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Abstract: The clinical success of PD-1/PD-L1 immune checkpoint targeting antibodies in cancer is
followed by efforts to develop small molecule inhibitors with better penetration into solid tumors
and more favorable pharmacokinetics. Here we report the crystal structure of a macrocyclic peptide
inhibitor (peptide 104) in complex with PD-L1. Our structure shows no indication of an unusual
bifurcated binding mode demonstrated earlier for another peptide of the same family (peptide
101). The binding mode relies on extensive hydrophobic interactions at the center of the binding
surface and an electrostatic patch at the side. An interesting sulfur/π interaction supports the
macrocycle-receptor binding. Overall, our results allow a better understanding of forces guiding
macrocycle affinity for PD-L1, providing a rationale for future structure-based inhibitor design and
rational optimization.
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1. Introduction

Anticancer therapies relying on immune checkpoint inhibition are considered one of
the outstanding achievements of recent years in clinical oncology. This approach targets
cancer by activating the patient’s own immune system [1,2]. The first in class drug, ipili-
mumab, targeting CTLA4 was authorized in 2011, but it is the anti-PD-1 and anti-PD-L1
antibodies that have revolutionized the field [3–7]. Despite its spectacular success, the
antibody-mediated inhibition of immune checkpoints does have its limitations. Some of
the limitations are related to the pharmacokinetics and penetration of antibodies [8–10].
Small molecules offer a promising alternative. Attempts are ongoing in academia and
pharma to develop potent inhibitors of immune checkpoints, with the PD-1/PD-L1 axis
attracting major attention [11,12]. A number of small-molecule inhibitors (<600 Da) have
been reported to date, but none have demonstrated satisfactory cellular activities yet [13].
Macrocyclic peptide inhibitors have shown promising results. In two subsequent patents,
Bristol-Myers Squibb have reported three classes of macrocyclic peptides containing modi-
fied amino acids (classes I and II) and proteinogenic amino acids only (class III) [14,15]. All
the classes contained macrocycles characterized by nanomolar affinities towards PD-L1.
We have recently characterized the biological activity and the binding modes of represen-
tatives of all three classes [16,17] to guide further development. Interestingly, the crystal
structure of peptide 101 representing class III exhibited an unusual bifurcated binding
mode [17] which complicated the understanding of interactions guiding the affinity of this
class of macrocycles. In this study, we characterize the interaction of a related macrocycle
(peptide 104) to demonstrate that the bifurcated binding is not a common feature of this
class of compounds. Peptide 104 was selected for the experiments because it is a close
structural analog of p101, and both macrocycles are characterized by comparable affinity.
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Detailed characterization of the binding hot-spots uncomplicated by bifurcated binding
mode facilitates rational design and optimization of PD-1/PD-L1 inhibitors.

2. Results
2.1. Initial Characterization

Peptide 104 (p104) was synthesized based on the structure disclosed in the patent [18].
The interaction of p104 with PD-L1 was validated using NMR titration; 15N labeled PD-L1
was contacted with increasing amounts of p104, and changes in the chemical shifts of
1H-15N cross-correlation peaks were monitored in a 2D HMQC experiment. Significant
shifts of a number of protein-originating cross-correlation peaks indicated the physical
interaction of p104 and PD-L1 (Figure 1A). The same conclusion was reached by monitoring
the chemical shifts of 1H resonances in the aliphatic region of 1D 1H-NMR spectra of PD-L1
upon titration with p104 (Figure 1B). No peak doubling was observed at the spectra of the
PD-L1/p104 complex, suggesting a single binding conformation. The comparable pattern
of peak shifts in the PD-L1/p104 and PD-L1/p101 [17] HMQC spectra compared to the
reference spectrum of apo-PD-L1 suggests comparable binding modes of both macrocycles
(Figure 1C).
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Figure 1. NMR indicates the physical interaction of p104 with PD-L1. (A) 1H-15N HMQC spectra of 15N labeled PD-L1
(blue) and the same protein in the presence of p104 (red). (B) 1H NMR titration of PD-L1 (blue) with peptide p104 in the
molar ratios 5:1 (red), 2:1 (green), 1:1 (purple), and 1:2 (yellow). (A,B) Significant shifts observed in positions of resonance
peaks indicate interaction of p104 and PD-L1. (C) 1H-15N HMQC spectra of apo-PD-L1 (blue) and the same protein in the
presence of p104 (red) or p101 (green) in the molar ratio 1:1.

To evaluate the ability of p104 to dissociate the PD-1/PD-L1 interaction, we used a
cell-based interaction assay. In the assay, the Jurkat lymphocyte-like cell line overexpressing
PD-1 and carrying an NFAT-driven luciferase reporter is contacted with CHO-K1 cells stably
overexpressing the TCR activator and PD-L1. In the absence of PD-1/PD-L1 interaction
inhibitors, PD-1 signaling mitigates the stimulating effect of TCR induction, and the
reporter level is low. The FDA-approved therapeutic monoclonal antibody targeting PD-
L1 (atezolizumab) dose-dependently dissociates the PD-1/PD-L1 complex resulting in
increased reporter expression (Figure 2C). The same is true for p104, demonstrating its
ability to dissociate the PD-1/PD-L1 complex, although with EC50 values above those
characterizing the antibody effect (Figure 2A). EC50 characterizing p104 (15.2 ± 2.7 µM) is
higher compared to that of p101 (7.5 ± 0.5 µM; [17]), which reflects the difference in the
affinity of the tested macrocycles towards PD-L1 (380 nM vs. 120 nM, respectively). The
macrocycle is not significantly toxic to the cells at concentrations inducing the biological
effect (Figure 2D,E).
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production (as determined by the increase in the luminescence level), indicating abrogation of PD-L1-mediated inhibition 
of TCR-induced Jurkat cell activation. The effect is dose-dependent. Half-maximal effective concentrations (EC50) were 
calculated by fitting the Hill equation to the experimental data. (D,E) Effect of p104 on cell viability determined with the 
MTT assay (D) and LDH release (E). The data are shown as mean ± SD from three independent experiments normalized 
to the control (vehicle-treated cells). 
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Figure 2. Macrocyclic peptide 104 inhibits PD-1/PD-L1 interaction in the cellular environment. The Jurkat cell line overex-
pressing PD-1 and carrying the NFAT-driven luciferase reporter was contacted with CHO-K1 cells stably overexpressing
the TCR activator and PD-L1, and the activity of the reporter was monitored at varying concentrations of (A) p104, (B)
p101, or (C) control antibody (atezolizumab). Atezolizumab and the tested macrocycles increase luciferase production (as
determined by the increase in the luminescence level), indicating abrogation of PD-L1-mediated inhibition of TCR-induced
Jurkat cell activation. The effect is dose-dependent. Half-maximal effective concentrations (EC50) were calculated by
fitting the Hill equation to the experimental data. (D,E) Effect of p104 on cell viability determined with the MTT assay (D)
and LDH release (E). The data are shown as mean ± SD from three independent experiments normalized to the control
(vehicle-treated cells).

2.2. Structural Basis of PD-L1 Interaction with p104

To elucidate the interactions guiding the affinity of the macrocyclic peptide p104 and
PD-L1, we co-crystallized the complex. The extracellular distal domain of PD-L1 was
expressed in E. coli, refolded, and purified to homogeneity. P104 was added at three-fold
molar excess. Crystallization trials were performed in commercially available buffer sets.
Diffraction data were collected using the obtained crystals. The structure was solved by
molecular replacement at 1.9 Å resolution (Table 1).

The asymmetric unit contains a single protein/macrocycle complex. The distal ex-
tracellular domain of PD-L1 used for crystallization and the macrocycle ligand are well
described by their respective electron densities, save for several side chains. The N- and
C-termini of the macrocycle are characterized by temperature factors higher than the aver-
age values characteristic for the protein molecule. The uneven distribution of temperature
factor values characterizing the atoms constituting the macrocycle is related to crystal pack-
ing. The central part of the macrocycle is stabilized by interactions with symmetry-related
molecules, while the N- and C-termini point into a solvent channel.

The macrocyclic inhibitor folds into a β-hairpin additionally stitched at the free ends by
the cyclizing bond. The macrocycle binds almost perpendicular to the strands constituting
the C, C’, G, and F β-sheet of the PD-L1 IgV domain, docking at its slightly concave
hydrophobic surface. The primary interactions are contributed by G and F strands, while
C and C’ strands provide less significant interactions.



Molecules 2021, 26, 4848 4 of 9

Table 1. Data collection and refinement statistics.

Data Collection:

Wavelength (Å) 0.9184
Space group P 2 3

Cell Dimensions:

a,b,c (Å) 86.5 86.5 86.5
α,β,γ (◦) 90.0 90.0 90.0

Resolution range (Å) 61.1–1.9
Rmerge 0.091 (1.576)
I/σ(I) 18.1 (2.6)

Completeness (%) 100.00 (100.00)
Unique reflections 17,309

CC1/2 1.000 (0.666)

Refinement Statistics:

No. of reflections 480,286
Rwork/Rfree 0.232/0.246

Wilson B-factor 40.2
No. of atoms 1098

Protein 1061
Water 37

Ramachandran favored (%) 91.0
Ramachandran allowed(%) 5.7
Ramachandran outliers (%) 3.3

R.m.s Deviation

Bond lengths (Å) 0.016
Bond angles (◦) 2.262

Data in parentheses are for the highest resolution shell.

The macrocycle exposes a large hydrophobic patch composed of π-stacked sidechains
of 104Phe1 and 104Phe3, 104Ile5, the proximal atoms of 104Arg8 and 104Phe10, which comple-
ments the relatively flat hydrophobic patch at the surface of PD-L1 (Figure 3). This indicates
that the macrocycle sidechains reside in shallow grooves rather than classical pockets. The
first two of the above macrocycle residues dock at a shallow groove made of sidechains
Ile54, Tyr56, Met115, Cβ of Ser117, and Ala121 of PD-L1. The sulfur/π interaction between
104Phe3 and Met115 strengthens the binding. The sidechains of 104Ile5 and 104Phe10 dock
at an adjacent shallow groove composed of sidechains Met115, Ala121, proximal atoms
of Arg113, and the sidechain of Tyr123 with the most significant interactions involving
alkyl-π interaction of Met115 and 104Phe10 and T-stacking of the latter residue and Tyr123
sidechain. The 104Phe10 pocket is completed by the sidechain of Glu58, which provides
oxygen-π interactions with the inhibitor. The proximal atoms of 104Arg8 top the above
binding site providing additional hydrophobic contacts with the sidechain of Tyr123, while
the guanidinium moiety stacks with that of Arg113. Residual hydrophobic interactions are
provided by the distal residue of the macrocycle and Val76.

Polar contacts are less developed compared to the hydrophobic surface. 104Arg6
contributes two direct hydrogen bonds with the carboxyl of Asp122 and the carbonyl
oxygen of Tyr123. A water-mediated interaction between the carbonyl oxygen of 104Val9
and the carboxyl of Glu58 further supports binding.

The β-hairpin structure of the macrocycle requires that hydrophobic residues of
104Leu2, 104Val4, and 104Val9 are solvent-exposed. Such unfavorable solvent contacts are
partially compensated by simultaneous exposure of polar residues: 104Asp7, 104Arg8, and
104Arg11 and the carbonyl oxygens of proximal residues within the macrocycle.
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interactions are depicted with dotted lines.

2.3. Rationale of PD-1/PD-L1 Interaction Inhibition

The overlay of the structures of PD-L1 in complexes with p104 determined in this
study and with PD-1 determined previously [19] reveals that the binding sites at the
surface of PD-L1 largely overlap. The higher affinity of p104 towards PD-L1 compared
to the affinity of PD-1 towards PD-L1 determines the competitive mode of inhibition. In
fact, p104 mimics the arrangement of strands G and F of PD-1. However, because of
the opposite direction of the mainchain in both molecules, no significant correspondence
of sidechain accommodating pockets is seen apart from 104Phe10 occupying a pocket
resembling that occupied by PD-1Ile134. Residues 104Phe3, 104Ile5, and 104Arg6 occupy
the same binding groove as PD-1Leu128, PD-1Ile126, and PD-1Tyr68; however, neither of
the residue binding sites correspond directly to each other. Minor adjustments in the
disposition of the sidechains of PD-L1 are seen between the structures of the p104 and PD-1
complexes. However, the adjustments are insignificant compared to the differences in the
structures of the binding partners. Interestingly, binding of both PD-1 and p104 involves
comparable adjustments of the PD-L1 surface compared to the apo-structure.

2.4. Comparison of the Binding Modes of p104 and p101

The primary goal of this research was to clarify whether the unusual bifurcated binding
mode determined previously for peptide 101 [17] and complicating the understanding of
class III peptide interactions with PD-L1 was characteristic for this group of macrocycles
or whether it was p101 structure specific. To this end, p104 was selected, which differs
from p101 only at positions 2 and 3 (104Leu2Phe3 vs. 101Phe2Ile3) and is characterized
by comparable affinity (380 vs. 120 nM). The structure of p104 in complex with PD-L1
determined in this study shows no indication of macrocycle bifurcation, demonstrating that
such a phenomenon is characteristic either for p101 only or for the particular crystal lattice
characterizing the previously reported p101 structure. The orientation of p104 at the surface
of PD-L1 is best described as an averaged orientation of two binding modes observed in
the bifurcated structure of p101 (Figure 3). The reduced affinity of p104 compared to p101
is difficult to explain on a structural basis, especially that 104Phe3 seems to better fit the
relevant groove compared to 101Ile3.

3. Discussion

Macrocyclic peptides are one of several classes of non-antibody PD-1/PD-L1 interac-
tion inhibitors capable of dissociating the protein–protein complex and relieve T-cell anergy,
at least in an in vitro setting. While they are not valid clinical candidates at the moment,
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the investigation of interactions guiding the affinity of these compounds facilitates rational
design and optimization of novel inhibitors. Prior to this study, understanding of the struc-
tural basis guiding the affinity of class III macrocycles containing only proteinogenic amino
acids has been limited by the unique bifurcated binding mode of its only representative
(p101) for which the experimental structure was available in complex with PD-L1 [17]. This
study demonstrates that p104 binds in the same region of PD-L1 in a single conformation
resembling an “averaged” conformation of the two binding modes observed for p101. The
NMR analysis supports the conclusion that, in a solution, p104 is characterized by a single
binding pose at the surface of PD-L1. Such results allow a clear description of interactions
guiding the affinity of class III macrocycles.

Hydrophobic interactions centered around Tyr56, Met115, and Tyr123 predominate
the binding surface. Residual polar contacts supplement the interaction. The binding
region of the macrocycle coincides with that of PD-1, but despite the comparable overall
binding mode, only a single residue of the inhibitor (104Phe10) directly mimics the binding
of PD-1 residues. Other residues of the inhibitor use the same binding grooves as those of
PD-1, but with a different set of detailed interactions.

The binding surface of p104 also coincides with that of representatives of macrocycles
from group I (p57) and group II (p71), but the detailed interactions are yet distinct. This
demonstrates that the relatively flat binding surface of PD-L1 is a landscape for versatile
interactions of new diverse classes of compounds yet to be discovered. By contributing to
a better understanding of molecular interactions, our study facilitates the design of novel
PD-1/PD-L1 interaction inhibitors.

Macrocyclic peptide 104 effectively blocks PD-1/PD-L1 interaction at the cell surface.
The biological activity of p104 determined in a cell-based assay is weaker than that of p101,
corresponding to the lower affinity of the former macrocycle towards PD-L1. However,
p104 was selected for the experiments not because of its superior activity, but as a close
structural analog of p101. Yet, p104 still exerts its biological effect at concentrations at
which cytotoxicity is not an issue. In the light of cytotoxicity associated with a number of
low molecular weight PD-1/PD-L1 interaction inhibitors [12], the low cytotoxicity charac-
terizing macrocyclic inhibitors [16,17] constitutes a major advantage. The availability of
structural information and correlation of PD-L1 affinity and biological effects of macrocy-
cles offers an additional advantage for optimization. It remains to be determined, however,
whether the macrocyclic scaffold can be optimized for biological activity comparable to
that of antibodies.

4. Materials and Methods
4.1. Protein Expression, Purification, and Quality Evaluation

The distal extracellular domain of PD-L1 (amino acids 18–134) was expressed from
a pET-21b vector in E. coli strain BL21. The bacteria were cultured overnight at 37 ◦C in
LB medium supplemented with a selection antibiotic (100 µg/mL ampicillin). The culture
was diluted 25-fold and incubated at 37 ◦C until the OD600 reached 0.6 when protein
expression was induced with 1mM IPTG. The expression was continued for 6h at 37 ◦C.
Inclusion bodies were released by sonication and collected by centrifugation. The inclusion
bodies were washed four times with 50 mM Tris-HCl pH 8.0 containing 200 mM NaCl,
10 mM EDTA, 10 mM 2-mercatopethanol, and 0.5% Triton-X. They were resuspended in
denaturation buffer containing 6 M GuHCl, 200 mM NaCl, and 10 mM 2-mercaptoethanol
in 50 mM Tris-HCl pH 8.0 at 4 ◦C for about 16 h using a tube roller. The solution was
clarified by high-speed centrifugation, and the protein of interest was refolded by drop-
wise dilution in 100 mM Tris-HCl pH 8.0 containing 1M L-arginine, 0.25 mM oxidized
glutathione, and 0.25 mM reduced glutathione. The refolded protein was dialyzed 3 times
against 10 mM Tris-HCl pH 8.0 containing 20 mM NaCl and purified by size-exclusion
chromatography using Superdex 75 in the same buffer. The purity of refolded PD-L1 was
estimated by SDS-PAGE, and folding was determined by 1H NMR.
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4.2. NMR

All spectra were recorded in 10 mM Tris-HCl pH 8.0 and 20 mM NaCl containing
10% (v/v) of D2O to provide the lock signal. The spectra were recorded using a Burker
Avance III 600 MHz spectrometer. PD-L1 folding was routinely determined by 1H NMR.
PD-L1/p104 complex formation was evaluated by 1H NMR and 1H-15N SOFAST-HMQC
NMR of 15N isotopically enriched PD-L1 by monitoring protein-associated resonance signal
shifts upon macrocycle titration.

4.3. Crystallization of the PD-L1 Complex with p104

PD-L1 (5 mg/mL) and p104 were mixed at a 1:3 molar ratio. Screening for crystal-
lization conditions was performed using commercially available screening buffers. The
sitting drop vapor diffusion method was utilized. The initially obtained conditions were
optimized by standard methods. Diffraction quality crystals were obtained at 20 ◦C from
0.1 M sodium citrate containing 1.95 M ammonium sulfate pH 6.2. The crystals were
soaked in a cryoprotectant solution containing reservoir buffer with 25% glycerol and flash
cooled in liquid nitrogen. The data were collected at BESSY II 14.1 beamline operated by
Helmholtz-Zentrum Berlin für Materialen und Energie (HZB).

4.4. Structure Determination and Refinement

The data were processed using XDS and scaled using Scala contained in the CCP4
package [20,21]. The structure was determined by molecular replacement performed with
Phaser and using apo PD-L1 as a search model (PDB ID 5O45) [22]. Model building in
the resulting electron density maps was performed using WinCoot software [23]. Refine-
ment was achieved using Refmac5 [24]. The data collection and refinement statistics are
summarized in Table 1. The coordinates were deposited at the Protein Data Bank under ac-
cession number 7OUN. The structure was analyzed using Discovery Studio, and molecular
graphics were prepared using PyMol [25,26].

4.5. Cell Culture

CHO-K1 expressing the TCR activator and PD-L1 and Jurkat T cells carrying an NFAT-
dependent luciferase gene and overexpressing PD-1 were obtained from Promega. The
cells were cultured in RPMI 1640 medium supplemented with 10% FBS with hygromycin B
(50 µg/mL) and G418 (250 µg/mL) at 37 ◦C with 5% CO2.

4.6. Cell-Surface PD-L1/PD-1 Immune Checkpoint Interaction Assay

24 h before the experiment, the CHO-K1 cells were seeded on a 96-well plate in an
amount of 10,000 cells/well. 2.5-fold serial dilutions of p104 were prepared in DMSO
followed by 1000× dilution in the assay buffer (RPMI 1640, 1% FBS). The culture medium
was replaced with the assay buffer containing 0.02–250 µM of p104. The Jurkat cells in the
amount of 50,000 cells/well were added and co-cultured for 3 h in standard conditions.
Luminescence was determined using Bio-Glo Assay reagent (Promega, Madison, WI, USA)
following manufacturer protocol. Data were normalized at vehicle-treated control.

4.7. Cytotoxicity Assay

The cytotoxic effect of the tested macrocycle against the Jurkat cells alone or in the
co-culture with the CHO-K1 cells was evaluated. The cells were incubated in a medium
containing 0.02–250 µM p104 for 24 h. Released cytosolic LDH was determined using
a Pierce LDH Assay Kit (Thermo Scientific, Boston, MA, USA) according to the manu-
facturer’s protocol. For the MTT assay, the macrocycle-pretreated cells were incubated
with 0.45 mg/mL MTT for 2 h at 37 ◦C. The medium was discarded and replaced with
DMSO:methanol (1:1). The samples were incubated for 20 min at RT with pipetting to
dissolve the formazan crystals. Absorbance was determined at 550 nm. The data were
normalized at vehicle-treated control.
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