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Abstract: In order to better understand the role of binder content, molecular dynamics (MD) simula-
tions were performed to study the interfacial interactions, sensitivity and mechanical properties of
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-trinitrotoluene (CL-20/TNT) based
polymer-bonded explosives (PBXs) with fluorine rubber F2311. The binding energy between CL-
20/TNT co-crystal (1 0 0) surface and F2311, pair correlation function, the maximum bond length
of the N–NO2 trigger bond, and the mechanical properties of the PBXs were reported. From the
calculated binding energy, it was found that binding energy increases with increasing F2311 content.
Additionally, according to the results of pair correlation function, it turns out that H–O hydrogen
bonds and H–F hydrogen bonds exist between F2311 molecules and the molecules in CL-20/TNT.
The length of trigger bond in CL-20/TNT were adopted as theoretical criterion of sensitivity. The
maximum bond length of the N–NO2 trigger bond decreased very significantly when the F2311

content increased from 0 to 9.2%. This indicated increasing F2311 content can reduce sensitivity and
improve thermal stability. However, the maximum bond length of the N–NO2 trigger bond remained
essentially unchanged when the F2311 content was further increased. Additionally, the calculated
mechanical data indicated that with the increase in F2311 content, the rigidity of CL-20/TNT based
PBXs was decrease, the toughness was improved.

Keywords: CL-20/TNT co-crystal; fluoropolymer binder; interactions; mechanical properties; polymer-
bonded explosives (PBXs); molecular dynamics (MD) simulation

1. Introduction

High-performance and insensitive explosives are always the target of researchers in
the field of energetic materials [1–4]. However, high performance and safety are somewhat
mutually exclusive for current single compound explosives, which seriously limits their
development and applications [5,6]. Among well-known commercially available single-
compound explosives, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)
is the most famous high energy density compound [7], which features high density and
high detonation velocity but fails to meet the important safety requirements due to its
high sensitivity [8]. Contrasting with CL-20, 2,4,6-trinitrotoluene (TNT) has different
features in many ways [9–12], including low oxygen balance, modest detonation velocity,
economical production costs, and low impact sensitivity, but energy density is relatively
low. Fortunately, the method of producing co-crystals offers a practical solution to improve
certain properties of energetic materials such as oxygen balance, sensitivity, detonation
velocity, and safety [13–15]. Bolton [16] prepared co-crystal of CL-20/TNT in a 1:1 molar
ratio, which exhibits lower sensitivity than CL-20, and has closed detonation performance
and oxygen balance to CL-20.

The combination of explosives with polymeric binders to form polymer-bonded explo-
sives (PBXs) was an important advancement in high-explosives science, offering improved
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safety and reliability, while maintaining performance [17–19]. Based on those advantages,
PBXs are widely applied in many defense and economic scopes. A lot of experimental
research [8,20] and theoretical studies [21–23] on energetic composite materials including
PBXs are drawing more and more attention in recent decades. Not only can PBXs reduce
the impact and friction sensitivity of explosives in PBXs [24,25], but they also have good
physical and mechanical properties of polymers [26,27] and hence can be produced and
used safely and conveniently.

Due to a balance of chemical and mechanical properties with processability when
mixed with explosives, fluoropolymers emerged as commonly used binder [28]. To estimate
the effect of the polymer binders on the co-crystal-based PBXs, we select fluoropolymer
F2311 as the polymeric binder in CL-20/TNT based PBXs, which is a random copolymer
made up of vinylidenedifluoride (VDF) and chlorotrifluoroethylene (CTFE) with the molar
ratio of 1:1, showed in Figure 1a.
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Figure 1. Molecular structures of (a) F2311, (b) CL-20, and (c) TNT. (d) The primitive cell of the
CL-20/TNT co-crystal.

The goal of this study is to explore intermolecular interactions and mechanical proper-
ties of the CL-20/TNT-based PBXs in different F2311 contents using molecular dynamics
(MD) simulation. This paper is arranged as follows. At first, several CL-20/TNT based
PBXs in different F2311 content were constructed. Then, we performed MD simulations to
study interactions between CL-20/TNT and F2311 and the mechanical properties of PBXs.
Pair correlation function (PCF) was used to explore the interface structures between the
co-crystal explosive and the polymer binders. Binding energy (Ebind) can provide informa-
tion about interfacial reaction and thermal stability. More specifically, N-NO2 trigger bond
lengths of CL-20 were discussed in terms of the relationship with sensitivity. In addition,
the mechanical properties such as tensile modulus (E), bulk modulus (K), shear modulus
(G), Poisson’s ratio (ν) and Cauchy pressure (C12-C44) were also calculated, and both are
discussed in this paper.
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2. Models and Computational Methods

All simulations were conducted utilizing the condensed-phase optimized molecular
potentials for atomistic simulation studies (COMPASS) force field [29], which is suitable for
simulations of nitro-compound explosives and their PBXs, and is suitable for calculating
of interfacial interactions between different components in PBXs [30–32]. The primitive
CL-20/TNT co-crystal cell [16] derived from X-ray diffraction contains 8 CL-20 molecules
and 8 TNT molecules. Based on the co-crystal cell, the primary cell of CL-20/TNT cor-
responding to 6 (3 × 2 × 1) unit cells were built. We built four F2311 molecular chains,
which contain 10, 36, 62 and 88 constitutional repeating units, respectively. Additionally,
the corresponding amorphous F2311 cells were obtained by using the high-low pressure
dynamics simulation method [33]. The procedure of building PBXs models were as follows.
For the crystalline surfaces (1 0 0) of the CL-20/TNT cocrystal (3 × 2 × 1) unit cells, the c
lattice length was 43.40 Å, and the corresponding interface, a × b, was 26.74 Å × 24.70 Å.
Then, the corresponding interface, a × b, of the F2311 cells was changed to 26.74 Å × 24.70
Å; the size a × b was kept unchanged; c lattice lengths of fluoropolymer box step-by-step
were resized until the F2311 theoretical density was reached; each step of the adjustment
needs the molecular dynamics simulation running to equilibrium state. Then, PBXs models
were made by merging F2311 fluoropolymer on the (1 0 0) crystalline surface of CL-20/TNT.
Therefore, there are four PBXs models shown in Figure 2. The weight percentages of the
F2311 in the PBXs models are 2.5%, 9.2%, 14.9% and 19.9%, respectively.
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Figure 2. PBXs models with F2311 content (a) 2.5%, (b) 9.2%, (c) 14.9%, (d) 19.9% (CL-20 in stick model, TNT in yellow and
F2311 in Ball model).

All the models were allowed to evolve dynamically in isothermal-isobaric (NPT)
ensemble at 300K and atmospheric pressure, in which the temperature was maintained
through the Andersen stochastic collision method [34] and the pressure was controlled via
the Parrinello–Rahman [35] scheme with all cell parameters fully relaxed at atmospheric
pressure. The van der Waals (vdW) interactions were truncated at 9.5 Å with long range
tail correction, and the electrostatic interactions were calculated via the standard Ewald
summation. The equations of motion were integrated with a step of 1 fs. Equilibration
run was performed for 5 ns, which is referred to the equilibrium at the new state by
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running for a period for the simulating model and should be extended at least until the
instantaneous values of the potential energy and temperature, etc., for the simulating
model have ceased to show a systematic drift and have started to oscillate about steady
mean values. After equilibration run, production runs of 1 ns were performed, during
which data were collected with 10 fs sampling interval for analysis. These computations
were all carried out using software Material Studio from Biovia Inc.

3. Results and Discussions
3.1. Binding Energy

Binding energy (Ebind) is defined as the negative value of the intermolecular interaction
energy (Einter). The intermolecular interaction energy between different components can
calculate by subtracting individual component energy in the system from the total energy
of the whole system [30]. As mentioned above, Ebind between CL-20/TNT and F2311 can
be evaluated as Ebind = −Einter =−(Etotal − ECL-20/TNT − EF2311), where Etotal is the PBXs
total energy, ECL-20/TNT and EF2311 are the energy of CL-20/TNT and F2311, respectively.
Binding energy stands for the level of interaction between two components. In this paper,
it can reflect the thermal stability of energetic systems and can find out the influence on
PBXs with different F2311 contents. Etotal, ECL-20/TNT, EF2311, Ebind and Ebind

′ are tabulated
in Table 1, where Ebind

′ is the Ebind of unit quantity of F2311 binders.

Table 1. Ebind, Etotal, EF2311, ECL-20/TNT and Ebind
′ of PBXs in different F2311 contents a.

F2311
Contents Ebind Etotal EF2311 ECL-20/TNT Ebind

′

2.5%
90.64 −1309.09 −325.22 −1267.50 36.25
(7.13) (30.64) (9.07) (31.27) (1.59)

9.2%
250.95 −1341.98 −643.64 −1252.52 27.27
(4.47) (30.82) (9.16) (28.65) (1.26)

14.9%
281.69 −1393.27 −1137.96 −1251.30 18.90
(4.59) (29.36) (7.25) (23.24) (1.43)

19.9%
356.72 −1477.70 −923.94 −1256.59 17.93
(6.75) (29.99) (7.82) (31.93) (1.22)

a Unit: kcal·mol−1; The corresponding deviations are listed in parenthesis.

Based on the theoretical results shown in Table 1, we can find that the value of Ebind
increases with increase in F2311 contents in PBXs, which means that increasing the F2311
content in CL-20/TNT-based PBXs can enhance the interaction between F2311 and CL-
20/TNT and the thermodynamic stability of the PBXs. However, it was noticed that the
trend of Ebind’ decreases with F2311 contents. Herein, we can find a reasonable explanation
from the illustration in Figure 2, where it can be seen that the quantity of uncontacted F2311
with CL-20/TNT increased more with increasing of F2311 contents than the quantity of
contacted F2311.

3.2. Pair Correction Function

The interface structure between CL-20/TNT and F3211 molecular chain was explored
by pair correlation function (PCF). PCF gives a measure of probability density g(r) of
finding an atom at some distance and thus provides insight into a material structure
through revealed local spatial ordering. The PCF curves for different atom pairs in CL-
20/TNT and F3211 were plotted in Figure 3. The oxygen atoms in CL-20/TNT, nitrogen
atom in CL-20/TNT and fluorine atoms in F2311 were labeled as O, N and F, respectively,
while hydrogen atoms in F2311 and CL-20/TNT were labeled as H1 and H2, respectively.
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Generally the interaction distance range for hydrogen bond is 2.0–3.1 Å, and the
distance range for stronger vdW and electrostatic interactions is 3.1–5.0 Å. When the
distance between two atoms is farther than 5.0 Å, the vdW interaction is quite weak.
From Figure 3a,b, it was found that in hydrogen bond range, the PCF curves all give
comparatively high peaks, indicating that the hydrogen bonds exist in H2···F pairs and
H1···O pairs of F2311 molecules and CL-20/TNT. Additionally, the peaks vary in intensity
with F2311 content. From Figure 3a, we can find that the g(r) value of low F2311 content
is mostly larger than high F2311 content. Similarly, the trend of g(r) value in Figure 3b is
almost the same, but largest value for hydrogen bonds is 9.2% F2311 content. Figure 4 gives
a visual representation of hydrogen bonding interactions of H1···O and of H2···F for 2.5%
F2311 content, for example. For H1···N in Figure 3c, the curve has a comparatively high
peak only in the vdW interaction range, implying only vdW and electrostatic interactions
exist between H1···N.
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3.3. N-NO2 Trigger Bond Length

For energetic compounds, there exists a criterion to theoretically judge the relative
sensitivity [22]. According to Principle of Smallest Bond Order (PBSO) based on quantum
chemical calculation, for a series of energetic compounds with smaller bond order of
trigger bond in molecular means the compound is more sensitive [36,37]. This principle has
been used extensively in the prediction of impact sensitivity for various types of energetic
compounds. Classical MD simulation does not provide electronic structure, and cannot
give the bond order data. However, MD simulation can provide statistical distribution
of bond length instead of the bond order data. Usually, chemical bond length can be
characterized by the bond order and bond length in molecular. Thus it is suitable to
evaluate sensitivity based on the molecular structure parameter, bond length, obtained
through MD simulation.

We all know that the N-NO2 bond is a trigger bond of nitramine explosives. Addition-
ally, it is well know that CL-20 is more sensitive than TNT, and the CL-20 component in
CL-20/TNT is prior to decompose in detonation. Therefore, in this work, the N-NO2 bond
in CL-20 is chosen as the trigger bond. Table 2 presents the results of trigger bond (N-NO2)
lengths of CL-20 component in PBXs at different F2311 contents. When the bond length is
longer, the bond is fractured more easily, which makes CL-20 molecules more active and
decompose more easily. It can be found from Table 2 that the average bond lengths Lave
of all the models are almost unchanged, but the maximum bond length (Lmax) of trigger
bond has more obvious change with F2311 content increasing, which means that Lmax of the
trigger bond is more tightly correlated to the initial bond fractured in PBXs’ detonation. As
the content increases, the maximum bond length decreases gradually. When the content
of F2311 rose to 9.2%, the Lmax decreased from 1.5972 Å to 1.5817 Å. After that, the Lmax
changed slightly, basically maintaining the level of 9.2%. The change is consistent with the
fact that energetic material becomes less sensitive as F2311 content increases. Hence, using
Lmax to measure the sensitivity of energetic is efficient. Additionally, we can find that when
the content of F2311 reaches 9.2%, continuous increase of the F2311 content has less effect on
the sensibility.

Table 2. The trigger bond (N-NO2) lengths (Å) of CL-20 at different F2311 contents a.

Content 0.0% 2.5% 9.2% 14.9% 19.9%

Lave 1.3927 1.3935 1.3936 1.3932 1.3934
(0.028) a (0.028) (0.031) (0.030) (0.030)

Lmax 1.5972 1.5843 1.5817 1.5816 1.5817
a The corresponding deviations for Lave are listed in parenthesis.
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3.4. Mechanical Properties

Mechanical properties are the most important properties of energy materials, because
they are related to the preparation, storage, transportation and usage of materials. Elastic
modulus is the index of a material’s stiffness, and it is also the measurement of a material’s
resistance to elastic deformation. The plasticity and fracture properties can be related to
the elastic modulus. Higher shear modulus means higher stiffness and shear strength,
reflecting resistance to shearing strain [23,38,39]. Higher bulk modulus means higher
rupture strength, that is, the greater the value of K is, the more energy will be required for
a material to rupture [31,40,41]. Cauchy pressure (C12-C44) can reflect the brittle/ductile
behavior of a material. The high value of Cauchy pressure (C12-C44) is related to ductility,
and the low value is related to brittleness. When a material is compressed in one direction,
it usually tends to expand in the other two directions perpendicular to the direction of
compression. Poisson’s ratio is a measure of this effect.

Based on the fluctuation analysis of the production trajectories and Reuss average [42]
of the co-crystal model (without F2311 binder) and its corresponding PBXs models, the
calculated tensile modulus (E), bulk modulus (K), shear modulus (G), Poisson’s ratio (ν),
Cauchy pressure (C12-C44) are listed Table 3. As we can see from Table 3, E, K and G
reduced gradually with the increase of F2311 content, indicating that the stiffness of the
PBXs decreases. Additionally, it can be found that the polymer addition has less effect on
Poisson’s ratio. The Cauchy pressure (C12-C44) values increase with F2311 content increasing,
which can be deduced that the ductility of the Cl-20/TNT based PBXs increases with
increasing F2311 content. Generally, less stiffness and better ductility for PBXs compared
to CL-20/TNT means it is easier to deplete and disperse partially the external stimulus
energy imposed on them during loading and transportation, which can reduce possibility
of hot spots, and thus has lower sensitivity.

Table 3. Tensile modulus (E), bulk modulus (K), shear modulus (G), Poisson’s ratio (ν) and Cauchy
pressure (C12-C44) for the PBXs models with different F2311 contents a.

Content 0.0% 2.5% 9.2% 14.9% 19.9%

E 6.22(0.03) 5.38(0.05) 4.32(0.06) 4.11(0.03) 3.65(0.02)
K 7.49(0.04) 6.41(0.10) 5.22(0.12) 5.02(0.07) 4.54(0.04)
G 1.88(0.02) 1.54(0.03) 1.34(0.07) 1.36(0.02) 1.33(0.02)
ν 0.38(0.02) 0.39(0.00) 0.38(0.00) 0.38(0.00) 0.37(0.00)

C12-C44 1.79(0.11) 2.81(0.11) 2.78(0.16) 3.07(0.13) 3.42(0.11)
a The corresponding deviations are listed in parenthesis. The units for E, K and G are GPa.

4. Conclusions

In this study, we performed a NPT-MD simulations of CL-20/TNT-based PBXs with
F2311 as polymeric binders. The simulations involved binding energy calculation and
PCF analysis for the thermal stability evaluation and the interfacial structure exploration
between the co-crystal and F2311, the maximum bond length of the N–NO2 trigger bond
and mechanical property computation. These studies are in favor of theoretical research
and practical applications of the co-crystal.

From the calculated binding energies, Ebind between F2311 and Cl-20/TNT increases
with the increasing content of F2311, but Ebind of unit quantity of F2311 binders reduces
due to the specific surface area of F2311 contacted CL-20/TNT. Therefore, the interaction
between the binder and the explosive can be improved by increasing the contact area of
binder and explosive. PCF analysis of atom pairs in the interfacial structure has indicated
that hydrogen bond exists between CL-20/TNT and F2311. Additionally, the hydrogen bond
mainly came from H1···O and of H2···F. By analyzing the maximum bond length of N-NO2
trigger bond, it can be found that increasing F2311 content can decrease the sensitivity of
CL-20/TNT based PBXs, but a continuous increase in the F2311 content has less effect on
the sensibility when the content of F2311 reaches 9.2%. The mechanical properties shows
that as the F2311 content increases, the moduli of CL-20/TNT-based PBXs decrease, but the
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ductility was improved. To sum up, the small amount of polymer binders F2311 coating
with the CL-20/TNT co-crystal makes the PBXs more insensitive and give them better
mechanical properties.
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