation or pores. MOFs are different from
the covalent organic framework (COFs) in the sense that the COFs are composed of light
elements such as hydrogen, boron, carbon, nitrogen, and oxygen with extended structures.

Metal–organic frameworks have attracted much attention due to their versatile ap-
plications in the synthesis of porous nanomaterials, carbon materials, etc. applicable in
various fields of research and technology such as supercapacitors, batteries and fuel cells,
electro-catalytic reactions, water treatment, drug delivery, anti-angiogenesis and photo-
dynamic therapy, catalysis, adsorption, removal of volatile organic compounds, oxygen
reduction reaction, hydrogen evolution reaction, etc., and other possible fields [14–22]. Fur-
thermore, open metal–organic frameworks have been widely used in separation chemistry,
gas storage, and molecular recognition [23].

With the booming industrial development and urbanization, the level of air pollution
has been alarmingly increasing over the world, inducing serious hazards to human health
and the environment. The emission of a diverse level of pollutants such as nitrogen oxides
(NOx), sulfur oxides (SOx), and carbon oxides (COx), volatile organic compounds (VOCs)
into the environment can pose serious health problems and environmental implications as
well as social ramifications. Among a list of airborne pollutants, VOCs are a class of remark-
able pollutants [24–26]. Metal–organic frameworks have been used in the efficient removal
of volatile organic compounds. The higher surface area, large pore volume, and specific gas
adsorption potency of MOFs make them triumph over other common adsorbents for the
removal of VOCs [27]. Post-fabrication changes of MOF can induce selective adsorption
properties. MOFs can be executed for the synthesis of nanomaterials, which can be used
for the removal of VOCs. Therefore, the synthesis of MOFs is crucial in the field of syn-
thetic chemistry, separation chemistry, and the sensing of volatile organic compounds [28].
Metal–organic frameworks can be synthesized by any of the following methods:

a. Solvothermal or hydrothermal: in this process, crystals are allowed to grow smoothly
over the course of hours to days from a hot solution.

b. Microwave-assisted solvothermal synthesis: in this method, microwaves can be used
to nucleate MOF crystals rapidly from a solution.
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c. Chemical vapor deposition method: this is a solvent-free method for the synthesis of
MOFs. In this method, initially, metal oxide precursor layers are deposited, followed
by exposing to sublimed ligand molecules, which induces a phase transformation to
the MOF crystal lattice.

Post-synthetic modification of MOFs:

Post-synthetic modification of MOFs helps to introduce some new sites with new
chemical properties. It helps to increase the functionality of MOFs by reacting with metal–
organic complexes with linkers. In this method, either the ligand or the metal ions are
exchanged in pre-fabricated MOFs with a new ligand or metal ions by the exchange
method [29]. The exchange is performed to tailor some specific functions onto the MOFs.
For this purpose, the previously developed MOFs are washed with a solvent followed by
soaking in a solution of new ligand or in a solution of new metal. The ligand exchange can
be assisted by heating.

2. Volatile Organic Compounds

Volatile organic compounds are natural or synthetic, low-boiling organic compounds
with smaller molecular mass and high vapor pressure existing at room temperature. VOCs
may be polar or non-polar, aliphatic or aromatic, indoor- or outdoor-prevalent pollu-
tants [30]. Naturally, VOCs are produced by plants, microorganisms, and animals. A large
number of microbes can produce VOCs as a secondary metabolite during their growth,
which are termed microbial VOCs [31,32]. Natural VOCs have their essential significance
of protecting plants from stress, attracting insects for pollination and seed dispersal. Some
VOCs, such as trans-anethole, estragole, eugenol, isoeugenol, camphor, thujones, etc., are
the constituents of essential oil with therapeutic application [33,34]. Besides these, VOCs
are produced from petrochemical industries, gasoline vehicles, solvent uses, dye and paint
industries, building materials, cleaning products, and many synthetic compounds. VOCs
may be aliphatic hydrocarbons or aromatic hydrocarbons and their derivatives. Usually,
such VOCs are obtained as by-products from industry, agriculture, transportation, and
day-to-day activities in households which potentiate either to vaporize or dissolve in
water. Partially burnt fuels such as gasoline, diesel, petrol, etc. produces VOCs. Besides
this, the uses of solvents, paints, wax, and some sorts of cosmetic products also produce
VOCs [35–37].

2.1. Sources and Effect of VOCs

Many of the harmful VOCs are derived from anthropogenic activities such as the
burning of fuels, leakage of harmful gases, industrial sewage discharge, e-waste, etc. [38].
Some of the common sources of harmful VOCs include formaldehyde, BTEX (benzene,
toluene, ethylbenzene, and xylene), PAH (polycyclic aromatic hydrocarbon), styrene, tetra-
chloroethylene (used in dry cleaning), ethylene glycol, methylene chloride (used as paint
stripper), 1,3-butadiene, 1,8-cineole, vinyl chloride, acetone, carbon tetrachloride, iso-
propylbenzene, undecane, etc. Combustion products of woods, fuels, diesel, gasolines,
automobile emissions, and tobacco smoke also consist of VOCs. VOCs form a constituent
in various commercial and household products such as many petroleum-based products,
fumigants, moth repellents, carpets, paints, lacquers, varnishes, glues, perfumes, nail
polishes, tobacco smokes, adhesives, dyes, rubber, plastics, and cleaners used in industries
and manufacturing companies. VOCs are also present in personal care products such as
perfumes, deodorants, lotions, and some pharmaceutical products [39,40].

Semi-volatile organic compounds (SVOCs) have relatively higher boiling points than
VOCs and evaporate at a slow rate but can accumulate over a time. Some examples of
semi-volatile organic compounds include chlorinated tris, fire retardants (PCBs, PBB),
pesticides (DDT, chlordane), etc. In the global emission estimates, the major contribution
of VOCs is biogenic sources [41].

Above a permissible level, VOCs can have acute or chronic effects on humans. Inhala-
tion of VOCs in humans provides prompt absorption across the lungs, gastrointestinal tract,
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and skin. Short-term exposure to such chemicals is associated with headaches, irritability,
depression, dizziness, allergies, asthma, difficulty with concentration, and irritation of
delicate organs such as the skin, ears, eyes, nose, throat, etc. Long-term exposure to VOCs
is likely to affect vital organs such as the liver, kidneys, nervous system, etc. Some VOCs
can cause cancer to humans, even at low concentration. The extreme effect of such VOCs
may lead to genetic disorders [42].

VOCs not only have an affect on humans but also equally affect the environment.
Though VOCs tend to escape from the groundwater by evaporation, once they are dissolved
in groundwater, they are more persistent. Furthermore, some VOCs are degraded by
aquatic bacteria; still, some other VOCs are non-degradable and ultimately enter the food
web or ecosystem. VOCs can form ground-level ozone or chemical smog and secondary
organic aerosols (SOAs) by reacting with nitrogen oxides, which ultimately causes a
detrimental effect on the environment. VOCs are one of the major sources of atmospheric
photochemical reactions causing various environmental hazards [43].

2.2. Classification of VOCs

Not all compounds are equally volatile. The volatile compounds that evaporate faster
are more hazardous and cause a more serious risk than others There is no clear demarca-
tion for the categorization of volatile compounds, but the United States Environmental
Protection Agency (EPA) has adopted World Health Organization (WHO) Guidelines to
divide indoor organic pollutants into the following types:

A. Very Volatile Organic Compounds (VVOCs):

The boiling point of these compounds fall in the range of 0 to 50–100 ◦C. Some common
examples are propane, butane, methyl chloride, etc.

B. Volatile Organic Compounds (VOCs):

The boiling point of these compounds fall in the range of 50–100 to 240–260 ◦C.
Some common examples are formaldehyde, toluene, acetone, ethanol, isopropyl alcohol,
hexanal, etc.

C. Semi-Volatile Organic Compounds (SVOCs):

The boiling point of these compounds fall in the range of 240–260 to 380–400 ◦C. Some
common examples of such compounds are pesticides such as DDT, chlordane, phthalates,
and fire retardants such as PCBs, PBBs, etc.

2.3. Removal of VOCs

The effective removal of harmful gases including volatile organic compounds is of
significant importance for personal protection from being exposed to such hazardous
compounds as well as environmental protection. In this context, the effective and efficient
removal of volatile organic compounds from the environment is inevitable and has attracted
a great deal of attention from researchers. Commonly used techniques for the removal
of VOCs include thermal and catalytic oxidation, adsorption, condensation, bio-filtration,
membrane separation, UV-oxidation, catalytic oxidation, and surface modification [44–46].
Some of the common methods for the removal of VOCs are given in Table 1. All mea-
surement methods for VOCs are selective or no method is capable of measuring all VOCs.
Therefore, researchers are investigating a cost-effective, efficient, and environmentally
friendly technique with high sensitivity, selectivity, and specificity. Physical adsorption
or chemical adsorption of gas molecules rely on the surface area, pore size (microporous,
mesoporous, and macroporous), atomic coordination, and electron density (electron rich or
electron deficit) of solid adsorbent. Highly porous materials explored for volatile organic
compound adsorption are activated carbons, porous silica, carbon nanotubes, molecular
sieves, and various kinds of zeolites where a major mode of gas entrapment is physical
adsorption via van der Waals’ forces [47]. Still, there is plenty of room to create specific
adsorption sites on the adsorbent by surface the functionalization process [48]. For this
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purpose, a highly porous solid material with a rigid outfit with appropriate voids sufficient
to lodge the organic moieties of a hydrophilic or lipophilic nature is essential. One such
material could be metal–organic framework (MOF) or metal–organic framework-derived
nanomaterials with profound surface areas. In terms of increasing the surface efficacy or
decreasing the dead volume, a metal–organic framework-derived nanostructured material
could be a highly desirable porous material for the removal of volatile organic compounds.

Table 1. Some volatile organic compounds, their sources, and common methods of removal.

SN VOCs Sources Removal Method Ref

1 Acetaldehyde Photochemical production Using carbide-derived carbon [49]

2 Acetone and toluene
Oxidation of fuels, biomass

burning, geochemical
process

Using ball-milled biochar [50,51]

3 Benzene Traffic and various
industries

ZnO NPs coated on zeolite and
activated carbons [52]

4

Chlorinated volatile organic
compounds (Cl-VOCs),

e.g., monochloromethane,
dichloremethane,

trichloromethane, etc.

Gas streams Using activated carbon [53]

5 Ethyl acetate,
isopropanol, acetone hydoxyapaptites [54]

6 Formaldehyde and toluene Photochemical production Photocatalytic decomposition using SnO2
photocatalyst [55]

7 Methyl tert-butyl ether
(MTBE) Motor fuel additive Using activated carbon [44]

8 Toluene

Petrochemical production

Photocatalytic oxidation of toluene to CO2
and H2O [56]

9 Toluene Using Pd supported hierarchical alumina
microsphere catalyst [57]

10 Toluene Using Fe-MOFs as both an adsorbent and
photocatalyst [58]

11 Toluene Toluene capture by using
imidazolium-based ionic liquids [59]

12 Toluene
Visible-light-sensitive photocatalytic

decomposition of toluene using
WO3-deposited Pt

[60]

13 Toluene Solar photocatalytic oxidation of toluene
using Co-doped TiO2

[61]

3. Some Metal–Organic Frameworks:

Some commonly used metal–organic framework are briefly discussed below.

A ZIF-8 is 2-methylimadizole zinc salt of general chemical formula C8H10N4Zn. The
ZIF-8 is Zn(MeIM)2. Here, MeIM is 2-methylimidazolate. The ZIF-8 is composed of
zinc atom bonded with 2-methylimidazolate ligands with large cavities (11.4 Å) and
small pore (3.4 Å) structures (Figure 1a [62]). The different SEM image of different
ZIF structures [63] are shown in the Figure 2.

B Cu-BTC is copper benzene-1,3,5-tricarboxylate with a chemical formula of [Cu3(btc)2]
or C16H6Cu3O12. Here, btc is 1,3,5-benzenetricarboxylate. It is commercially available.
It consists of three distinct cages: one small octahedral cage with a pore window of
2.0 Å and pore radius of 5.2 Å. Another larger cage is the cuboctahedral cage with a
pore radius of 6.1 Å connected by a pore aperture of 2.6 Å radius (Figure 1b).
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3.1. MOF-Derived Nanomaterials for the Removal of VOCs

Nanomaterials are characterized by their high surface area, tunable morphology, and
tailorable surface functionality. These days, nanomaterials are gaining superb interest in
the field of research as well as in commerce due to their large surface area (aspect ratio);
tunable shape, size, and structure; and easiness of fabrication with pronounced magnetic,
optical, and electrical properties [64–66]. Various tools, techniques, and methods have
been devised for the synthesis of desired nanomaterial outfits. The removal of VOCs
using active catalyst at low cost, high activity with enhanced surface area is fascinating
to researchers. Transition metal oxides, noble metal oxides, and zeolites are commonly
used catalysts for the oxidation of VOCs [67]. Contrary to the high-cost noble metal oxide
nanomaterials, transition metal oxides are benefitted by their excellent performance at
low cost, higher thermal stability, and high natural reserve. Transition metal oxides have
variable oxidation states in contrast to non-transition metal oxides, in general. Having such
variable oxidation states are better suited for VOCs’ sensing applications. For instance, in
the presence of excessive reactive oxygen species (ROS) produced from ionizer, oxidative
conversion of Co(II) to Co(III) is possible. The tetrahedral Co(II) having a 3d7 configuration
changes to less stable tetrahedral 3d6 configuration. The reported ligand field stabilization
energy (LFSE) for tetrahedral 3d6 and 3d7 are 0.6∆T and 1.2∆T, respectively. The Co(III)
species becomes favorable to the adsorption of VOCs, especially nitrogen and oxygen donor
moieties [68]. Transition metals such as cobalt and manganese have variable oxidation
states, which seems very suitable for the redox reaction and oxidation of volatile organic
compounds [69]. For higher sensitivity, binary, ternary, or noble metal decorated metal
oxides can be used. Furthermore, tuning of the shape, size, composition, surface area,
doping level, and fabrication method can enhance the sensitivity performance. Besides
these, carbon nanomaterials, nano-biochar, silica nanomaterials, etc. are also commonly
used for the removal of VOCs [70–73]. Some of the commonly used nanomaterials for
the removal of VOCs include graphene-based nanomaterials, mesoporous organosilica
nanomaterials, carbon nanomaterials, etc. There are various methods for the preparation
of nanomaterials including chemical methods, electrochemical methods, electrospinning
methods, and so on [74–79]. However, the dire need of highly porous nanomaterials may
not be addressed by such conventional methods. A new method for the synthesis of highly
porous nanomaterials could be by using the metal–organic framework. These days, due
to having a high surface area, adjustable aperture, and controllable calcination condition,
versatile applications have highly increased an interest on MOFs [80]. Metal clusters as well
as organic linkers (ligands), which are the part and parcels of metal–organic frameworks,
can be executed for the fabrication of metal or metal oxide nanomaterials as well as carbon
nanomaterials, respectively. The synergistic effect of nanoporous carbon wrapped metal or
metal oxide nanomaterials can exhibit still more some advantages such as greater stability,
dispersion of metal active sites, etc. [81,82]. In this context, the metal–organic framework
seems to be a versatile precursor as well as a sacrificial template for the synthesis of porous
nanomaterials such as oxides, carbides, chalcogenides, etc. [83]. The synthesis of MOF-
derived NMs is benefitted by their controllable compositions and tunable morphologies
with affluent porosity endowed, with versatile applications in various fields including
sensors and volatile organic compound removal. Zhang et al. reported that MOF-derived
(Mn-MIL-100) porous Mn2O3 cubes displayed sound stability and high activity for the
oxidation of carbon mono-oxide over its surface. This method of preparation benefitted
from having a high quantity of surface active oxygen, a smaller particle size, and oxygen
vacancies along with low temperature reduction behavior [84]. Sun et al. reported the
preparation of MnOx by various methods such as thermal decomposition, pyrolysis of
MOFs, and co-precipitation. Among them, MOF-derived MnOx exhibited excellent catalytic
activity of toluene, which could be attributed to the high surface defects [85]. In many
cases, MOFs can be used as templates to develop NMs. The appropriate selection of metal–
organic framework precursors with special morphologies under suitable experimental
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conditions can yield a material of desired morphology. Metal, metal oxides, metal sulfides,
and other nanosized materials can be synthesized using a suitable nano-MOFs precursor.

MOFs themselves are a large source of carbon. Metal ions in connection with organic
ligands in MOFs can be reduced to metallic composites by the carbothermal reduction
process followed by acid etching of metal. The porosity retains its position in the products
though the thermal treatment, which may change the pore size distribution within MOFs.
MOF-derived porous carbon or carbon–metal porous material can be obtained by direct
calcination of MOFs. However, porous carbon material can be prepared by intrusion
of a secondary carbon source (e.g., phenolic resin, furfuryl alcohol, ethylenediamine,
etc.) either by the wet chemical method or by the vapor phase method followed by
carbonization in an inert atmosphere. Nitrogen-doped porous carbon material can be
obtained either by the carbonization of nitrogen-rich MOFs (e.g., zeolite imidazolate
framework, ZIF-8) or by carbonization of nitrogen-rich organic solution (e.g., dicyanamide)
dispersed MOFs. Hetero-element (oxygen, phosphorus, nitrogen, etc.) doping can also be
performed by soaking MOFs in organic solution rich in glycophosphine, triarylphosphine
(for phosphorus), and dimethylsulphoxide (for sulfur). MOF-derived metal oxides can be
obtained by treating MOFs in an excess of air, whereby organic linkers are decomposed,
leaving behind metal oxides.

3.2. Some Common VOCs and Their Removal

Some common VOCs and their removal methods are briefly described below.

Removal of propane and butane:

Propane and butane are commonly used very volatile organic compounds. They are
shipped as a liquefied gas and are commonly used for heating and cooking purpose. They
are used as common heating fuels in households, heaters to warm garages, and as fuels
used for barbecuing, gas grills, and camping lights. These volatile compounds are mostly
released from their uses in grills, heaters, and camping lights. These are harmful substances
to be inhaled. These gases can be removed by the oxidation process. For instance, propane
is converted into water and carbon dioxide via the oxidative reaction. MOF-derived NMs
have been used for its removal. Lin et al. synthesized Co3O4 nanoparticle-assembled
micro-rods with Co-BTC (cobalt-1,3,5-benzenetricarboxylic acid) MOFs for the oxidation of
propane. Lin et al. proposed the decomposition of propane as the following: two hydrogen
atoms are deprotonated from propane and changes to propylene. Then, hydrogen attached
to a singly bonded carbon atom is replaced by a hydroxyl group to form allyl alcohol,
which is oxidized to ally acid and decomposes to carbon dioxide and water [86].

Removal of methyl chloride:

Methyl chloride is also called chloromethane. It is a colorless, flammable, and toxic
gas commonly used in refrigeration and has applications in various industries. It is used
as a solvent in petroleum refining, as a methylating and chlorinating agent in organic
synthesis, as a propellant in polystyrene foam, and as a herbicide. Methyl chloride is
typically present in paint removers, aerosol solvents, and flame retardant chemicals used
in fire extinguishers. It is a prominent volatile compound and is prone to photochemical
reaction. The inhalation of methyl chloride may cause dizziness and drowsiness depending
upon the level of exposure. Kumar et al. synthesized non-activated biochar for the removal
of methyl chloride [72]. The MOF-derived highly porous carbon materials could be useful
for the removal of volatile organic compounds such as methyl chloride.

Removal of ethanol:

Ethanol is commonly called ethyl alcohol. Ethanol is typically used as in cleaners,
sanitizers, laundry detergents, and dishwasher detergents. Ipadeola et al. [87] synthesized
Pd/SnO2 NPs on MOF-derived carbon for the oxidation of ethanol. Pd/SnO2/metal–
organic framework-derived carbon (MOFDC) exhibited a superior kinetic parameter in
terms of the Tafel slope. This principle is also applicable for direct ethanol fuel cell.
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Removal of methanol:

Methanol is commonly called methyl alcohol. Wu et al. synthesized ultrafine Pt
NPs and amorphous Ni supported on 3D-mesoporous carbon-derived Cu-MOF for the
oxidation of methanol [88]. The carbon matrix lodged for profound dispersion of Pt
NPs. The composite catalyst was also found to manifest an outstanding property for the
reduction of nitrophenol.

Removal of formaldehyde:

Formaldehyde, also called methanol, is a common volatile organic compound. It is
classified as a carcinogenic compound. It is present in molded plastics and coatings such
as furniture polish. Nearly 40% formaldehyde is called formalin, which is commonly used
in museum specimens. Formaldehyde is used to prepare resins for building materials,
and coating for clothing fabrics and paper. It is commonly present in plastics, glues,
lacquers, laminate flooring, plywood, fiberboard, particle board, etc. For the detection
of formaldehyde, Zhang et al. synthesized ZnO/ZnCo2O4 microsphere modified by
catalytic palladium oxide nanoparticles via an MOF-template route. The microsphere
exhibited a fast and higher response, better selectivity, and low detection limit (200 ppb) [89].
Wang et al. developed Janus AuNRs@ZnO@ZIF-8 NPs for the simultaneous detection and
removal of formaldehyde (Figure 3a,b). Figure 4 shows the experimental setup for the
HCHO detection.
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Removal of formic acid:

Formic acid, also called methanoic acid, can be removed by the catalytic decomposition
method. Wang et al. developed N-doped C-anchored Pd NPs by the wet chemical method
using MOF (ZIF-8) as a precursor. The porous structure of carbon exhibited a high surface
area, favoring the decomposition of formic acid [91].

Removal of acetone:

Acetone is also called propanone. It is commonly used as a solvent in laboratory and
industrial processes. Everyday sources of exposure to acetone include paints, nail polishes
and nail polish remover, furniture polish and wallpaper, and common laboratory environ-
ments. Xia et al. synthesized porous Au/ZnO NPs via facial metal–organic framework
route for acetone sensing application [92].

Removal of carbon monoxide:

Carbon monoxide is mostly produced from incomplete combustion of any com-
pounds, from common household burning materials to various petrochemicals. Wang
et al. developed Co3O4 nanoparticles by the pyrolysis of cobalt nitrate in the pores of ZIF-8
(Zn(2-methylimidazole)2) for the catalytic oxidation of carbon monoxide. Co3O4 exhibits
good cycling and long-term stability. However, one of the disadvantages of using Co3O4 is
that it suffers from deactivation [93]. Catalytic oxidation of carbon monoxide can also be
brought about by Mn2O3. It has outstanding thermal stability. The efficacy of the catalyst
is affected by the presence of moisture, operating temperature, etc. [84].

Removal of toluene:

Toluene is also called methyl benzene. Toluene is a good solvent for non-polar
compounds. It is sometimes present in paints and coatings. It is an important compound
used as an additive in gasoline. For industrial applications, it is used to prepare nylon,
plastics, dyes, inks, and paints. Due to its high level of toxicity, these days, toluene-free
inks (marker inks) and paints are more often manufactured.

Toluene can be removed by catalytic oxidation or absorption. Zhao et al. synthesized
a series of hollow Co3O4 polyhedron with different sizes by the pyrolysis of ZIF-67. The
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obtained cobalt-based metal–organic framework owned superior catalytic performance
and stability for toluene oxidation [94]. Zhang et al. developed MOF-derived a meso-
porous/microporous Mn2O3 catalyst with a high surface area (141.5 m2/g) which exhibited
excellent catalytic activity for the oxidation of toluene. They also co-related the higher
catalytic efficacy with small crystallite size. The manganese oxide sample obtained from
different precursors exhibited different catalytic activities for the oxidation of toluene [95].
Wang et al. developed a series of Zr-based catalysts by the direct decomposition of metal–
organic framework UiO-66 in air. In this work, CuCeZr catalyst exhibited an excellent
oxidation of carbon monoxide and toluene. For the oxidation test, toluene vapor was
carried out by pure argon at the rate of 7 mL/min in a bubbler followed by diluting with
30% O2/Ar and another pure Ar. Mass flow controller was used to control the gas flow rate.
After 30 min, the conversion of toluene was recorded using an online gas chromatogram
with a flame ionization detector (FID) and thermal conductivity detector (TCD) [96]. Zhang
et al. prepared highly dispersed silver nanoparticles supported on UiO-66 derivative and
studied the effect of silver loading on the structure and performance of catalytic oxidation
of toluene. Increasing the silver nanoparticles weight up to 10% (by weight) on UiO-66
caused the collapse of the framework, resulting in the uniform dispersion of silver nanopar-
ticles on the surface. It exhibited an excellent catalytic performance due to higher lattice
oxygen and surface silver content. They also unveiled that the catalytic oxidation of toluene
led to the formation of benzaldehyde followed by benzoic acid, eventually forming carbon
dioxide and water [97].

C6H5CH3
Catalytic oxidation→ C6H5CHO

Catalytic oxidation→ C6H5COOH
Catalytic oxidation→ CO2 + H2O (1)

Zhang et al. developed a series of Pd NPs-loaded UiO-66-NH2 using solution impreg-
nation method for the epoxidation of styrene [98].

Removal of xylene:

Xylene vapors are likely to be produced from car tailpipes. p-xylene is an isomer
of xylene. p-xylene is commercially used in the production of polyethylene terephtha-
late (PET) polymer, beverage bottles, fibers, and films. Separation of p-xylene from its
different isomers is of the utmost importance in the petrochemical industry. However,
separation is quite difficult by distillation due to their close boiling points (in the range of
138–144 ◦C). However, separation of p-xylene is possible among its isomers by fractional
crystallization and adsorption using zeolites. An MOF containing an extended porous
network of cyclodextrin and alkali metal salt has been reported for the separation of xylene
regioisomers [99].

Removal of styrene:

Liu et al. developed a highly porous silver-nanoparticle-incorporated MOF for the
solar-light-triggered regenerative adsorptive removal of styrene [100]. Herein, silver
nanoparticle was incorporated with UiO-66 by the colloidal deposition method. UiO-66 is a
zirconium-based metal–organic framework with a high surface area (1180–1240 m2/g) and
substantial stability [101]. Here, UiO stands for University of Oslo [12]. The particle size of
UiO-66 itself is in the range of 100–500 nm. As-developed Ag/UiO-66 samples were highly
porous. The incorporation of Ag NPs increased the styrene adsorption capacity compared
to the parent UiO-66. Upon exposure to simulated solar radiation, silver nanoparticles
induced the conversion of light energy into thermal energy, which triggers the desorption
of styrene from the Ag/UiO-66. In this way, Ag/UiO-66 can be regenerated.

Table 2 indicates the MOF-derived nanomaterials applicable in the various VOC gas
detection/oxidation. Some nanomaterials fabricated by other methods are also incorpo-
rated for a comparative study.
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Table 2. MOF-derived nanomaterials applicable in VOC gas detection or oxidation.

SN VOCs Types of Nanomaterials Efficacy Preparation Method Ref.

1 Acetone Au/ZnO NPs Gas sensing response of
17.1 ppm–1

Calcination of ZIF-8 [92]

3 Benzene ZnO NPs-coated zeolite and
AC Detection limit of 3 ppb By coating ZnO NPs and

AC on zeolite [52]

4 Benzene MnO2/ZSM-5 zeolite

Benzene can be removed
completely.

CO2 selectivity reached
to 84.7%

Impregnation of metal
oxide on ZSM-5 [102]

6 Carbon
monoxide Co3O4 - Sacrificial removal of

MOFs [93]

7 Carbon
monoxide

Mn-MIL-100-derived
Mn2O3 nonporous - Calcination of MOFs at

700 ◦C. [84]

9 Ethanol Pd/SnO2 NPs on
MOF-derived carbon - Microwave-assisted

method [87]

10 Formaldehyde
PdO NPs-decorated

ZnO/ZnCo2O4
microsphere

Detection limit of 0.2 ppm
Prussian-blue-based

co-precipitation using
MOF (Zn3[Co(CN)6]2)

[89]

11 Formic acid N-doped C-anchored Pd
NPs

Turn over frequency of the
catalyst at 30 ◦C is

1166 h–1.

Wet chemical method
using ZIF-8 [91]

12 Methanol
Pt NPs and amorphous Ni

supported 3D
mesoporous C

Diverse selectivity on
nitrophenol

Carbonization and
chemical etching of

Cu-MOF
[88]

13 Naphthalene CeO2 -
Homogeneous

precipitation method with
urea

[103]

14 Propane
Toluene Mesoporous α-Fe2O3 - Wet chemical synthesis [104]

15 Propane Co-BTC - Hydrothermal method [86]

16 Styrene Pd/UiO-66-NH2

Highest conversion (87%)
of styrene and best

selectivity (96.5%) in
acetonitrile

Solution impregnation
method [98]

17 Styrene Ag/UiO-66 - Colloidal deposition
method [100]

18 Toluene Hierarchical porous carbon Adsorption performance of
2290 m2/g

Microbial lignocellulose
decomposition [105]

19 Toluene Mn2O3 - Pyrolysis of MOFs
containing Mn salts [95]

20 Toluene Ag/UiO-66 - Liquid phase reduction [97]

21 Toluene MnOx-CeO2-MOF derived
from MOF - In situ pyrolysis of MOF-74 [85]

22 Toluene Hollow Co3O4 polyhedral
nanocages

Complete conversion of
toluene was observed at

280 ◦C
Pyrolysis of ZIF-67 MOFs [94]

23 Xylene
isomers

Cyclodextrin-alkali metal
salt MOFs

MIL-101 (Cr)

The equilibrium capacities
of o-xylene, m-xylene and
p-xylene are 175, 70, and 64

mg/g, respectively

Wet chemical method [99]

24 Toluene and
CO CuCeZr700

CuCeZr700 exhibited 100%
of CO oxidation at 140 ◦C
and 90% toluene oxidation

at 310 ◦C

Direct decomposition of
UiO-66 MOFs in air [96]

4. Challenges and Future Prospects of MOF-NMs

The synthesis of hollow-structured materials with a tunable chemical composition
sufficient to sense the volatile organic compounds is still a challenging job. These days,
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MOFs of versatile applications are being developed. However, the development of MOFs
capable of throughput sensing of volatile organic compounds and their selective removal
is still a challenging task. The metal–organic framework consists of metal ions or metal
oxide clusters in connection with organic moieties creating a profound surface area with
significant structural and chemical diversity. In contrast to the traditional adsorbents, such
as activated carbon, activated carbon fiber, silicates, and zeolites, metal–organic framework-
based nanomaterials (MOF-NMs) have been engineered to tune the adsorption efficacy of
volatile organic compounds. Such MOF-NMs are characterized by their tunable pore size
and structure, tailorable functionalities, and flexible synthetic methods. A major issue of
MOFs is stability, which is largely determined by the structure of metal ions and its nature
of bonding with ligands. Weak thermal, chemical, and mechanical stability has limited
their use in large-scale applications. The incorporation of nanomaterials has provided some
remarkable properties for the MOFs. The incorporation with other functional nanomaterials
can greatly improve the sensing performance of MOF [106].

As MOFs act as template for the synthesis of NMs, the design and engineering of an
appropriate MOF is a challenging task in the design of MOF-derived NMs. Furthermore,
the rampant use of chemicals has absurdly deteriorated the environmental condition as
well as health of the researchers, consumers, and allied persons; therefore, the use of green
solvents is absolutely necessary. For instance, water and ethanol can be used as green
solvents in the synthesis of MOFs.

5. Conclusions

With the advent of science and technology, the excessive and rampant use of chemicals
cannot be denied. Demand for sophisticated and luxury lifestyles implore the use of high
levels of chemicals directly or indirectly in various applications. Many volatile organic
compounds are toxic and detrimental to human health and the environment. Such types
of volatile organic compounds can be one of the causes of occupational diseases. To be
protected from such VOC hazards, there is a significant need to develop a fully satisfactory
method for the removal or detoxification of VOCs. Currently, physical, chemical, or
biological treatment methods are in action; each method has its own inherent pros and cons,
and none of the methods is a panacea. There is an urgent need to devise a promising method
for sensing, detoxifying, and removing VOCs. Many cases are not simple, as has been
discussed in the literature. A VOC repository may consist of a mixture of various volatile
organic compounds rather than some pristine chemicals. Furthermore, a treacherous
condition may be found when parts of VOCs are region-selective or stereo-selective. In the
chaos of the complex nature and diversity of VOCs, it is hard to find a simple and holistic
method for the removal of VOCs at single slot. In this context, to improve the indoor as
well as environmental air quality, it is necessary to innovate an efficient, smart, and facile
approach for the removal of VOCs. Low-cost, highly efficient, tunable, tailorable, and
environmentally friendly nanomaterials with high stability must be assessed by rigorous
research. Materials such as carbon-based, metal-oxide-based materials and their variants
with promising morphologies, synthesis techniques, and nanoarchitechtonics are needed
for the removal of VOCs. In this context, special attention is to be paid to the minimization
of VOCs, as well as the removal and detoxification of them.
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BDC 1:4-Benzenedicarboxylate
BTC 1,3,5-benzenetricarboxylic acid
BTEX Benzene, toluene, ethylbenzene, and xylene
COF Covalent organic framework
DDT Dichlorodiphenyl trichloroethane
EPA Environmental Protection Agency
FID Flame ionization detector
LFSE Ligand field stabilization energy
MOF Metal–organic framework
PAH Polycyclic aromatic hydrocarbons
PBB Polybrominated biphenyl
PCB Polychlorinated biphenyl
PCPs Porous coordination polymer
PET Polyethylene terephthalate
PM Particulate matter
PVC Polyvinyl chloride
ROS Reactive oxygen species
SOA Secondary organic aerosol
SVOC Semi-volatile organic compounds
TCD Thermal conductivity detector
UiO University of Oslo
VOC Volatile organic compound
VVOC Very volatile organic compounds
WHO World Health Organization
ZIF Zeolite imidazolate framework
ZIF-8 Zn(2-methylimidazole)2
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