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Abstract: This paper shows that using the Padé–Laplace (PL) method for deconvolution of multi-
exponential functions (stress relaxation of polymers) can produce ill-conditioned systems of equations.
Analysis of different sets of generated data points from known multi-exponential functions indicates
that by increasing the level of Padé approximants, the condition number of a matrix whose entries
are coefficients of a Taylor series in the Laplace space grows rapidly. When higher levels of Padé
approximants need to be computed to achieve stable modes for separation of exponentials, the
problem of generating matrices with large condition numbers becomes more pronounced. The
analysis in this paper discusses the origin of ill-posedness of the PL method and it was shown
that ill-posedness may be regularized by reconstructing the system of equations and using singular
value decomposition (SVD) for computation of the Padé table. Moreover, it is shown that after
regularization, the PL method can deconvolute the exponential decays even when the input parameter
of the method is out of its optimal range.

Keywords: viscoelasticity; rheology; stress relaxation; Padé approximant; Toeplitz matrix; condition
number; ill-conditioned systems

1. Introduction

The representation of a function as the sum of exponential decays can be observed
in many areas of science and engineering such as solid-state physics, chemical kinetics,
biology, and rheology of polymers [1]. For example, in relaxation phenomenon of polymers,
the experimental data can be mathematically described as a linear combination of multiple
exponential functions. The parameters involved in the linear combination of exponential
functions (amplitudes and decay constants) have physical significance, and to extract
these constants, an inverse problem that is inherently ill-posed [2] must be solved. In the
relaxation phenomena of polymers, the decay constants are related to the relaxation times
and the amplitudes are the corresponding weights. The set of relaxation times and their
corresponding weights represents the discrete relaxation spectrum that is considered as the
fingerprint of each polymer and can be used in formulation of constitutive equations and in
prediction of rheological properties of polymers such as zero shear viscosity, dynamic mod-
uli, and dynamic viscosities. The relaxation spectra of polymers are related to the dynamics
of polymer chains, which highly depends on the molecular characteristics of polymer
chains such as their chemical structure, polymer chain architecture, molecular weight,
and molecular weight distribution. It is important to note that the number of exponential
modes is not known a priori and must be determined. In [1] and references therein, there
are several proposed approaches for solving the problem of separation of exponentials.
Additionally, a detailed review of some other numerical techniques of exponential analysis
can be found in [3]. Among the numerical procedures presented for multi-exponential
analysis, the Padé–Laplace (PL) method developed by Yeramian and Claverie [4] can de-
convolute exponential decays without using initial guesses for the constants [3]. In addition
to that, the number of exponential modes is an outcome of the numerical procedure and
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only one input parameter is required to extract the exponential modes [4]. The PL method
combines the Laplace transform and Padé approximation to address the ill-posed problem
of separation of exponentials, and its key step in deconvolution of exponentials is the
computation of Padé approximants [4], for which Yeramian and Claverie [4]. used the
algorithm proposed by Longman [5]. However, as described by Tang and Norris [6], the
Longman algorithm can be unstable, especially when the first few data points are close
to zero. In a response to Tang and Norris [6], Yeramian [7] indicated that the Longman
method is just an efficient numerical tool that allows one to calculate the coefficients of
the Padé approximants. More importantly, Yeramian [7] mentioned that “To solve the linear
system equations corresponding to each Padé approximant we may use simple determinants”.

The PL method has been used in deconvolution of the relaxation spectra of polymers [8–12],
but the points raised by Tang and Norris [6] regarding the instability of the Longman
method and in general the problematic computation of Padé approximants have been,
so far, overlooked. Knowing the fact that the computation of Padé approximants is a
crucial step in PL numerical procedure, an analysis of the PL method, specifically the
computation of Padé approximants and the possibility of ill-posedness caused by this
computation, is still lacking. Therefore, the objective of this paper was to analyze the PL
method in separating exponential functions with an emphasis on the computation of Padé
approximants in PL theory.

The paper is organized as follows: The second section gives a brief overview of
the Padé-Laplace theory, discusses the numerical implementation, and presents some
indications of the propensity for ill-posedness. The third section analyzes the computation
of Padé approximants from discrete data points generated by known multi-exponential
functions. In this section, we show that the PL method can create a system of equations
with large condition numbers. In section four, a method for regularization of the PL method
is used and we demonstrate its success in several examples. The paper closes with the
conclusions of the results.

2. The Padé-Laplace Theory

This section gives a brief overview of the PL method and presents important issues
related to this numerical procedure. The complete details of the PL theory can be found
in [4].

As mentioned earlier, the PL method uses a combination of Laplace transform and
Padé approximants to extract the number of exponential modes, amplitudes, and decay
constants associated with each mode, whose summation results in given experimental data
obtained in discrete time intervals. In other words, the experimental data f (t) may be
expressed as

f (t) =
n

∑
k=1

αk exp(βkt), (1)

where n, αk, and βk are number of modes, amplitudes, and decay constants of mode k,
respectively. In general, the exponents can be complex numbers.

Applying the Laplace transform to Equation (1) gives

F(p) =
n

∑
k=1

αk
p− βk

, (2)

where Re(p) > supk[Re(βk)] and F(p) is

F(p) =
∫ ∞

0
e−pt f (t)dt. (3)
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In Equation (2), amplitudes appear as the residues of F(p) and exponents are the poles.
The first step of the PL method is to express F(p) as a polynomial function using a Taylor
series expansion about some point p0 truncated to some order K such as

F(p) '
K

∑
k=0

ck(p− p0)
k, ck = 1/k!(dkF(p)/dpk)(p0), (4)

where (dkF(p)/dpk)(p) is given by

dkF(p)
dpk (p) =

∫ ∞

0
(−t)k f (t) exp(−pt)dt. (5)

Since the values of f (t) are known at discrete time intervals, ck can be calculated by
numerical integration.

The second step of the PL method is to construct the Padé approximant of the polyno-
mial found by the Taylor expansion, Equation (4). In other words, the polynomial function
should be expressed by the division of two polynomials as

K

∑
k=0

ck(p− p0)
k =

n−1
∑

k=0
ak(p− p0)

k

n
∑

k=0
bk(p− p0)

k
, K = 2n− 1. (6)

All the papers that implemented the PL method [4,8–12] considered the condition
b0 = 1 for the construction of the Padé approximants, Equation (6), which can result
in ill-posedness of the PL method. In effect, as will be demonstrated in this section,
after applying b0 = 1, a system of equations will be extracted from Equation (6) that, by
performing analysis and numerical computations later in the paper, will show that these
equations are ill-conditioned.

Upon constructing the Padé approximants, αk and βk can be extracted by finding the
poles and residues of the Padé approximants in a comparison between the right-hand sides
of Equations (6) and (2).

The only input parameter of this method is p0, that is, the point over which the Taylor
series is expanded. Theoretically, the results of the computation must be independent of p0;
however, this is not the case in reality. According to previous papers [4,8–12], the problem
with some values of p0 is attributed to the round-off errors. Therefore, it was suggested
that p0 must be chosen in an optimal range. Aubard et al. [13] proposed an optimal range
as a rule of thumb in the interval between the largest and smallest values of absolute values
of βk, i.e., [infk|βk|, supk|βk|]. Hereafter, by optimal range for a function, we suggest the
optimal range proposed by Aubard et al. [13] As a practical supposition, Hellen suggested
that a good choice for p0 can be the inverse of the time that it takes for the data points to
decay to the half of the initial value [14]. However, later we will show that it is possible to
achieve the results even when p0 is out of the optimal range.

After Taylor expansion in Laplace space, by increasing the level of the Padé approxi-
mant, poles and residues are calculated at each Padé level and then the stable modes are
identified. The stable modes are the modes that appear in Padé table and remain in the
subsequent Padé levels. The number of stable modes determines the number of exponential
modes. Therefore, the number of modes is an outcome of the PL numerical procedure.

To construct the Padé approximant from Equation (6), a system of linear equations
should be solved. Considering b0 = 1, and expanding the summations in Equation (6), one
arrives at

c0 + c1(p− p0) + c2(p− p0)
2 + · · ·+ c2n−1(p− p0)

2n−1 =
a0+a1(p−p0)+a2(p−p0)

2+···+an−1(p−p0)
n−1

1+b1(p−p0)+b2(p−p0)
2+···+bn(p−p0)

n .
(7)
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Multiplying both sides by the denominator of the right-hand side and comparing the
terms with identical powers of (p− p0), we find (see Appendix A)

a0 = c0,

ak = ck +
k
∑

i=1
bick−i, 0 < k ≤ n− 1

ck +
n
∑

i=1
bick−i = 0, n ≤ k ≤ 2n− 1

(8)

The third part of Equation (8) can be expanded as

cn−1 cn−2 cn−3 . . . c0

cn cn−1 cn−2
. . .

...

cn+1 cn cn−1
. . . cn−3

...
. . . . . . . . . cn−2

c2n−2 . . . cn+1 cn cn−1




b1
b2
...

bn−1
bn

 =


−cn
−cn+1

...
−c2n
−c2n−1

, (9)

and this system of equations must be solved for b values. After doing so, the ak values will
be calculated from the second part of Equation (8). Solving the system of equation given by
Equation (9) is the major part of the PL method.

The coefficient matrix in this system of equations, Equation (9), is a Toeplitz matrix
whose entries are the coefficients of the Taylor expansion calculated in the Laplace space.
In the next section, we will show that the Toeplitz matrices that appear in computation of
Padé approximants are close to singular. In effect, it will be shown that for different sets of
synthesized data points from known exponential functions the condition numbers of the
Toeplitz matrices become quite large, which results in ill-conditioned systems of equations.

The level of the Padé approximants determines the size of the Toeplitz matrix. For
example, when n = 3, the Padé approximant, which is shown by [2/3], is

[2/3] =
2

∑
k=0

ak(p− p0)
k/

3

∑
k=0

bk(p− p0)
k, (10)

and is related to a 3× 3 Toeplitz matrix c2 c1 c0
c3 c2 c1
c4 c3 c2

. (11)

Therefore, to achieve higher levels of Padé approximants, the size of the Toeplitz
matrix must increase.

3. Ill-Posedness of the PL Method

The condition number of coefficient matrix in a system of linear equations is the most
important indicator in analyzing the stability of computations and numerical sensitiv-
ity [15]. In Section 2, we explained that to extract the Padé coefficients, a system of linear
equations, whose coefficient matrix is a Toeplitz matrix, must be solved. To show the
structure of the Toeplitz matrix in the deconvolution process of the sum of exponential
functions using the PL method, we consider different sets of data points generated from
known exponential functions and use the procedure explained in Section 2 to construct
the Toeplitz matrix for each Padé level. For all the calculations in this paper, we used the
trapezoidal rule for the numerical integration of Equation (5).
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Table 1 shows the Toeplitz matrices for the different Padé levels calculated for a
three-component function f (t), which is

f (t) = 150e−0.004t + 19e−0.04t + 30e−0.06t. (12)

Table 1. Toeplitz matrices associated with different Padé levels and their condition numbers for
function f (t) = 150e−0.004t + 19e−0.04t + 30e−0.06t when p0 = 0.04.

Padé approximant [0/1]

3947.51750294869

2-norm condition number = 1
Infinity-norm condition number = 1

Padé approximant [1/2](
−83431.5084764036 3947.51750294869
1828003.39329228 −83431.5084764036

)
2-norm condition number = 1.31 × 104

Infinity-norm condition number = 1.43 × 104

Padé approximant [2/3] 1828003.39329228 −83431.5084764036 3947.51750294869
−40784187.1136812 1828003.39329228 −83431.5084764036
918351059.166385 −40784187.1136812 1828003.39329228


2-norm condition number = 1.33 × 108

Infinity-norm condition number = 1.55 × 104

Padé approximant [3/4]
−40784187.1136812 1828003.39329228 −83431.5084764036 3947.51750294869
918351059.166385 −40784187.1136812 1828003.39329228 −83431.5084764036
−20774131959.9484 918351059.166385 −40784187.1136812 1828003.39329228

471016279508.57 −20774131959.9484 918351059.166385 −40784187.1136812


2-norm condition number = 6.85 × 1010

Infinity-norm condition number = 8.05 × 1010

In Table 1, the Toeplitz matrices corresponding to each Padé level and their 2-norm
and infinity-norm condition numbers are given. The coefficient matrices, given by Equation
(9), associated with each Padé level in Table 1 are given by

[0/1]→ c0, [1/2]→
(

c1 c0

c2 c1

)
, [2/3]→


c2 c1 c0

c3 c2 c1

c4 c3 c2

, [3/4]→


c3 c2 c1 c0

c4 c3 c2 c1

c5 c4 c3 c2

c6 c5 c4 c3

. (13)

As one can observe, by increasing the Padé levels, the condition numbers grow rapidly.
Therefore, the systems of equations become ill-conditioned. For computations in Table 1,
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p0 was chosen in the optimal range. The very high condition number is a manifestation of
the unstable and inaccurate numerical calculations.

Table 2 shows the Toeplitz matrices for the same function, Equation (12), calculated by
a different value of p0 still in the optimal range. However, as the variation of p0 changes
the condition numbers, the condition numbers are still quite large, which is the sign of
ill-conditioned systems of equations.

Table 2. Toeplitz matrices associated with different Padé levels and their condition numbers for
function f (t) = 150e−0.004t + 19e−0.04t + 30e−0.06t when p0 = 0.02.

Padé approximant [0/1]

6942.26163687135

2-norm condition number = 1
Infinity-norm condition number = 1

Padé approximant [1/2](
−270365.362556016 6942.26163687135
10997251.1276327 −270365.362556016

)
2-norm condition number = 3.73 × 104

Infinity-norm condition number = 3.91 × 104

Padé approximant [2/3] 10997251.1276327 −270365.362556016 6942.26163687135
−454310740.051794 10997251.1276327 −270365.362556016
18871600618.0707 −454310740.051794 10997251.1276327


2-norm condition number = 1.96 × 109

Infinity-norm condition number = 2.18 × 109

Padé approximant [3/4]
−454310740.051794 10997251.1276327 −270365.362556016 6942.26163687135
18871600618.0707 −454310740.051794 10997251.1276327 −270365.362556016
−785438809700.987 18871600618.0707 −454310740.051794 10997251.1276327
32713098312245.6 −785438809700.987 18871600618.0707 −454310740.051794


2-norm condition number = 5.77 × 1012

Infinity-norm condition number = 6.69 × 1012

For the next example, we consider f (t) that is made of two exponential decays

f (t) = 25e−0.05t + e−0.002t. (14)

Aubard et al. [13] considered that p0 = 0.0043 for this two-component function is in
the optimal range. Toeplitz matrices for different Padé levels of Equation (14) are given
in Table 3. Like the computation results for the three-component function, Equation (12),
although p0 was chosen in the optimal range, the condition numbers of the Toeplitz
matrices are still quite large.
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Table 3. Toeplitz matrices associated with different Padé levels and their condition numbers for
function f (t) = 25e−0.05t + e−0.002t when p0 = 0.0043.

Padé approximant [0/1]

619.163704402595

2-norm condition number = 1
Infinity-norm condition number = 1

Padé approximant [1/2](
−33673.5768069156 619.163704402595

4155316.031534 −33673.5768069156

)
2-norm condition number = 1.2 × 104

Infinity-norm condition number = 1.22 × 104

Padé approximant [2/3] 4155316.031534 −33673.5768069156 619.163704402595
−637604141.531504 4155316.031534 −33673.5768069156
100766089551.323 −637604141.531504 4155316.031534


2-norm condition number = 3.38 × 1010

Infinity-norm condition number = 3.59 × 1010

Padé approximant [3/4]
−637604141.531504 4155316.031534 −33673.5768069156 619.163704402595
100766089551.323 −637604141.531504 4155316.031534 −33673.5768069156
−15968480782012.7 100766089551.323 −637604141.531504 4155316.031534

2.52675015701706e + 15 −15968480782012.7 100766089551.323 −637604141.531504


2-norm condition number = 3.42 × 1015

Infinity-norm condition number = 3.65 × 1015

Table 4 shows the Toeplitz matrices and their condition numbers for the same function
at different Padé levels, where p0 is out of the optimal range. Interestingly, the condition
numbers of coefficient matrices for the p0 value that is out of the optimal range are still
large, while they are smaller than condition numbers calculated with p0 in the optimal
range.
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Table 4. Toeplitz matrices associated with different Padé levels and their condition numbers for
function f (t) = 25e−0.05t + e−0.002t when p0 = 0.1.

Padé approximant [0/1]

176.550830813744

2-norm condition number = 1
Infinity-norm condition number = 1

Padé approximant [1/2](
−1206.68647171976 176.550830813744
8349.72873932373 −1206.68647171976

)
2-norm condition number = 4.02 × 103

Infinity-norm condition number = 5.06 × 103

Padé approximant [2/3] 8349.72873932373 −1206.68647171976 176.550830813744
−58621.1725640864 8349.72873932373 −1206.68647171976
419791.187990069 −58621.1725640864 8349.72873932373


2-norm condition number = 1.29 × 106

Infinity-norm condition number = 1.75 × 106

Padé approximant [3/4]
−58621.1725640864 8349.72873932373 −1206.68647171976 176.550830813744
419791.187990069 −58621.1725640864 8349.72873932373 −1206.68647171976
−3082758.76213702 419791.187990069 −58621.1725640864 8349.72873932373
23337517.6524446 −3082758.76213702 419791.187990069 −58621.1725640864


2-norm condition number = 4.94 × 107

Infinity-norm condition number = 6.31 × 107

By increasing the number of exponential modes, higher levels of Padé approximants
should be calculated to reach the stable modes and, thus, by increasing the size of Toeplitz
matrix, the condition numbers become very large. For example, consider the function f (t)
that consists of five exponential decays

f (t) = 8560e−0.5t + 5650e−0.2t + 3725e−0.1t + 2358e−0.7t + 1350e−0.01t. (15)

Table 5 shows the condition numbers for different Padé levels calculated for f (t) given
by Equation (15).



Molecules 2021, 26, 4838 9 of 23

Table 5. Condition numbers of Toeplitz matrices associated with different Padé levels for function
f (t) = 8560e−0.5t + 5650e−0.2t + 3725e−0.1t + 2358e−0.7t + 1350e−0.01t when p0 = 1.

Padé
Approximant 2-Norm Condition Number Infinity-Norm Condition Number

[0/1] 1 1
[1/2] 146 177
[2/3] 2.97 × 103 4.53 × 103

[3/4] 1.14 × 105 1.87 × 105

[4/5] 6.31 × 105 1.09 × 106

[5/6] 4.28 × 107 7.73 × 107

[6/7] 8.14 × 109 1.53 × 1010

[7/8] 1.15 × 1013 2.3 × 1013

[8/9] 3.96 × 1015 8.12 × 1015

[9/10] 1.56 × 1017 2.13 × 1017

Consistent with the results of previous examples, increasing the Padé levels causes
the rapid growth of condition numbers.

As mentioned earlier, the objective of the PL theory is to deconvolute the exponential
decays from discrete experimental data f (t) measured at different time intervals. Thus,
the integration by Equation (5) must be conducted numerically. To further analyze the PL
theory, the entries of the coefficient matrix will be expressed in terms of the parameters
of the problem. In other words, the coefficient matrix will be constructed for a general
case where the function f (t) is considered in the form given by Equation (1) and expresses
the entries of the coefficient matrix in terms of αi and βi. Using Equations (4) and (5), the
entries of the coefficient matrix in Equation (9) are given by

ck =
1
k!

(∫ ∞

0
(−t)k f (t) exp(−pt)dt

)
p=p0

. (16)

Now, by plugging f (t) from Equation (1), in the form of f (t) =
n
∑

i=1
αi exp(βit), into

Equation (16), we arrive at

ck = (−1)k
n

∑
i=1

αi

(p0 − βi)
k+1 , (17)

where the conditions Re(p0) > Re(βi) for all values of βi and Re(k) > −1 must be satisfied.
Thus, for [1/2], [2/3], and [3/4] Padé levels the coefficient matrix will be presented as

[1/2]→
(

c1 c0
c2 c1

)
=


n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
p0−βi

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

, (18)

[2/3]→

 c2 c1 c0
c3 c2 c1
c4 c3 c2

 =



n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
p0−βi

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

, (19)
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[3/4]→


c3 c2 c1 c0

c4 c3 c2 c1

c5 c4 c3 c2

c6 c5 c4 c3

 =



n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
p0−βi

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

−αi
(p0−βi)

6

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

αi
(p0−βi)

7

n
∑

i=1

−αi
(p0−βi)

6

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4


, (20)

respectively. The determinants of the coefficient matrices for Padé levels [1/2], [2/3], and
[3/4] when the number of exponential decays in f (t) are 2, 3, and 4, respectively, are given
by

Det


2
∑

i=1

−αi
(p0−βi)

2

2
∑

i=1

αi
p0−βi

2
∑

i=1

αi
(p0−βi)

3

2
∑

i=1

−αi
(p0−βi)

2

 = − α1α2(β1 − β2)
2

(p0 − β1)
3(p0 − β2)

3 , (21)

Det



3
∑

i=1

αi
(p0−βi)

3

3
∑

i=1

−αi
(p0−βi)

2

3
∑

i=1

αi
p0−βi

3
∑

i=1

−αi
(p0−βi)

4

3
∑

i=1

αi
(p0−βi)

3

3
∑

i=1

−αi
(p0−βi)

2

3
∑

i=1

αi
(p0−βi)

5

3
∑

i=1

−αi
(p0−βi)

4

3
∑

i=1

αi
(p0−βi)

3

 =

−α1α2α3(β1 − β2)
2(β1 − β3)

2(β2 − β3)
2

(p0 − β1)
5(p0 − β2)

5(p0 − β3)
5 ,

(22)

Det


c3 c2 c1 c0
c4 c3 c2 c1
c5 c4 c3 c2
c6 c5 c4 c3


ck=(−1)k 4

∑
i=1

αi
(p0−βi)

k+1

=

α1α2α3α4(β1 − β2)
2(β1 − β3)

2(β2 − β3)
2(β1 − β4)

2(β2 − β4)
2(β3 − β4)

2

(p0 − β1)
7(p0 − β2)

7(p0 − β3)
7(p0 − β4)

7 .

(23)

As one can observe, the coefficient matrix becomes singular if the number of exponen-
tial decays in f (t) is less than the number of the Padé level. In effect, we have

Det

 −α1
(p0−β1)

2
α1

p0−β1
α1

(p0−β1)
3

−α1
(p0−β1)

2

 = 0, (24)

Det



n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
p0−βi

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

 = 0, f orn < 3, (25)

Det



n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
p0−βi

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

−αi
(p0−βi)

6

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

αi
(p0−βi)

7

n
∑

i=1

−αi
(p0−βi)

6

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4


= 0, f orn < 4. (26)
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This analysis indicates that achieving the higher levels of Padé levels can result in
singular Toeplitz matrices. Moreover, the calculations show that the coefficient matrices
become rank-deficient, and, in fact, the rank of the coefficient matrix equals the number of
exponential decays in function f (t). For example, we have

Rank


n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
p0−βi

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

 = n, f orn ≤ 2, (27)

Rank



n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
p0−βi

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

n
∑

i=1

−αi
(p0−βi)

2

n
∑

i=1

αi
(p0−βi)

5

n
∑

i=1

−αi
(p0−βi)

4

n
∑

i=1

αi
(p0−βi)

3

 = 0, f orn ≤ 3, (28)

Rank


c3 c2 c1 c0
c4 c3 c2 c1
c5 c4 c3 c2
c6 c5 c4 c3


ck=(−1)k n

∑
i=1

αi
(p0−βi)

k+1 ,

= n, f or n ≤ 4. (29)

It means that the coefficient matrix for each Padé level higher than the number of
exponential decays is rank-deficient, which is consistent with the determinants of the
coefficient matrices.

The results presented herein indicate that PL is an ill-posed method for the sepa-
ration of exponential functions. Therefore, in contrast to the previous thought that the
method is taking advantage of the properties of analyticity of Laplace transform to deal
with the ill-posed problem of separation of exponentials, [9] the computation of Padé
approximants generates ill-conditioned systems of equations. Although the PL method
proposes a powerful numerical procedure for deconvolution of the exponential modes, it is
likely to encounter ill-conditioned problems attributable to the ill-posedness of Padé table
computations. In the next section, we will exploit a numerical algorithm to regularize the
PL method and demonstrate that this algorithm can successfully resolve the ill-posedness
of the PL numerical procedure.

4. Regularization of the PL Method

To resolve the ill-posedness of the PL numerical procedure, one must regularize this
method. As mentioned in Section 2, after considering the condition b0 = 1, Equation (6) will
be expressed as an ill-conditioned system of linear equations. It is important to note that the
Longman algorithm [5] also implements the same condition b0 = 1 (see Equation (7) in [5]).
Therefore, the instability reported by Tang and Norris [6] for using the Longman algorithm
might be attributed to using the same coefficient conditions.

Knowing the origin of ill-posedness, one may regularize the PL method by changing
the coefficient condition b0 = 1, and reconstruct the system of equations in a way that
eliminates the ill-conditioning.

Recently, Gonnet et al. [16] proposed a numerical algorithm for computation of the
Padé table using singular value decomposition (SVD). In this numerical algorithm, instead
of using the coefficient condition b0 = 1, they considered∥∥∥∥∥∥∥∥∥


b0
b1
...

bn


∥∥∥∥∥∥∥∥∥

2

= 1, (30)
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where
(

b0 b1 · · · bn
)T is a vector whose components are the coefficients of the

polynomial in the denominator of the Padé approximant and ‖·‖2 is the vector 2-norm
operator. After computations, the output of the numerical algorithm presents a polynomial
in the denominator of the Padé approximants in the form of

Q(x) = 1 + b1x + b2x2 + · · ·+ bnxn. (31)

Using the normalization condition, Equation (30), in computation of the Padé table
helps to eliminate the ill-conditioning problem. In effect, the numerical algorithm proposed
by Gonnet et al. [16] can regularize the ill-posed problem of Padé computations. Hereafter,
we call the regularized PL method RPL, which represents the PL method where Padé table
is computed using the SVD solver developed by Gonnet et al. [16]. In the following, we
show the capability of RPL in separation of exponentials. Table 6 shows the results of the
deconvolution of generated data points of the function f (t) in Equation (12) using RPL.
As shown in Table 6, three stable modes appear in [4/5] and [5/6] Padé approximants. It
is expected that these stable modes remain in the computations after increasing the Padé
levels. On the other hand, considering the rapid growth of condition number of Toeplitz
matrices, as shown earlier, achieving high levels of Padé approximants is not possible
without regularization.

Table 6. Deconvolution of three-component function f (t) = 150e−0.004t + 19e−0.04t + 30e−0.06t using RPL when p0 = 0.04.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[0/1] −7.3144688 × 10−3 0.0000000 × 100 1.8677469 × 102 0.0000000 × 100

[1/2]
[1/2]

−5.4778310 × 10−2

−4.0862030 × 10−3
0.0000000 × 100

0.0000000 × 100
4.7728408 × 101

1.5183015 × 102
0.0000000 × 100

0.0000000 × 100

[2/3]
[2/3]
[2/3]

−3.1173129 × 100

−5.0003912 × 10−2

−4.0097848 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

2.4292682 × 101

4.7223963 × 101

1.5029938 × 102

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[3/4]
[3/4]
[3/4]
[3/4]

5.3238003 × 10−1

−5.4445912 × 10−2

−3.3152082 × 10−2

−3.9990211 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−1.7648630 × 100

4.1242607 × 101

7.2435270 × 100

1.4995893 × 102

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[4/5]
[4/5]
[4/5]
[4/5]
[4/5]

−1.6210147 × 10−2

−1.6210147 × 10−2

−6.0000000 × 10−2

−4.0000000 × 10−2

−4.0000000 × 10−3

7.7526429 × 100

−7.7526429 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

4.9834776 × 102

4.9834776 × 102

3.0000001 × 101

1.8999999 × 101

1.5000000 × 102

2.1295890 × 10−2

−2.1295890 × 10−2

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[5/6]
[5/6]
[5/6]
[5/6]
[5/6]
[5/6]

−1.9041159 × 10−2

−1.9041159 × 10−2

−6.7767944 × 10−1

−5.9999995 × 10−1

−3.9999998 × 10−2

−4.0000000 × 10−3

7.7689403 × 100

−7.7689403 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

5.0048358 × 102

5.0048358 × 102

5.9734657 × 10−4

3.0000007 × 101

1.8999993 × 101

1.5000000 × 102

2.0717494 × 10−1

−2.0717494 × 10−1

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

Table 7 shows the results of deconvolution of generated data points of the function
f (t) in Equation (12) using RPL in [10/11] and [11/12] Padé approximants.
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Table 7. High levels of Padé approximants in deconvolution of three-component function f (t) = 150e−0.004t + 19e−0.04t +

30e−0.06t using RPL when p0 = 0.04.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]

−2.1324889 × 10−2

−2.1324889 × 10−2

1.8612450 × 100

1.0175524 × 10−1

−5.9999997 × 10−2

−3.9999998 × 10−2

4.6051089 × 10−2

4.6051089 × 10−2

−4.0000000 × 10−3

3.2810383 × 10−3

3.2810383 × 10−3

7.7191644 × 100

−7.7191644 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

2.7461804 × 10−2

−2.7461804 × 10−2

0.0000000 × 100

1.3004577 × 10−2

−1.3004577 × 10−2

4.9388824 × 102

4.9388824 × 102

−1.9332353 × 10−2

−1.5513358 × 10−10

3.0000004 × 101

1.8999995 × 101

−2.8790985 × 10−10

−2.8790985 × 10−10

1.5000000 × 102

3.4151907 × 10−9

3.4151907 × 10−9

3.8817019 × 10−1

−3.8817019 × 10−1

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

4.1379327 × 10−10

−4.1379327 × 10−10

0.0000000 × 100

5.8441591 × 10−9

−5.8441591 × 10−9

[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]

−4.7391958 × 10−2

−4.7391958 × 10−2

4.5673491 × 100

1.1502705 × 10−1

−5.9999997 × 10−2

−3.9999998 × 10−2

4.2291942 × 10−2

4.2291942 × 10−2

3.3846007 × 10−3

3.3846007 × 10−3

−4.0000000 × 10−3

4.4403675 × 10−2

7.6874054 × 100

−7.6874054 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

2.6291712 × 10−2

−2.6291712 × 10−2

1.2973154 × 10−2

−1.2973154 × 10−2

0.0000000 × 100

0.0000000 × 100

4.8822528 × 102

4.8822528 × 102

−1.2573896 × 100

−1.2626689 × 10−10

3.0000004 × 101

1.8999995 × 101

−3.1523708 × 10−10

−3.1523708 × 10−10

3.3215604 × 10−9

3.3215604 × 10−9

1.5000000 × 102

−6.9425412 × 10−10

3.0558821 × 100

−3.0558821 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

4.8228821 × 10−10

−4.8228821 × 10−10

5.8739554 × 10−9

−5.8739554 × 10−9

0.0000000 × 100

0.0000000 × 100

The stable modes are shown in bold. It should be noted that by increasing the Padé
levels, round-off errors might affect the accuracy.

Tables 8 and 9 show the deconvolution results for generated data points of the function
f (t) in Equation (12) using RPL when p0 values are out of the optimal range. The stable
modes are shown in bold.

When p0 is out of the optimal range, the RPL can separate exponential decays; however,
this can only be done at the expense of calculating higher levels of Padé approximants. The
computation results presented in Tables 8 and 9 demonstrate that when p0 is out of the
optimal range, stable modes appear at higher levels of Padé approximants.

Tables 10 and 11 show the results of deconvolution of the function f (t) in Equations (14)
and (15), respectively. In both examples p0 was considered out of the optimal range. The
computation results exhibit the capability of RPL in deconvolution of these functions.
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Table 8. Deconvolution of three-component function f (t) = 150e−0.004t + 19e−0.04t + 30e−0.06t using RPL when p0 = 2.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]
[10/11]

−2.7077041 × 101

−2.7077041 × 101

−6.1805903 × 100

−6.1805903 × 100

−2.5554003 × 10−1

−2.5554003 × 10−1

−1.5365995 × 10−2

−1.5365995 × 10−2

−6.0005910 × 10−2

−4.0019812 × 10−2

−4.0002474 × 10−3

9.1626768 × 101

−9.1626768 × 101

2.1050940 × 101

−2.1050940 × 101

1.2306962 × 101

−1.2306962 × 101

6.2841161 × 100

−6.2841161 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

7.2543691 × 103

7.2543691 × 103

5.1467900 × 102

5.1467900 × 102

1.8078545 × 102

1.8078545 × 102

1.9913166 × 102

1.9913166 × 102

2.9976264 × 101

1.9019637 × 101

1.5000415 × 102

7.8190760 × 102

−7.8190760 × 102

3.8373116 × 102

−3.8373116 × 102

4.6513878 × 101

−4.6513878 × 101

−1.9550354 × 10−1

1.9550354 × 10−1

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]
[11/12]

1.9960781 × 102

−1.0407991 × 101

−1.0407991 × 101

−3.5638166 × 10−1

−3.5638166 × 10−1

−1.5318715 × 10−2

−1.5318715 × 10−2

−5.7955252 × 10−1

−5.7955252 × 10−1

−5.9916572 × 10−2

−3.9744843 × 10−2

−3.9973272 × 10−3

0.0000000 × 100

2.3945985 × 101

−2.3945985 × 101

1.2371355 × 101

−1.2371355 × 101

6.2841195 × 100

−6.2841195 × 100

1.1399858 × 100

−1.1399858 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−1.0851438 × 104

7.6825966 × 102

7.6825966 × 102

1.9394604 × 102

1.9394604 × 102

1.9912256 × 102

1.9912256 × 102

−4.0087042 × 10−7

−4.0087042 × 10−7

3.0311253 × 101

1.8736139 × 101

1.4994814 × 102

0.0000000 × 100

9.8681718 × 102

−9.8681718 × 102

5.7945460 × 101

−5.7945460 × 101

−2.152848 × 10−1

2.1528487 × 10−1

5.6765099 × 10−7

−5.6765099 × 10−7

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[12/13]
[12/13]
[12/13]
[12/13]
[12/13]
[12/13]
[12/13]
[12/13]
[12/13]
[12/13]
[12/13]
[12/13]
[12/13]

1.7618498 × 102

−9.9833268 × 100

−9.9833268 × 100

−3.4500329 × 10−1

−3.4500329 × 10−1

−1.5318064 × 10−2

−1.5318064 × 10−2

1.1196162 × 100

1.1196162 × 100

−2.6054392 × 10−1

−6.000049 × 10−2

−3.9997497 × 10−2

−3.9999174 × 10−3

0.0000000 × 100

2.4442457 × 101

−2.4442457 × 101

1.2393825 × 101

−1.2393825 × 101

6.2840948 × 100

−6.2840948 × 100

2.1693108 × 100

−2.1693108 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−8.9677724 × 103

8.3504040 × 102

8.3504040 × 102

1.9620433 × 102

1.9620433 × 102

1.9911357 × 102

1.9911357 × 102

−1.0252367 × 10−10

−1.0252367 × 10−10

−8.7665167 × 10−6

3.0003785 × 101

1.9006856 × 101

1.5005297 × 102

0.0000000 × 100

9.5099219 × 102

−9.5099219 × 102

5.5609160 × 101

−5.5609160 × 101

−2.1027043 × 10−1

2.1027043 × 10−1

5.1378617 × 10−11

−5.1378617 × 10−11

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100
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Table 9. Deconvolution of three-component function f (t) = 150e−0.004t + 19e−0.04t + 30e−0.06t using RPL when p0 = 3.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]
[16/17]

−5.5030888 × 101

−5.5030888 × 101

−2.9897761 × 100

−2.9897761 × 100

−3.4405403 × 10−2

−3.4405403 × 10−2

8.8670363 × 100

−1.4329960 × 10−1

−1.4329960 × 10−1

−1.2296947 × 10−2

−1.2296947 × 10−2

−6.0183356 × 10−2

−4.0560106 × 10−2

−4.0063800 × 10−3

3.6260369 × 100

2.9143057 × 100

3.0000759 × 100

8.2151753 × 101

−8.2151753 × 101

2.0046116 × 101

−2.0046116 × 101

1.2522466 × 101

−1.2522466 × 101

0.0000000 × 100

6.2347883 × 100

−6.2347883 × 100

6.2827305 × 100

−6.2827305 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

1.0428004 × 104

1.0428004 × 104

3.8418716 × 102

3.8418716 × 102

1.9188035 × 102

1.9188035 × 102

−2.2666940 × 10−8

4.4928375 × 100

4.4928375 × 100

1.9448884 × 102

1.9448884 × 102

2.9308374 × 101

1.9596862 × 101

1.5009758 × 102

−5.5123535 × 10−14

−1.1941466 × 10−13

−1.0784734 × 10−13

5.7438302 × 103

−5.7438302 × 103

2.5860369 × 102

−2.5860369 × 102

7.4973331 × 100

−7.4973331 × 100

0.0000000 × 100

−2.1898894 × 100

2.1898894 × 100

2.1886636 × 100

−2.1886636 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]
[17/18]

−1.8613610 × 102

−8.1919803 × 101

−3.8053205 × 100

−3.8053205 × 100

4.3311772 × 10−2

4.3311772 × 10−2

1.1180539 × 101

−2.5486699 × 10−1

−2.5486699 × 10−1

−1.3851621 × 10−2

−1.3851621 × 10−2

−6.0255523 × 10−2

−4.0772993 × 10−2

−4.0088550 × 10−3

1.0171588 × 100

2.9535681 × 100

2.9535681 × 100

3.0011943 × 100

0.0000000 × 100

0.0000000 × 100

1.8744806 × 101

−1.8744806 × 101

1.2476304 × 101

−1.2476304 × 101

0.0000000 × 100

6.4629459 × 100

−6.4629459 × 100

6.2849665 × 100

−6.2849665 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

1.0840509 × 10−1

−1.0840509 × 10−1

0.0000000 × 100

6.2585091 × 104

−2.5169979 × 104

3.0764988 × 102

3.0764988 × 102

1.7795390 × 102

1.7795390 × 102

−1.2838628 × 10−6

2.8160877 × 10−1

2.8160877 × 10−1

1.9866901 × 102

1.9866901 × 102

2.9023392 × 101

1.9842716 × 101

1.5017946 × 102

3.0059349 × 10−13

−1.1383378 × 10−13

−1.1383378 × 10−13

−1.0771318 × 10−13

0.0000000 × 100

0.0000000 × 100

3.3948578 × 102

−3.3948578 × 102

2.2826081 × 100

−2.2826081 × 100

0.0000000 × 100

2.1566794 × 100

−2.1566794 × 100

−2.0693506 × 100

2.0693506 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

1.3943289 × 10−14

−1.3943289 × 10−14

0.0000000 × 100
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Table 10. Deconvolution of two-component function f (t) = 25e−0.05t + e−0.002t using RPL when p0 = 0.1.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[0/1] −4.6310442 × 10−2 0.0000000 × 100 2.5831230 × 101 0.0000000 × 100

[1/2]
[1/2]

−5.3432749 × 10−2

−1.5461139 × 10−2
0.0000000 × 100

0.0000000 × 100
2.3078996 × 101

3.0173646 × 100
0.0000000 × 100

0.0000000 × 100

[2/3]
[2/3]
[2/3]

7.5235319 × 10−1

−4.9867328 × 10−2

−1.6476801 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−1.1384877 × 10−1

2.5009292 × 101

9.6566322 × 10−1

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[3/4]
[3/4]
[3/4]
[3/4]

−4.8573755 × 10−2

−4.8573755 × 10−2

−5.0000000 × 10−2

−2.0000000 × 10−3

1.5501904 × 101

−1.5501904 × 101

0.0000000 × 100

0.0000000 × 100

6.5083699 × 101

6.5083699 × 101

2.5000000 × 101

1.0000000 × 100

1.7638061 × 10−3

−1.7638061 × 10−3

0.0000000 × 100

0.0000000 × 100

[4/5]
[4/5]
[4/5]
[4/5]
[4/5]

−7.3878465 × 10−2

−7.3878465 × 10−2

5.7111411 × 100

−5.0000000 × 10−2

−2.0000000 × 10−3

1.5415245 × 101

−1.5415245 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

6.4287423 × 101

6.4287423 × 101

−1.9725482 × 10−2

2.5000000 × 101

1.0000000 × 100

1.3368022 × 10−1

−1.3368022 × 10−1

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[5/6]
[5/6]
[5/6]
[5/6]
[5/6]
[5/6]

−4.8802383 × 10−2

−4.8802383 × 10−2

1.2369563 × 100

−5.0388491 × 10−2

−4.9999999 × 10−2

−2.0000000 × 10−3

1.5484391 × 101

−1.5484391 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

6.4936263 × 101

6.4936263 × 101

−5.6204172 × 10−6

5.0487277 × 10−5

2.4999948 × 101

1.0000000 × 100

2.7538122 × 10−3

−2.7538122 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]

−4.9203724 × 10−2

−4.9203724 × 10−2

1.4834847 × 100

−1.5036091 × 10−2

−1.5036091 × 10−2

−5.0000000 × 10−2

−2.0000000 × 10−3

1.5479164 × 101

−1.5479164 × 101

0.0000000 × 100

6.5817021 × 10−2

−6.5817021 × 10−2

0.0000000 × 100

0.0000000 × 100

6.4891961 × 101

6.4891961 × 101

−1.6903900 × 10−5

6.0655888 × 10−11

6.0655888 × 10−11

2.5000000 × 101

1.0000000 × 100

4.4870559 × 10−3

−4.4870559 × 10−3

0.0000000 × 100

1.2683360 × 10−10

−1.2683360 × 10−10

0.0000000 × 100

0.0000000 × 100
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Table 11. Deconvolution of five-component function f (t) = 8560e−0.5t + 5650e−0.2t + 3725e−0.1t + 2358e−0.7t + 1350e−0.01t

using RPL when p0 = 1.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[0/1] −2.8012545 × 10−1 0.0000000 × 100 2.1185167 × 104 0.0000000 × 100

[1/2]
[1/2]

−7.9820851 × 10−1

−1.6193872 × 10−1
0.0000000 × 100

0.0000000 × 100
7.7648726 × 103

1.4211874 × 104
7.7648726 × 103

1.4211874 × 104

[2/3]
[2/3]
[2/3]

1.0900893 × 101

−4.7531904 × 10−1

−8.8258329 × 10−2

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−7.5260406 × 102

1.3473832 × 104

7.9883055 × 103

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[3/4]
[3/4]
[3/4]
[3/4]

9.5438875 × 100

−4.8570632 × 10−1

−9.3996711 × 10−2

3.1160963 × 10−1

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−5.9804862 × 102

1.3123770 × 104

8.3615769 × 103

1.9220357 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[4/5]
[4/5]
[4/5]
[4/5]
[4/5]

5.9042779 × 100

5.9042779 × 100

−5.5327113 × 10−1

−1.8322055 × 10−1

−2.9933826 × 10−2

1.6583941 × 101

−1.6583941 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

2.1860469 × 103

2.1860469 × 103

1.0385843 × 104

8.5114077 × 103

2.7148235 × 103

−9.4864888 × 102

9.4864888 × 102

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[5/6]
[5/6]
[5/6]
[5/6]
[5/6]
[5/6]

2.2977538 × 100

2.2977538 × 100

−6.1888009 × 10−1

−4.0317904 × 10−1

−1.4563794 × 10−1

−1.6809887 × 10−2

6.3404844 × 101

−6.3404844 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

3.5971774 × 104

3.5971774 × 104

6.3141033 × 103

5.9648905 × 103

7.5396158 × 103

1.8221989 × 103

−1.5224157 × 103

1.5224157 × 103

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]

−4.1810290 × 10−1

−4.1810290 × 10−1

−7.0161494 × 10−1

−5.0095620 × 10−1

−2.0110761 × 10−1

−1.0085442 × 10−1

−1.0099624 × 10−2

7.7962332 × 101

−7.7962332 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

5.4818688 × 104

5.4818688 × 104

2.3126253 × 103

8.5888020 × 103

5.5989555 × 103

3.7854835 × 103

1.3572038 × 103

5.2449314 × 101

−5.2449314 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]

−4.5025997 × 10−1

−4.5025997 × 10−1

2.1128167 × 101

−6.9998756 × 10−1

−4.9999418 × 10−1

−1.9999568 × 10−1

−9.9997141 × 10−2

−9.9997170 × 10−3

7.6911645 × 101

−7.6911645 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

5.3301980 × 104

5.3301980 × 104

−6.3893270 × 100

2.3583179 × 103

8.5597566 × 103

5.6501371 × 103

3.7247848 × 103

1.3499779 × 103

8.5024460 × 101

−8.5024460 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

Deconvolution of Noisy Data by RPL

To show the capability of regularization in tackling the deconvolution process, consider
a two-component function, f (t) in Equation (14), and analyze it with RPL after adding
white Gaussian noise with the signal-to-noise ratio of SNR = 10 dB. Figure 1 shows the
plots of function f (t) before and after adding the white Gaussian noise.
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Figure 1. The two-component function f (t) before and after adding a white Gaussian noise with
SNR = 10.

Table 12 shows the result of deconvolution of the noisy data shown in Figure 1 by
RPL. The deconvolution results indicate that the RPL can find the exponential decays from
the data points perturbed by a noise with SNR = 10. However, by increasing the Padé
levels, the results start to deviate from the actual values. This deviation is attributable to
the cumulative errors involved in the numerical integration of the noisy data.

As explained in Section 2, to calculate the Taylor expansion coefficients, numerical
integration must be performed on the discrete data points. The noise results in cumulative
error in numerical integration. For low levels of Padé approximants, where a small number
of coefficients need to be calculated, the RPL is capable of deconvolution of the data points;
however, by increasing the number of levels, the numerical error results in deviation from
the actual values.

Figure 2 shows the plots of function f (t)

f (t) = 40e−0.002t + 35e−0.009t − 60e−0.05t, (32)

before and after adding white Gaussian noise of SNR = 10 dB.
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Table 12. Deconvolution of noisy data, generated after adding a white Gaussian noise (SNR = 10) to the two-component
function f (t) = 25e−0.05t + e−0.002t, using RPL when p0 = 0.1.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[0/1] −4.6532813 × 10−2 0.0000000 × 100 2.6046383 × 101 0.0000000 × 100

[1/2]
[1/2]

−4.9493508 × 10−2

4.3303640 × 10−3
0.0000000 × 100

0.0000000 × 100
2.5618333 × 101

6.1072333 × 10−1
0.0000000 × 100

0.0000000 × 100

[2/3]
[2/3]
[2/3]

−2.4527859 × 10−1

−5.2343439 × 10−2

−7.3617836 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−4.1120854 × 10−1

2.4939697 × 101

1.6356657 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[3/4]
[3/4]
[3/4]
[3/4]

9.2095511 × 10−2

9.2095511 × 10−2

−5.0339820 × 10−2

−2.5538760 × 10−3

1.4129833 × 10−1

−1.4129833 × 10−1

0.0000000 × 100

0.0000000 × 100

−1.8488909 × 10−3

−1.8488909 × 10−3

2.5216832 × 101

1.0215389 × 100

−4.2125394 × 10−3

4.2125394 × 10−3

0.0000000 × 100

0.0000000 × 100

[4/5]
[4/5]
[4/5]
[4/5]
[4/5]

3.4435350 × 10−1

3.3736775 × 10−2

3.3736775 × 10−2

−4.9906591 × 10−2

−1.5734160 × 10−3

0.0000000 × 100

1.6601193 × 10−1

−1.6601193 × 10−1

0.0000000 × 100

0.0000000 × 100

−3.5226274 × 10−3

9.1900664 × 10−3

9.1900664 × 10−3

2.5247336 × 101

9.1880906 × 10−1

0.0000000 × 100

−2.2368378 × 10−2

2.2368378 × 10−2

0.0000000 × 100

0.0000000 × 100

[5/6]
[5/6]
[5/6]
[5/6]
[5/6]
[5/6]

1.9989881 × 10−1

1.9989881 × 10−1

−4.9507620 × 10−3

−4.9507620 × 10−3

−5.0495725 × 10−2

−2.1235336 × 10−3

4.7267992 × 10−1

−4.7267992 × 10−1

1.1479799 × 10−1

−1.1479799 × 10−1

0.0000000 × 100

0.0000000 × 100

6.2996699 × 10−2

6.2996699 × 10−2

1.1328981 × 10−2

1.1328981 × 10−2

2.5398527 × 101

9.8862834 × 10−1

9.9681731 × 10−2

−9.9681731 × 10−2

3.5395658 × 10−2

−3.5395658 × 10−2

0.0000000 × 100

0.0000000 × 100

[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]

−4.7121082 × 10−1

−4.7121082 × 10−1

−9.8173414 × 10−2

−1.6574766 × 10−2

−1.6574766 × 10−2

−4.6842552 × 10−2

−1.4529226 × 10−3

8.8269035 × 10−1

−8.8269035 × 10−1

0.0000000 × 100

7.8229861 × 10−2

−7.8229861 × 10−2

0.0000000 × 100

0.0000000 × 100

8.3216962 × 10−1

8.3216962 × 10−1

4.7499294 × 100

−6.7687562 × 10−2

−6.7687562 × 10−2

2.1736778 × 101

8.7883033 × 10−1

2.1437565 × 100

−2.1437565 × 100

0.0000000 × 100

−5.7532139 × 10−2

5.7532139 × 10−2

0.0000000 × 100

0.0000000 × 100

Figure 2. The three-component function f (t) before and after adding white Gaussian noise with
SNR = 10.
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Tables 13 and 14 give the deconvolution results for Equation (32) before and after
adding the noise, respectively. Like the results we found in the case of Equation (14), the
RPL is capable of finding the exponential modes after disturbing the data points. The
deviation observed in the results shown in Table 14 is attributable to perturbation of data
with the noise.

Table 13. Deconvolution of three-component function f (t) = 40e−0.002t + 35e−0.009t − 60e−0.05t, using RPL when p0 = 0.05.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[0/1] 9.5517727 × 10−3 0.0000000 × 100 3.0833546 × 101 0.0000000 × 100

[1/2]
[1/2]

−5.3318240 × 10−2

−3.9710375 × 10−3
0.0000000 × 100

0.0000000 × 100
−5.5129353 × 101

6.9940225 × 101
0.0000000 × 100

0.0000000 × 100

[2/3]
[2/3]
[2/3]

−4.8722175 × 10−2

−1.4227833 × 10−2

−2.8106907 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−6.3175619 × 101

2.3348338 × 101

5.4854799 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[3/4]
[3/4]
[3/4]
[3/4]

3.4837912 × 10−1

−5.0134633 × 10−2

−8.8230772 × 10−3

−1.9566787 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−3.1650844 × 10−2

−5.9897040 × 101

3.5668241 × 101

3.9174859 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[4/5]
[4/5]
[4/5]
[4/5]
[4/5]

1.7194367 × 10−1

1.7194367 × 10−1

−5.0000000 × 10−2

−9.0000000 × 10−3

−2.0000000 × 10−3

7.7165657 × 100

−7.7165657 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

3.7289858 × 101

3.7289858 × 101

−6.0000000 × 101

3.5000000 × 101

4.0000000 × 101

7.0358919 × 10−3

−7.0358919 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[5/6]
[5/6]
[5/6]
[5/6]
[5/6]
[5/6]

1.7196744 × 10−1

1.7196744 × 10−1

−5.0000000 × 10−2

−4.1165123 × 10−2

−9.0000000 × 10−3

−2.0000000 × 10−3

7.7153057 × 100

−7.7153057 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

3.7277667 × 101

3.7277667 × 101

−5.9999998 × 101

−2.1944340 × 10−6

3.5000000 × 101

4.0000000 × 101

6.9193200 × 10−3

−6.9193200 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]

1.7193555 × 10−1

1.7193555 × 10−1

7.6658423 × 10−3

7.6658423 × 10−3

−5.0000000 × 10−2

−9.0000000 × 10−3

−2.0000000 × 10−3

7.7163519 × 100

−7.7163519 × 100

6.8951426 × 10−2

−6.8951426 × 10−2

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

3.7287794 × 101

3.7287794 × 101

−7.5593396 × 10−11

−7.5593396 × 10−11

−6.0000000 × 101

3.5000000 × 101

4.0000000 × 101

7.0750599 × 10−3

−7.0750599 × 10−3

−1.3222430 × 10−11

1.3222430 × 10−11

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]

1.7194602 × 10−1

1.7194602 × 10−1

9.3410071 × 10−2

−5.0000000 × 10−2

1.9105494 × 10−3

1.9105494 × 10−3

−9.0000000 × 10−3

−2.0000000 × 10−3

7.7159127 × 100

−7.7159127 × 100

0.0000000 × 100

0.0000000 × 100

5.3649894 × 10−2

−5.3649894 × 10−2

0.0000000 × 100

0.0000000 × 100

3.7283544 × 101

3.7283544 × 101

−4.8135249 × 10−11

−6.0000000 × 101

3.6900374 × 10−10

3.6900374 × 10−10

3.5000000 × 101

4.0000000 × 101

7.0238724 × 10−3

−7.0238724 × 10−3

0.0000000 × 100

0.0000000 × 100

−2.1846720 × 10−10

2.1846720 × 10−10

0.0000000 × 100

0.0000000 × 100
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Table 14. Deconvolution of noisy data, generated after adding a white Gaussian noise (SNR = 10) to the function f (t) =
40e−0.002t + 35e−0.009t − 60e−0.05t, using RPL when p0 = 0.05.

Level Re(beta) Im(beta) Re(alpha) Im(alpha)

[3/4]
[3/4]
[3/4]
[3/4]

−1.6916657 × 10−1

−5.2380624 × 10−2

−6.6573511 × 10−3

−1.2001808 × 10−3

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

4.4097682 × 10−1

−5.8372837 × 101

4.6990984 × 101

2.5637257 × 101

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[4/5]
[4/5]
[4/5]
[4/5]
[4/5]

−1.4839124 × 10−1

−5.2498616 × 10−2

−6.5669995 × 10−3

−1.1390847 × 10−3

6.3259167 × 10−2

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

5.5301494 × 10−1

−5.8412725 × 101

4.7777205 × 101

2.4774822 × 101

−4.0520354 × 10−10

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[5/6]
[5/6]
[5/6]
[5/6]
[5/6]
[5/6]

1.5252952 × 10−1

−5.1367483 × 10−2

1.4373202 × 10−2

1.4373202 × 10−2

−7.8249136 × 10−3

−1.7322604 × 10−3

0.0000000 × 100

0.0000000 × 100

4.8906437 × 10−2

−4.8906437 × 10−2

0.0000000 × 100

0.0000000 × 100

−3.7967646 × 10−4

−5.9007827 × 101

2.8204331 × 10−3

2.8204331 × 10−3

3.9143448 × 101

3.4508292 × 101

0.0000000 × 100

0.0000000 × 100

−1.6883927 × 10−3

1.6883927 × 10−3

0.0000000 × 100

0.0000000 × 100

[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]
[6/7]

1.0670606 × 10−1

1.0670606 × 10−1

−2.6417235 × 10−2

−2.6417235 × 10−2

−4.8651982 × 10−2

−9.2794132 × 10−3

−2.0087154 × 10−3

1.6000709 × 10−1

−1.6000709 × 10−1

5.3662647 × 10−2

−5.3662647 × 10−2

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

−8.9423565 × 10−3

−8.9423565 × 10−3

8.8029576 × 10−2

8.8029576 × 10−2

−6.1368344 × 101

3.5660235 × 101

4.0347352 × 101

1.2589839 × 10−2

−1.2589839 × 10−2

−4.2733350 × 10−1

4.2733350 × 10−1

0.0000000 × 100

0.0000000 × 100

0.0000000 × 100

[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]
[7/8]

3.2939684 × 10−1

4.4906532 × 10−2

4.4906532 × 10−2

−5.0840652 × 10−2

−1.2343101 × 10−2

−1.2343101 × 10−2

−8.8362213 × 10−3

−1.9621520 × 10−3

0.0000000 × 100

1.1239422 × 10−1

−1.1239422 × 10−1

0.0000000 × 100

4.0179838 × 10−2

−4.0179838 × 10−2

0.0000000 × 100

0.0000000 × 100

−1.9983042 × 10−2

4.4950812 × 10−3

4.4950812 × 10−3

−6.0463730 × 101

1.0214574 × 10−1

1.0214574 × 10−1

3.5620994 × 101

3.9226211 × 101

0.0000000 × 100

−4.1878055 × 10−3

4.1878055 × 10−3

0.0000000 × 100

8.3652044 × 10−2

−8.3652044 × 10−2

0.0000000 × 100

0.0000000 × 100

[8/9]
[8/9]
[8/9]
[8/9]
[8/9]
[8/9]
[8/9]
[8/9]
[8/9]

8.7551404 × 10−1

4.8439223 × 10−3

4.8439223 × 10−3

−6.2372719 × 10−2

−3.7786151 × 10−2

1.1713447 × 10−2

1.1713447 × 10−2

−9.5422085 × 10−3

−2.0198601 × 10−3

0.0000000 × 100

1.2261909 × 10−1

−1.2261909 × 10−1

0.0000000 × 100

0.0000000 × 100

3.6263972 × 10−2

−3.6263972 × 10−2

0.0000000 × 100

0.0000000 × 100

−4.1265290 × 10−1

6.7327908 × 10−2

6.7327908 × 10−2

−3.3812097 × 101

−2.9331610 × 101

8.1928119 × 10−5

8.1928119 × 10−5

3.6568214 × 101

4.0687095 × 101

0.0000000 × 100

1.1109084 × 10−2

−1.1109084 × 10−2

0.0000000 × 100

0.0000000 × 100

3.9570379 × 10−4

−3.9570379 × 10−4

0.0000000 × 100

0.0000000 × 100

5. Conclusions

The Padé–Laplace (PL) method is a powerful numerical scheme for deconvolution
of Maxwellian modes from stress relaxation data of polymers obtained in discrete time
intervals. The PL method needs only one parameter to perform the computations and
does not require any initial guesses for the number of modes and parameters (amplitude
and exponents) associated with each mode. The amplitudes and their corresponding
exponents convey important information relating to the rheological behavior of polymers.
In effect, the relaxation spectrum is the fingerprint of any polymer that is necessary to
formulate a constitutive equation and can be used to predict its rheological behavior. A
crucial step in this numerical procedure is constructing the Padé approximants that is
an ill-posed problem. Since 1987, when the PL method was developed for separation of
exponentials, the potential problem of ill-posedness attributable to the computation of the
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Padé table has been overlooked. In this paper, it was shown that the computation of the
Padé approximants can result in ill-conditioned systems of equations. Therefore, it was
shown that, apart from its elegant mathematical structure, the PL method that was believed
to be able to solve the ill-posed problem of separation of exponentials using the properties
of Laplace transform of an analytic function [9] can produce ill-conditioned systems of
equations. As numerical computations demonstrate, the condition number of a matrix
whose entries are the coefficient of Taylor expansion grows rapidly. A regularization of
this method is possible by reconstructing the system of equations and using singular value
decomposition (SVD) for computation of the Padé table. After regularization, the numerical
computation indicates that the PL method can deconvolute data points even when p0, the
only input parameter of the method, is chosen out of its optimal range. However, this
occurs at the expense of calculating more levels of Padé approximants to achieve the stable
modes. The analysis shown in this paper recommends applying the same regularization
method in cases where the extended version of the PL method [9] was used to deconvolute
experimental data. Although the focus of this paper in terms of application was on the
deconvolution of viscoelastic spectrum of polymers, the results of this work will be fruitful
in other areas such as analysis of chemical relaxation signals [13], voltage decays [14],
fluorescence intensity decay [17,18], NMR relaxation data [19–21], and transient electric
birefringence decay [22].
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Appendix A

a0+a1(p−p0)+a2(p−p0)
2+···+an−1(p−p0)

n−1

1+b1(p−p0)+b2(p−p0)
2+···+bn(p−p0)

n =

c0 + c1(p− p0) + c2(p− p0)
2 + · · ·+ c2n−1(p− p0)

2n−1
(A1)

a0 + a1(p− p0) + a2(p− p0)
2 + · · ·+ an−1(p− p0)

n−1 =

c0 + c1(p− p0) + c2(p− p0)
2 + · · ·+ c2n−1(p− p0)

2n−1+

b1c0(p− p0) + b1c1(p− p0)
2 + b1c2(p− p0)

3 + · · ·+ b1c2n−2(p− p0)
2n−1 + · · ·+

b2c0(p− p0)
2 + b2c1(p− p0)

3 + b2c2(p− p0)
4 + · · ·+ b2c2n−3(p− p0)

2n−1 + · · ·+
bnc0(p− p0)

n + bnc1(p− p0)
n+1 + bnc2(p− p0)

n+2 + · · ·+ bncn−1(p− p0)
2n−1 + · · ·

(A2)

a0 = c0
a1 = c1 + b1c0
a2 = c2 + b1c1 + b2c0
a3 = c3 + b1c2 + b2c1 + b3c0
...
an−1 = cn−1 + b1cn−2 + b2cn−3 + b3cn−4 + · · ·+ bn−1c0

(A3)

a0 = c0,

ak = ck +
k
∑

i=1
bick−i, 0 < k ≤ n− 1

(A4)
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cn + b1cn−1 + b2cn−2 + · · ·+ bnc0 = 0
cn+1 + b1cn + b2cn−1 + · · ·+ bnc1 = 0
cn+2 + b1cn+1 + b2cn + · · ·+ bnc2 = 0
...
c2n−1 + b1c2n−2 + b2c2n−3 + · · ·+ bncn−1 = 0

(A5)

ck +
n

∑
i=1

bick−i = 0, n ≤ k ≤ 2n− 1 (A6)
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