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Abstract: Bees and their products are useful bioindicators of anthropogenic activities and could
overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury
(Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to
develop a simple analytical method to determine Hg in small mass samples of bees and beehive
products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized
for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew
with 0.5 mL HC], 0.2 mL HNOj3, and 0.1 mL H,O, in a water bath (95 °C, 30 min); samples were
made up to a final volume of 5 mL deionized water. The method limits sample manipulation and
the reagent mixture volume used. Detection limits were lower than 3 pg kg~! for a sample mass
of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%,
respectively, for many matrices. The second aim of the present study was to evaluate the proposed
method’s performances on real samples collected in six areas of the Lazio region in Italy.

Keywords: bees; beehive products; biomonitoring; cold vapor atomic fluorescence spectrometry;
sample preparation; toxic metal

1. Introduction

Mercury (Hg) is an ubiquitous and toxic metal that continues to be a public health
concern [1-3]. It is released into the environment from both natural and anthropogenic
sources [4]. Mercury is present in the atmosphere as an elemental form (Hg) and it is
accumulated through the terrestrial and aquatic food webs as an organic form (methylmer-
cury) [5,6]. Although Hg is associated with several adverse human health effects [7], it is
still widely used in the chloralkali industry, for gold mining, and the production of dental
amalgam, batteries, pesticides, fungicides, disinfectants, and antiseptics [8]. Because of the
mentioned toxic properties, Hg monitoring in food and environmental samples is essential
in order to perform reliable risk assessments and take appropriate actions to protect human
health and the environment [9]. According to the current air quality directives in Europe,
industrial activities must reduce Hg emissions by implementing control programs and
integrated pollution prevention and, at the same time, by improving air quality assessment
and monitoring programs [10-13]. Mercury in the atmosphere is mainly assessed by mak-
ing punctual measurements with manual or automated air quality monitoring stations [14]
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and applying standardized methodologies, based on current legislation [10]. However,
due to the high costs, the monitoring networks for Hg pollution assessment are still char-
acterized by low temporal (generally on an annual basis) and spatial coverage [15]. For
the above reasons, there is growing interest in alternative air monitoring techniques such
as plant, insects, lichens, and mosses that can provide reliable time-integrated estimates
of air pollution in a given area at low cost [16-22]. In particular, bees and their products
such as honey, propolis, and pollen have been proposed as bioindicators of environmental
Hg contamination [23-25]. The assessment of Hg levels in bee products is important not
only for their use as possible bioindicators for environmental contamination purposes, but
also for the potential human exposure due to their dietary, pharmaceutical, and cosmetic
use [26-30].

Mercury has been studied in honey samples by several authors [24,25,31-42], whereas
limited literature data are available regarding the Hg determination in beeswax [42],
pollen [24,25,39,41,43,44], propolis [24,45-47], and bees [24,25,31,39,47-49]. Microwave-
assisted digestion is the most commonly used technique for preparing bee samples and
hive products [32,35,42-44]. However, the microwave-assisted digestion method requires
certain sample masses and reagent volumes, often leading to high final dilution factors
and a consequent increase in the method detection limits [25,50]. In contrast, some authors
have miniaturized digestion of honey, pollen, and/or bees by heating them in a heat block
(80-100 °C) and using very small reagent volumes [25,33]. Throughout the literature,
many studies have quantified Hg concentrations in bees and beehive product matrices
with atomic absorption spectroscopy [38] and inductively coupled plasma-mass or optical
emission spectrometry (ICP-MS or ICP-OES, respectively) [25,32,40-43,49], often coupled
to cold vapor generation (CV) for matrix separation [24,33-35,37,44,45], electrothermal
atomic absorption spectrophotometry [47], and direct Hg analysis using automated com-
mercial instruments such as the advanced mercury analyzer (AMA) [36,39,46] or direct
mercury analyzer (DMA) [37,48]. CV atomic fluorescence spectrometry (AFS) is a good
alternative for total Hg determination, and has been commonly employed for the analysis
of several biological and environmental matrices [51], food [52], and human bodily fluids
and tissues [53-55]. Despite this, CV-AFS has rarely been applied for the determination of
Hg in honey [35], and, to the best of our knowledge, this technique has not been applied in
bees and other beehive products.

This study aimed to miniaturize the sample digestion of bees and beehive products to
achieve accurate and reproducible results with low detection limits for Hg determination
by CV-AFS. The proposed analytical method was applied to commercial honeydew and
royal jelly samples and bees, honey, beeswax, pollen, and propolis samples collected from
six central Italy areas were characterized by different exposure to environmental pollution.

2. Results and Discussion
2.1. Comparison with Previous Methods

The analytical characteristics comparison of the method proposed in the present
study with others already developed for Hg determination in bee and beehive product
samples is shown in Table S1. In this study, the sample digestion was miniaturized by
reducing all volumes and masses to allow sample preparation in one disposable test
tube. This prevented sample loss due to the transfer in different tubes and minimized
possible contamination. In addition, the use of smaller volumes of reagents allows for
a lower final dilution factor (5x), and lower method detection limit (DL) and decreases
the consumable and chemical waste generated, meeting the ever-increasing demand to
comply with green chemistry requirements. The dilution factor, together with the sample
mass, the reagent purity, and the chosen instrument, can affect the Hg DL in bees and
beehive products, where this metal is generally present in low concentrations. To decrease
the method DL, the sample mass can be increased, but sometimes this is not possible
(such as for bees or specific pollen). Furthermore, if the analytical method requires sample
digestion, the increase in sample mass must necessarily be accompanied by an appropriate
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volume of reagents to ensure complete sample digestion. Even for methods that do not
require sample pre-treatment such as AMA or DMA (Table S1), the sample mass cannot be
randomly increased to ensure complete drying, ashing, and atomization of the sample. In
addition, amounts larger than 100 mg of sample can produce a build-up of combustion
gases, resulting in a rapid increase of pressure in the furnace [37]. In the literature (see
Table S1), some studies have used a large final dilution of bees and beehive product samples
(25-50x) [24,33,35,36,40,41,44,47,49] to reduce the acidity of the final digest, sometimes
compromising the Hg determination. For this purpose, in this study, various sample
aliquots (0.05-1 g for honey and honeydew, 0.02-0.2 g for bees, beeswax, pollen, propolis,
royal jelly) were digested at the maximum temperature of 95 °C, considering two different
times (30 or 60 min) and using the smallest amount of reagent mixture (0.5 mL HCI, 0.2 mL
HNOj3, and 0.1 mL H,O,) to employ the smallest dilution factor final (5x). The choice
of acid and oxidizing agent (HNO3; and H,O,, respectively) is widely agreed by most of
the literature for the selected matrices [24,25,33,35,36,38,41,42,44,47-49], while HCI] was
selected according to the manufacturer’s recommendations.

The proposed sample preparation also appears to be the fastest procedure (digestion
time, 30 min for 120 samples or more) compared to the other sample treatments reported in
the literature [25,33,40-42,44,47] (Table S1), resulting in being suitable for routine analysis
with high sample throughput and biomonitoring. However, it should be noted that possible
volatile Hg species such as organometallic compounds or metal nanoparticles could be lost
during digestion due to their volatilization.

The analytical characteristics of the proposed method are detailed in the following
sections.

2.2. Linearity and Selectivity

The linearity and selectivity of the proposed method were evaluated by preparing
calibration curves in aqueous [3% (v/v) HCl and HNOj] standards and using the standard
addition method at Hg concentrations of 0.00, 0.02, 0.04,0.1,0.2,0.4, 0.8, 1.0, and 1.5 ug L-L
Digested samples of each matrix (20 mg) were diluted to reach the same acid ratio as
the aqueous standard solutions and used to create calibration curves with the standard
addition method. The linearity ranges from 0.02 to 1.5 pg L~! were checked through the
linear regression coefficient (R?) and verified by the Mandel fitting test. Calibration curve
points with percent relative deviation >10% from calculated concentrations were tested
and removed using the instrument software. The parameters of the calibration curves after
the outliers’ removal are presented in Table 1. Data of the calibration curves using aqueous
standards were obtained by nine independent replicates. The dynamic range was compared
with that of other previously published methods (Table S1). In particular, CV-AFS allows
for the determination of Hg in a wide range of concentrations, showing a dynamic range
greater than that possible with other techniques such as CV-AAS, ICP-OES, and DMA. The
matrix effect was evaluated by comparing the slopes of the calibration curves obtained
from aqueous standards and the standard addition method (Table 1). Most of the results
showed good data dispersion; however, some standard deviation values were of the same
order of magnitude as the intercept data, generating a large statistical uncertainty on
these data. The t-test at a 95% confidence level was used to evaluate possible significant
differences between the angular coefficients of the calibration curves, in accordance with
previous studies [25,37,56]. There were no apparent matrix effects between the aqueous
and standard addition calibration curves. Thus, these results agree with those obtained for
bees, honey, and pollen by other authors [25,37].
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Table 1. Comparison of calibration curve parameters for Hg determination by cold vapor atomic fluorescence spectrometry

(CV-AFS).

Calibration Standards

Parameter @

a s(a) b s(b) R?
Aqueous standards 9.68 x 10 9.68 x 10 1.86 x 10* 1.16 x 10° 0.999
Bee-addition standards 1.32 x 102 3.14 x 10 1.64 x 10* 2.30 x 10° 0.999
Beeswax-addition standards 7.65 x 10 1.05 x 10 1.71 x 10* 2.22 x 103 0.999
Honey-addition standards 1.07 x 102 1.34 x 102 1.61 x 10* 2.05 x 10° 0.999
Honeydew-addition standards 1.38 x 10? 8.58 x10 1.65 x 10* 1.78 x 103 0.999
Pollen-addition standards 1.30 x 10? 3.73 x 10 1.62 x 10* 2.07 x 103 0.998
Propolis-addition standards 3.85 x 10? 2.50 x 10? 1.76 x 10* 1.40 x 103 0.999
Royal jelly-addition standards 7.65 x 10 1.05 x 10 1.80 x 10* 9.19 x 102 0.998

2 a, intercept; s(a), standard deviation of intercept; b, slope; s(b), standard deviation of slope; R?, correlation coefficient.

2.3. Detection and Quantification Limits

The DL was calculated based on the calibration curve using software prepared by the
Regional Agency for Environmental Protection [57]. Therefore, the DL can be expressed
as DL = 3.3 o/b; where the coefficient 3.3 is called the expansion factor and is obtained
assuming a 95% confidence level; o is the standard deviation of the response of the curve;
and b is the calibration curve slope. The reached DL of 0.01 ug L~! for aqueous calibration
confirmed the excellent sensitivity of the proposed method. The QL was set at the lowest
standard curve points of calibration, which was 0.02 pg L~!. The DL and QL varied
depending on the mass of the analyzed matrix and dilution required before analysis (in
this study, 5x). In particular, for a mass of 0.02, 0.05, 0.1, 0.2, and 1 g, the DL was 3,
1, 0.5, 0.3, and 0.05 pg kg’l, and the QL was 5, 2, 1, 0.5, 0.1 pg kg’l, respectively. As
shown in Table S1, the obtained DLs are comparable to previously reported AMA or
DMA analysis [36,37,39] and ICP-MS analysis [25] and lower than CV-AAS or CV-ICP-OES
analysis [24,33].

2.4. Accuracy and Precision

Due to the lack of certified reference material of bees and beehive products, the accu-
racy and precision (as repeatability and intermediate precision) of the proposed method
were evaluated by recovery tests in agreement with other authors [25,36,37] and as in-
dicated by Commission Decision no. 657/2002 [58]. Samples of each matrix (0.05-1 g
for honey and honeydew, 0.02-0.2 g for bees, beeswax, pollen, propolis, royal jelly) were
spiked with Hg at low (0.02 ug L), intermediate (0.2 ug L~1), and high (1 pg L~1) concen-
tration and then digested. The method performance at levels near the QL was evaluated
considering the smallest mass of each matrix and the shortest digestion time (30 min).
The same solutions were again analyzed on two separate days to assess intermediate
precision. The recovery and precision (such as repeatability) data are shown in Table 2
and Tables S1 and S2. Intermediate precision data (not shown) were very similar to the
repeatability values.

In summary, the digestion time and mass for each matrix suitable for obtaining
recoveries and precision within 20% of the expected value and less than 10%, respectively,
were tabulated (Table 3). In this study, the major sources of uncertainty were the recovery of
the procedure, instrumental calibration, and repeatability of the measurements. In contrast,
the samples” weights were the lowest contribution to the Hg uncertainty, in agreement
with a previous study [59].
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Table 2. Recovery and precision data for Hg in bees and beehive products (1 = 3) by water bath digestion (95 °C, 30 min).

Low Level Spike Intermediate Level Spike High Level Spike
(0.02ugL-1) 02pgL-1 1pgl-1

Matrix Mass (g) R% CV% R% CV% R% CV%
Honey 0.05 86 5.4 116 9.3 96 7.8
Honeydew 0.1 89 0.4 113 10 91 8.4
Pollen 0.02 92 9.6 90 3.7 95 3.6
Propolis 0.02 104 9.8 98 8.6 91 2.5
Beeswax 0.05 92 10 111 8.5 99 2.0
Royal Jelly 0.02 117 9.3 108 4.4 110 0.9
Bees 0.02 95 8.9 97 4.5 91 10

Table 3. Summary of mass and digestion time that can be used in bees and beehive products.

Matrix Mass ? (g) Digestion Time ? (min)

Bees 0.02-0.2 30 or 60
0.02 60

Beeswax 0.05-0.1 30 or 60
0.2 60

Hone 0.05 30 or 60
y 0.1 60
0.05 60

Honeydew 0.1 30 or 60
0.2 60

Pollen 0.02-0.2 30 or 60

Propolis 0.02 30 or 60

Royal Jelly 0.02-0.2 30 or 60

2 The method performance at levels near the QL (0.02 g L~1) was evaluated considering the smallest mass of
each matrix and the shortest digestion time (30 min).

2.5. Hg Concentrations in Real Samples

Bees and beehive products (honey, beeswax, pollen, and propolis) from various
geographical areas in central Italy (Figure 1) and commercial samples of both honeydew
and royal jelly were analyzed to demonstrate the applicability of the proposed method for
routine analysis and biomonitoring.

Mercury pollution is an important environmental and public health issue. Elemental
Hg can be emitted into the atmosphere by both anthropogenic (mainly artisanal gold
mining, fossil fuel combustion, and cement production) and natural (such as a geothermal
activity) sources [39]. Subsequently, Hg is transported to land and surface waters through
wet and dry deposition, where it can undergo a bioconversion into more volatile or soluble
forms such as methylmercury and return into the atmosphere or bioaccumulate in food
chains [39]. Additionally, bees are continuously exposed to contaminants including Hg.
Every day during foraging activities, bees gather nectar, plant resins, and water in the
border of 7 km? around their beehive and may come into contact with chemicals [47,49].
Therefore, the bee was proposed as a multi-sample contaminant collector because of its
high mobility, contact with possible chemicals through inhalation, digestion, and hairs
covering its body [40,47,49]. Contaminants adhered to the hairs such as particles of soil
and dust can be carried into the beehive, thus affecting the composition of the beehive
products [42,49]. In addition, Hg captured by the leaves of plants or absorbed from the soil
through the plant root system can influence the nectar and pollen composition, which are
brought back into the beehive [42,44]. Furthermore, propolis, produced with plant resin
and mixed with salivary secretions and wax, due to the sticky nature of gum, might be
used as a bioindicator of atmospheric pollution [46,47].
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Figure 1. Geographic location of sampled apiaries (central Italy).

These considerations form the basis with which bees and their products have been
proposed as reliable bioindicators of the environment including the atmosphere and pollu-
tion [40,42,43,46-49,60].

The Hg levels in all royal jelly samples were lower than DL, while in honeydew
samples, they were 0.83 + 0.34 ug kg~ '. As shown in Table 4, the Hg concentrations
were above the DL for many matrices, showing that the proposed method can be used to
determine the Hg level in bees and beehive products. Although variation in Hg level across
different areas for each matrix indicates the possibility of using the proposed method
for biomonitoring, alternative and parallel measurements of the contamination of the
environmental compartment of interest are necessary.

For honey, the mean Hg concentrations in this study (0.91-3.37 ug kg~!) were in agree-
ment with the mean contents found in Croatia (0.47-0.52 ug kg ') by BilandZi¢ et al. [36]
and China (0.34—4.00 pg kg’l) by Ru et al. [35]. In another Italian study, Hg levels were
lower than the quantification limit of 2 ug kg~! [32]. The mean Hg levels in pollen
(3.2-12.8 ng kg_l) were similar to the concentrations reported in Poland (3.6-6.6 ug kg 1)
by Roman [43] and in Brazil (0.4-6.8 pg kg ') by Morgano et al. [44]. According to our mean
data in propolis (4.6-14.8 ug kg~ 1), studies from Croatia by Cvek et al. [45] and Spain by
Bonvehi and Bermejo [46] reported Hg concentrations as a median of 12 ug kg~! and mean
of 8.0 + 2.5 ug kg !, respectively. For bees, there are few available data in the literature be-
cause of the limited amount of this matrix and consequently high DL values [24,25,40,47,48].
A study by Toth et al. [39] reported Hg concentrations of 39.892 + 0.035 ug kg~! and
8.224 + 0.028 ug kg~ ! in bees from two locations in eastern Slovakia. These results are in
accordance with our data ranging from 0.53 to 31 ug kg~ !. For beeswax, only one study
by Bommuraj et al. [42] reports a concentration value of Hg equal to 62 pg kg~!, while
our data fell in the range of <1-12.7 pg kg~ !. Unfortunately, it was not possible to make a
comparison with the literature for honeydew and royal jelly.
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Table 4. Comparison of mercury occurrence (ug kg~') in six sampled apiaries (central Italy).

Matrix Statistics OR FAI MC MG MS TR
Honey N 14 6 10 10 10 4
Mean 0.91 #b.cde 2.262 2.68 P 2.66 ¢ 2434 3.37¢
SD 0.23 0.69 0.75 0.36 0.60 0.60
Median 0.78 1.92 297 253 2.07 3.37
Minimum 0.66 1.80 1.35 2.30 1.95 2.95
Maximum 1.25 3.06 3.17 3.23 3.20 3.80
Pollen N 14 NS 12 10 4 4
Mean 3.2b - 7.6 7.5 12.82 104°
SD 1.4 - 2.0 1.9 8.0 25
Median 3.0 - 7.2 7.0 12.8 104
Minimum <3 - 5.1 5.9 7.2 8.7
Maximum 5.6 - 10.2 10.6 185 12.2
Propolis N 10 NS NS 4 6 NS
Mean 462 - - 7.54P 14.8 @b -
SD 1.2 - - 0.65 2.1 -
Median 48 - - 7.54 15.7 -
Minimum <3 - - 7.08 12.4 -
Maximum 5.7 - - 8.00 16.4 -
Beeswax N 14 8 14 12 12 4
Mean 2.82 59 6.4 48 49 11.52
SD 1.6 2.8 3.0 1.7 3.1 1.8
Median 2.8 52 45 42 39 11.5
Minimum <1 35 33 35 3.0 10.2
Maximum 5.7 9.5 10.6 8.1 11.2 12.7
Bees N 14 6 14 14 10 4
Mean 1.76 2b< 16.2 2 11.0 16.2° 17.1°¢ 14.5
SD 0.85 27 5.8 5.6 8.5 52
Median 2.09 15.1 10.4 145 17.0 145
Minimum 0.53 14.4 1.6 8.3 9.1 10.9
Maximum 2.65 19.3 20.3 25.3 31.0 18.2

N, samples number; SD, standard deviation; NS, not sampled. abede The data in bold with the same superscript
letters within rows were significantly different (p < 0.01; ANOVA test).

In this study, the Hg levels showed a typical distribution related to anthropogenic
development of the areas. Furthermore, in agreement with the observations of other authors
on the biological barrier capacity of bees for the contamination of honey by Cd and TI [40],
bees also seem to work as biofilters for Hg. In fact, the Hg levels were generally lower in
the rural site (OR) and honey samples and higher in the sites with greater anthropogenic
impact and bee samples. In particular, bees showed approximately ten times higher
mean concentrations in the FAI (16.2 £+ 2.7 ug kg’l), MG (16.2 £ 5.6 ug kg’l), and MS
(17.8 £ 8.5 ug kg~!) areas than in the OR site (1.76 & 0.85 pg kg~ !). The lowest Hg level
was detected in honey samples from OR (0.91 + 0.23 pg kg~ !). The principal anthropogenic
sources of Hg pollution are industrial and urban discharge and combustion [35,38].

Our results agree with numerous other studies [60,61]. In Toth et al. [39], a statistically
significant relationship was described between the locality and Hg content in bees and
bee pollen. Moreover, in the study by Dzugan et al. [40], the sampling area and its related
emission sources influenced toxic metal concentration in both bee bodies and honey. How-
ever, the Hg content in bees may also depend on other factors such as method of rearing
bee colonies (including supplemental feeding), age of worker bees, and physiological and
health status of bee specimens and bee colonies [62]. Due to its physical feature (sticky)
and its chemical composition (mainly polyphenols, amino acids, terpenes, and steroids),
propolis can absorb Hg and other metals [47,63], thus it can also be used as a bioindicator
of air pollution [63,64].

Especially for honey, the assessment of Hg levels is important not only for environ-
mental protection but also for food quality and consumer health [38]. Currently, the Hg
presence in honey must not follow specific regulations. However, the Codex Alimentarius
states that honey shall be free from metals in amounts that may result in a hazard to human
health [65]. A provisional tolerable weekly intake (PTWI) of 0.3 mg (0.042 mg/day) for a
70-kg person (0.004 mg/kg body weight/week) was designed for Hg [66]. Considering
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the highest Hg concentration of the whole campaign (3.80 ug kg 1), a 20-g daily honey
consumption represents a weekly intake of circa 0.2% of the PTWI for Hg. This Hg intake
is well below the recommended dose, and the consumption of honey is not considered
dangerous for human health.

3. Materials and Methods
3.1. Study Areas and Sample Collection

Samples of royal jelly (n = 2) and honeydew (n = 2) of different brands were purchased
in duplicate from the Italian market, while samples of bees, beeswax, honey, pollen, and
propolis were collected from six different apiaries across central Italy from April 2018
to June 2019 (Figure 1). Two beehives were selected at each apiary, and the beekeepers
sampled their bee colonies and beehive products into polyethylene screw-cap containers
once every two months in the late morning. The six study locations were chosen to
represent sites with different human activities and environmental impacts. Terni (TR) was
selected as an industrial area affected by the steel mill industry. Rome [city center on the
roof of the Apicultural Italian Federation (FAI), Anagnina (MS), Malagrotta (MG), and
Maccarese (MC)] was chosen as an urban area influenced by different emission sources such
as traffic pollution in FAI and MS; biomass burning in FAI; various industrial plants such
as refinery, gasifier, hospital waste incinerator, landfill of municipal waste, and quarries for
the extraction of building materials in MG; and intense air and ship traffic in MC (located
next to Fiumicino airport). Finally, Oriolo Romano (OR) in Viterbo province was selected
as a rural area.

After sampling, the samples were transported to the laboratory. For each beehive,
bees (1 = 20) were dried in a freeze drier (at least 48 h for constant weight) and then were
ground in a ceramic mortar coated with parafilm. Beeswax samples were separated from
honey, washed in deionized water until all of the residual honey was removed, and dried
using a freeze dryer (at least 24 h for constant weight). All of the obtained samples were
thoroughly mixed to have a homogeneous sample and were stored at —18 °C until analysis.

3.2. Materials and Reagents

Certified Hg standard solution of 1002 & 7 mg L~! in 10% HNO; was obtained from
SCP Science (Baie D'Urfé, Quebec, Canada) and was used for further dilutions in order to
prepare eight calibration standard solutions in the range from 0.02 to 1.5 ug L=!. HNO;
(67%, suprapure), HCl (30%, suprapure), NaOH (98%, anhydrous pellets, and RPE for
analysis, ACS-ISO) were purchased from Carlo Erba Reagents (Milan, Italy) and H,O,
(30%, suprapure) and NaBH,4 were obtained from Merck KgaA (Darmstadt, Germany).
Deionized H,O (resistivity, <18.2 MQ) cm) from an Arioso Power I RO-UP Scholar UV
system (Human Corporation, Songpa-Ku, Seoul, Korea) was used throughout the study.

Graduated tubes (2.5, 5, and 10 mL in polypropylene) were purchased from Artiglass
S.R.L. (Due Carrare, PD, Italy), and syringe filters (0.45-um pore size and cellulose nitrate
membrane) were obtained from GVS Filter Technology (Indianapolis, IN, USA).

3.3. Sample Preparation and Analysis

Preliminary experiments were conducted to optimize the sample digestion using a
water bath (WB12, Argo Lab, Modena, Italy) at 95 °C and ~1 bar. A freeze dryer (Heto
Power Dry LL1500, Thermo Electron Corporation, Waltham, USA) was employed with a
vacuum of 103 mbar and a condensing plate temperature of —40 °C to dry the beeswax
and bee samples. An aliquot of the samples (0.05-1 g for honey and honeydew, 0.02-0.2 g
for bees, beeswax, pollen, propolis, royal jelly) was treated with 0.5 mL HCI, 0.2 mL HNO;3,
and 0.1 mL HyO, into open graduated tubes for 30 or 60 min under a fume hood. Digestion
blanks (1 = 10) were carried out in the same way. All solutions of the digested samples
were colorless and without suspended solid particles except for the honey, honeydew, and
propolis solutions obtained from digestion of the largest mass. Thus, digested samples were
diluted to a final volume of 5 mL with deionized water, filtered, and then analyzed with an
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AFS 8220 (Beijing Titan Instrumental Co. Ltd., Beijing, China) with Ar (99.999% purity, SOL
Spa, Monza, Italy) as a carrier gas. HC1 (5%, v/v) was used as a carrier liquid, and 2% (w/v)
NaBHj in 0.5% (w/v) NaOH was used as a reducing agent. The instrumental optimized
parameters were previously described [59]. Duplicate analyses were performed for each
sample. Blanks and control standards (at 0.4 pg L~!) were run every 20 determinations to
evaluate instrument drift.

3.4. Quality Assurance

The analytical performance parameters of selectivity, linearity, detection and quan-
tification limit (DL and QL, respectively), precision, and accuracy were evaluated. The
validation process was performed using spiked real sample assays. Method blanks, in-
house quality control samples, and spiked and non-spiked real samples (three replicates
each) were prepared along with every digested sample batch. Hg standard solution at 2, 20,
or 100 pg L~! was made for spikes; 0.05 mL of the spike solution was added to appropriate
tubes 30 min before reagents and digestion. At the instrument, the concentration was 0.02,
0.2, or 1 pg L. For the recovery determination, the non-spiked real sample concentration
was subtracted from that measured in the spiked real sample.

An eight-point calibration curve consisting of Hg concentrations between 0.02 and
1.5 ug L~! was prepared using aqueous standards and the standard addition method for
each matrix. The DL was defined as the Hg concentration corresponding to three times the
standard deviation of the digestion blanks (1 = 10).

3.5. Statistical Analysis

Statistical analysis was performed using the SPSS 25.0 program (IBM Corp., Armonk,
NY, USA). All data were normally distributed as confirmed by the Kolmogorov-Smirnov
test. One-way ANOVA, followed by Bonferroni post-hoc test, was used to determine the
significant differences among the Hg concentrations for each matrix in different geograph-
ical areas. The probability level of p < 0.05 was considered statistically significant. For
statistical analysis, in samples where the Hg concentration was below DL, the used values
were one half of DL.

4. Conclusions

Coupling water bath digestion with CV-AFS analysis proved to be a good analytical
tool for evaluating Hg contamination in bees and beehive products (beeswax, honey,
honeydew, pollen, propolis, and royal jelly). Due to the possibility of preparing the sample
using same single autosampler tubes, the optimized digestion procedure allows for the
prevention of sample loss, minimize manipulation, and reduce both the reagent volumes
and final dilution. The proposed method is suitable for small masses (down to 0.02 g) of all
selected matrices and can be used for biomonitoring and food quality control. In particular,
the results from the application in the field of the proposed method showed a higher
Hg concentration in bees than the other matrices considered and in areas with a higher
anthropogenic impact than the background site. In the future, considering alternative and
parallel measurements of the contamination of the environmental compartment of interest,
it will be interesting to evaluate whether bees and hive products can indeed be used to
assess environmental spatial changes in Hg levels. However, the determination of Hg
concentrations in beehive products is also important for potential human dietary exposure.
The Hg concentrations in the analyzed samples of honey, honeydew, and royal jelly are not
a cause for concern for consumer health effects. Furthermore, the data in this study can be
used as a reference for comparing Hg concentrations to other countries in the world.

Supplementary Materials: The following are available online. Table S1: Summary of the analytical
characteristics of the proposed method and comparison with some of the previous methods published
during the last decade (2010-2020), Table S2: Recovery and precision data for Hg in bees and beehive
products by water bath digestion (95 °C, 30 min or 60 min).
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