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Abstract: Experimental and theoretical conformational analysis of N-methyl-N-[2-(diphenylphosphoryl)
ethyl]diphenylphosphorylacetamide, N-butyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphoryl-
acetamide, and N-octyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide was carried
out by the methods of dipole moments, IR spectroscopy, and Density Functional Theory (DFT)
B3PW91/6-311++G(df,p) calculations. In solution, these N,N-dialkyl substituted bisphosphorylated
acetamides exist as a conformational equilibrium of several forms divided into two groups—with
Z- or E-configuration of the carbonyl group and alkyl substituent, and syn or anti arrangement of
the phosphoryl-containing fragments relative to the amide plane. The substituents at the phos-
phorus atoms have eclipsed cis- or staggered gauche-orientation relative to the P=O groups, and cis
orientation of the substituents is due to the presence of intramolecular H-contacts P=O...H−Cphenyl

or p,π conjugation between the phosphoryl group and the phenyl ring. Preferred conformers of
acetamides molecules are additionally stabilized by various intramolecular hydrogen contacts with
the participation of oxygen atoms of the P=O or C=O groups and hydrogen atoms of the methylene
and ethylene bridges, alkyl substituents, and phenyl rings. However, steric factors, such as a flat
amide fragment, the bulky phenyl groups, and the configuration of alkyl bridges, make a significant
contribution to the realization of preferred conformers.

Keywords: carbamoylphosphine oxides; phosphorylated acetamides; dipole moments; conformational
analysis; DFT calculations

1. Introduction

Derivatives of carbamoylmethylphosphine oxides (CMPO) are known as effective
extractants of rare earth elements and actinides from mineral acid solutions [1–17]. The
high coordinating ability of these compounds is due to the presence of polar phospho-
ryl and amide groups. CMPO are used in industrial processes for reprocessing spent
nuclear fuel [18,19] and for the processing of radioactive waste and the separation of
transplutonium elements [20,21], as well as for the preparation of composite materials
for column chromatography [22–24]. Carbamoylmethylphosphine oxides modified with
a dialkylamidomethyl coordination group in the methylene bridge are potential neuropro-
tective agents [25,26]. Manganese (II) complexes with CMPO ligands exhibit luminescent
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properties [27]. Palladium complexes containing phosphoryl-substituted CMPO as ligand
demonstrate catalytic activity in Suzuki reaction [28].

Although carbamoylmethylphosphine oxides have found active practical applica-
tion for a long time, their spatial structure has been poorly studied. The literature
contains data on the structure of complexes of CMPO with rare earth elements and ac-
tinides [17,29,30], manganese (II) [27], and mercury (II) [31] in the solid state. The crys-
tal structures of (diethylcarbamoyl)methyldiphenylphosphine oxide and its protonated
form [32], diphenylmorpholine carbamoylmethyl phosphine oxide [33], diphenyl-N,N-
dimethylcarbamoylmethylphosphine oxide [34], N-aryl-substituted CMPO modified with
a phosphoryl group, and its complexes with Pd (II) and Re (I) [35] were determined by X-
ray diffraction. Information on the structure in solution is available only for P(X)-modified
(X = O, S) N-aryl-substituted CMPOs: experimental and theoretical conformational analysis
by the methods of dipole moments and quantum chemistry showed that in solution, these
compounds exist as an equilibrium of several conformers with intramolecular hydrogen
bonds H· · ·X [36]. The deficiency of data on the CMPO’s conformational behavior is a prob-
lem in describing the coordinating properties of such compounds and explaining the reac-
tion mechanisms with their participation. N-Alkyl-N-[2-(diphenylphosphoryl)ethyl]amides
of diphenylphosphorylacetic acid were synthesized recently [37], but their polarities and
conformational structures have not been studied.

In the present work, we investigated the spatial structure of N-methyl-N-[2-(diphenyl-
phosphoryl)ethyl]diphenylphosphorylacetamide 1, N-butyl-N-[2-(diphenylphosphoryl)
ethyl]diphenylphosphorylacetamide 2, and N-octyl-N-[2-(diphenylphosphoryl)ethyl]diph-
enylphosphorylacetamide 3 (Scheme 1) by the methods of dipole moments, IR spectroscopy,
and quantum chemistry DFT B3PW91/6-311++G(df,p).
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2. Results and Discussion
2.1. Methodology

The studied amides of phosphorylacetic acid (phosphorylacetamides) 1–3 are poly-
functional polar compounds. Two phosphoryl groups with bulky phenyl substituents at
the phosphorus atom are linked through alkyl bridges by an amide group; there is also
a flexible alkyl substituent at the nitrogen atom. All fragments of a molecule can freely
rotate about single bonds, and functional groups can participate in intra- and inter-
molecular non-covalent interactions, which leads to the emergence of a large number of
possible conformers.

The method of dipole moments is a sensitive instrument for the determination of
structure and the study of fine features of spatial and electronic structure of polar organic
and organoelement compounds in solution. To determine the experimental values of
the dipole moments, we used the second Debye method based on the measurement of
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the dielectric permittivity of the dilute solutions of the polar substance in a nonpolar
solvent [38].

To search the possible conformations of isolated molecules of 1–3, we applied the
Density Functional Theory (DFT) with B3PW91 hybrid functional. This method has been
successfully used to study the polarity and spatial structure of similar organophosphorus
compounds with double bond phosphorus–chalcogen and aryl substituents [36,39]. The
choice of the B3PW91 method was also based on the data [40].

2.2. Polarity of Phosphorylacetamides 1–3

We have determined previously unknown polarities of compounds 1–3. The exper-
imental values of the dipole moments were determined in benzene solutions using the
second Debye method based on the measurement of the dielectric constant of the dilute
solutions of a polar substance in a nonpolar solvent. The experimental dipole moments of
1–3 are listed in Table 1; their values are sufficiently high (Table 1) and are typical for the
polarities of the compounds of tetra-coordinated phosphorus (2.5–5.0 Debye) [41].

Table 1. Coefficients of calculated equations (α, γ), orientation polarizabilities (Por.), and experimental
dipole moments (µ) of compounds 1–3 in benzene.

Compound α γ Por., cm3 µ, D

1 6.106 0.303 547.82 5.15
2 5.070 0.214 496.84 4.90
3 4.091 0.259 432.32 4.77

2.3. Experimental and Theoretical Conformational Analysis of Phosphorylacetamides 1–3

Conformers for the compounds were built using the Gauss View 6.0 imaging software.
All possible conformations for compounds 1–3 were built by sequential rotation of the
parts of the molecules relative to single bonds. Conformations with overlapping atoms or
with a too close arrangement, which does not correspond to the physical meaning, were
immediately discarded. Thus, there were about a thousand conformers. First, the calcula-
tions were carried out for them using small basis set 6-31G(d). Based on these results, we
have discarded degenerate structures. Then, conformers with high relative energies (more
than 15 kJ/mol) were discarded as unlikely. At the next stage, the calculations were carried
out using the extended basis set 6-311++G(df,p). We considered the preferred conformers
with relative energies less than 6 kJ/mol without taking into account the mirror isomers
with identical energies and theoretical dipole moments. For all preferred conformers, their
relative energies and theoretical polarities were computed, and the dipole moments were
calculated according to the vector-additive scheme (Table 2). Conformational diversity of
the compounds 1–3 is due to the presence of a large number of rotation axes and several
functional groups in their molecules. The percentage of conformers in the mixture was
calculated on the basis of the theoretical values of Gibbs energies (Table 2).

According to the results of theoretical calculations, five energetically preferred con-
formers were found for N-methylacetamide 1 (Figure 1); their characteristics are listed in
Tables 2 and 3. In conformers 1a–1e, the phosphorus atoms have a pyramidal structure, the
phenyl substituents have cis- or gauche-orientation, and the methyl or ethyl bridges have
gauche-orientation relative to the P=O bonds (α, β, γ, ι, κ, and λ angles in Table 3).
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Table 2. Relative energies (∆E), Gibbs free energies (∆G, 298.15 K) (kJ/mol), theoretical (µtheor) and
calculated by the vector-additive scheme (µcalc)) dipole moments (D), percentage (n) of preferred
conformers of 1–3 according to DFT B3PW91/6-311++G(df,p).

Conformer ∆E ∆G µtheor µcalc n, %

1a Z, syn 0.0 0.0 5.67 4.75 41.3
1b E, syn 1.5 0.4 5.44 5.15 35.3
1c Z, syn 2.9 8.2 1.72 1.77 1.5
1d E, anti 3.7 1.6 5.53 5.84 21.5
1e Z, anti 5.6 11.5 3.74 3.40 0.4
2a Z, syn 0.0 2.1 5.48 4.74 23
2b E, syn 1.6 0.0 5.22 5.33 55
2c Z, syn 3.0 9.8 2.35 2.05 1
2d Z, syn 3.4 5.7 5.71 4.77 6
2e E, syn 5.1 6.0 5.54 5.51 5
2f E, anti 5.4 4.3 5.30 5.80 10
3a Z, syn 0.0 1.8 5.44 4.75 21
3b E, syn 1.5 0.0 5.18 5.43 43
3c Z, syn 2.9 9.3 2.34 2.28 1
3d Z, syn 3.4 5.0 5.69 4.32 6
3e E, syn 5.0 3.8 5.55 5.44 9
3f E, anti 5.3 2.0 5.27 5.80 20
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Table 3. Selected dihedral angles (degree) for the preferred conformers of 1–3 according to DFT
B3PW91/6-311++G(df,p): α O1 = P1–C1–C2, β O1 = P1–C3–C4, γ O1 = P1–C6–C7, δ P1–C6–C7 = O3,
ε O3 = C7–N–C15, ζ C7–N–C15–C16, η C15–N–C8–C9, θ N–C8–C9–P2, ι C8–C9–P2 = O2,
κ O2 = P2–C10–C11, λ O2 = P2–C13–C14.

α β γ δ ε ζ η Θ ι κ λ

1a −1 22 82 93 0 - −84 168 −65 −14 7
1b 6 24 75 99 −178 - 100 −179 60 8 31
1c 59 12 47 89 −2 - −73 −166 41 72 5
1d 7 25 77 104 173 - −94 178 −61 −30 −9
1e 61 15 71 100 3 - 80 134 −58 36 17
2a −1 22 82 92 0 87 −84 167 −65 −15 7
2b 6 25 74 97 −179 −97 100 −178 60 8 31
2c 59 12 59 76 −3 −84 −92 −153 49 72 5
2d −2 22 79 95 −1 −77 −79 168 −67 −15 7
2e 7 26 74 98 −179 −97 100 −179 60 9 31
2f 6 24 77 100 −179 −102 −109 179 −60 −30 −8
3a −1 22 81 92 −1 87 −84 168 −65 −14 7
3b 6 25 74 97 −179 −96 100 −178 60 8 31
3c 58 13 60 76 −3 −84 −91 −153 49 70 5
3d −1 23 79 95 −1 −77 −79 167 −68 −15 6
3e 8 26 75 103 179 121 108 −179 60 8 31
3f 6 25 77 100 −179 −101 −108 179 −60 −29 −7

The amide fragment is flat, the carbonyl and methyl groups have Z-orientation relative
to the Csp2–N bond in conformers 1a, 1c, 1e, and E-orientation in 1b and 1d; the bulky
diphenylphosphoryl fragments are syn-located relative to amide plane in conformers 1a–1c
and anti-located in 1d and 1e (Figure 1).

The conformers 1a–1e differ in the arrangement of the following bonds relative to
each other: the P1–Csp3 and C=O bonds have synclinal orientation in 1c and anticlinal
orientation in all other conformers; the N–Csp3 and Csp3–P2 bonds are practically coplanar
in conformers 1a–1d (antiperiplanar orientation), and they have anticlinal orientation in
1e. The Csp3–Csp3 and N–Csp3(methyl) bonds have synclinal orientation in conformers
1a, 1c, 1e, and anticlinal orientation in 1b and 1d; that is, the ethyl fragment is practically
perpendicular to the amide plane (Table 3). The N–Csp3 and Csp3–P2 bonds lie in the same
plane in 1a–1e (θ angle, Table 3).

All conformers 1a–e are additionally stabilized by intramolecular hydrogen contacts
(Figure 1, Table 4). In conformers 1b and 1d, there is an interaction between the oxygen atom
of the phosphoryl group P1=O and the hydrogen atom of the methyl substituent, resulting
in the formation of seven-membered intramolecular heterocycles. The bifurcate hydrogen
bond between the oxygen atom of the P1=O group and the hydrogen atoms of the ethylene
bridge and one of the phenyl rings at the second diphenylphosphoryl group is observed
in 1a, 1c, and 1e, resulting in the formation of seven- or eight-membered intramolecular
cycles. In addition, in conformer 1c, H-contacts between the oxygen atom of the second
phosphoryl group P2=O and the hydrogen atom of one of the phenyl substituents at the P1
atom (C2–H1· · ·O2=P 2 2.391 Å, C2–H1· · ·O2 156◦), as well as between the oxygen atom
of the carbonyl group and the hydrogen atom of the other phenyl substituent at the P1
atom (C5–H2· · ·O3–C7 2.300 Å, C5–H2· · ·O3 141◦) are observed. The second bifurcate
bond is formed by the oxygen atom of the P2 = O group and hydrogen atoms of the
phenyl ring at the first phosphorus atom and the methylene bridge (C2–H1· · ·O2 = P2
2.304 Å, C2–H1· · ·O2 167◦ and C6–H3· · ·O2=P2 2.283 Å, C6–H3· · ·O2 164◦ respectively)
in conformer 1e.
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Table 4. Selected geometry characteristics of hydrogen bonds (distance, Å; angle, degrees) according
to DFT B3PW91/6-311++G(df,p).

H5· · ·O1 C9–H5· · ·O1 H6· · ·O1 C12–H6· · ·O1

1a 2.194 153 2.339 164
1b 2.247 * 151 *
1c 2.160 144 2.305 157
1d 2.236 152
1e 2.175 ** 152 ** 2.422 154
2a 2.189 154 2.341 164
2b 2.271 * 153 *
2c 2.152 162 2.255 172
2d 2.248 147 2.323 163
2e 2.259 * 153 *
2f 2.189 154 2.350 163
3a 2.272 * 153 *
3b 2.162 161 2.248 172
3c 2.250 147 2.323 163
3d 2.260 * 153 *
3f 2.194 153 2.339 164

* H7· · ·O1, C15–H7· · ·O1; ** H4· · ·O1, C8–H4· · ·O1.

Elongation of the alkyl substituent at the nitrogen atom led to an increase in the num-
ber of energetically preferred conformers of N-butyl-N-[(2-(diphenylphosphoryl)ethyl]
diphenylphosphorylacetamide 2 to 6 (Figure 2); their characteristics are listed in
Tables 2 and 3. The common features of conformers 2a–f are a pyramidal structure of
phosphorus atoms and a planar amide fragment, which are also characteristic for conform-
ers 1a–e. In conformers 2a–f, the phenyl substituents are predominantly cis-oriented, and
the methyl or ethyl bridges are gauche-orientated relative to the P = O bonds (α, β, γ, ι, κ,
and λ angles in Table 3).

The carbonyl group and butyl substituent at the nitrogen atom have mutual Z-
orientation in conformers 2a, 2c, 2d, and E-orientation in 2b, 2e, and 2f (ε angle,
Table 3); the bulky diphenylphosphoryl fragments are syn-located relative to amide plane
in conformers 2a–e and anti-located in 2f (Figure 2).

The difference between conformers is due to the different mutual arrangement of the
following bonds: P1–Csp3 and Csp2=O bonds have synclinal orientation in 2c and anticlinal
orientation in all other forms (δ angle, Table 3). The Csp3–Csp3 and N–Csp3(butyl) bonds
have synclinal orientation in 2a and 2d, and anticlinal orientation in 2b, 2c, 2e, and 2f (η
angle, Table 3); the N–Csp3 and Csp3–P2 bonds are antiperiplanar in 2a–2f (θ angle, Table 3).

An additional variety of conformers 2a–f compared to compound 1 is due to the pres-
ence of a longer alkyl substituent. However, the difference between preferred conformers is
only due to the rotation relative to the N–Csp3(R) bond, because conformers with a zigzag
alkyl radical possess low energies. The Csp2–N and Csp3(R)–Csp3(R) bonds have synclinal
orientation in 2a, 2c, and 2d and anticlinal orientation in 2b, 2e, and 2f (ζ angle, Table 3).

For conformers 2a–d and 2f, an additional stabilization effect is observed due to the
formation of intramolecular hydrogen contacts (Table 4). In 2b and 2f, the interaction
occurs between the oxygen atom of the group P1=O and one of the hydrogen atoms of
the butyl substituent, resulting in the formation of seven-membered intramolecular rings.
In conformers 2a, 2c, 2d, and 2f, a bifurcate hydrogen bond is observed between the
oxygen atom of the group P1=O and the hydrogen atoms of the ethylene bridge and one of
the phenyl rings at the P2 atom, resulting in the formation of seven- or eight-membered
intramolecular cycles. In addition to the bifurcate bond, a contact between the oxygen atom
of the second phosphoryl group and the hydrogen atom of one of the phenyl substituents
at the P1 atom is formed in conformer 2c (C2–H1· · ·O2=P2 2.257 Å, C2–H1· · ·O2 176◦).

According to the quantum chemical calculations, for N-octyl-N-[(2-(diphenylphosphoryl)
ethyl]diphenylphosphorylacetamide 3, six energetically preferred conformers were found
(Figure 3); their characteristics are listed in Tables 2 and 3. As for compounds 1 and 2,
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conformers 3a–f are characterized by a pyramidal structure of the phosphorus atoms and
a flat structure of the nitrogen atom. In conformers 3a–f, the phenyl substituents are pre-
dominantly cis-oriented and the methyl or ethyl bridges are gauche-orientated relative to
the P=O groups (α, β, γ, ι, κ, and λ angles in Table 3).
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As in the case of butyl substituted amide 2, the carbonyl group and octyl sub-
stituent at the nitrogen atom have mutual Z-configuration in conformers 3a, 3c, 3d, and
E-configuration in 3b, 3e, and 3f (dihedral angle ε, Table 3); the diphenylphosphoryl frag-
ments are syn-located relative to amide plane in conformers 3a–e and anti-located in 3f
(Figure 2).

Conformers 3a–e differ in the structure of the carbamoylmethyl fragment and the
ethylene bridge; the P1–Csp3 and C=O bonds are synclinal in 3c, while in the rest of the
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conformers, these bonds are anticlinal (dihedral angle δ, Table 3). The Csp3–Csp3 and
N–Csp3(R) bonds are synclinal in 3a and 3d, and anticlinal in 3b, 3c, 3e, and 3f (dihedral
angle η, Table 3). The N–Csp3 and Csp3–P2 bonds have antiperiplanar mutual arrangement
in conformers 3a–f (dihedral angle θ, Table 3).

An additional difference between conformers is due to the rotation of the octyl sub-
stituent relative to the N–Csp3(R) bond. The Csp2–N and Csp3(R)–Csp3(R) bonds have
mutual synclinal arrangement in 3a, 3c, and 3d and anticlinal arrangement in 3b, 3e, and
3f (dihedral angle ζ Table 3).

The intramolecular hydrogen contacts are possible in conformers 3a–3d and 3f
(Table 4). In conformers 3b and 3f, an interaction between the oxygen atom of the P1=O
group and one of the hydrogen atoms of the octyl substituent is observed, resulting in
the formation of seven-membered intramolecular cycles. The bifurcate hydrogen bonds
between the oxygen atom of the first phosphoryl group and the hydrogen atoms of the ethy-
lene bridge and one of the phenyl rings at the P2 atom arise in conformers 3a, 3c, 3d, and
3f. Moreover, a contact between the oxygen atom of the second phosphoryl group and the
hydrogen atom of one of the phenyl substituents at the P1 atom is formed in conformer 3c
(C2–H1· · ·O2 = P2 2.273 Å, C2–H1· · ·O2 176◦).

It should be noted that in conformers 1a, 2a, and 2d, 3a, and 3d, the phosphoryl
group P1=O and one of the phenyl substituents at the P1 atom have a completely eclipsed
cis-orientation (α angle, Table 3); their coplanar arrangement promotes p,π-conjugation
in the molecules and additionally stabilizes these conformers (Figure 4 and Figure S1).
A similar fact was previously described for (arylcarbamoylmethyl)diphenylphosphine
oxides and sulfides [38].

Conformers 1c, 1e, 2c, and 3c have the smallest dipole moments, both theoretical
and calculated by the vector-additive scheme (exaltation between the experimental and
calculated values—∆µ is 3.38, 1.75, 2.85, and 2.49 D, respectively—see Tables 1 and 2),
which can presumably be explained by the largest number of intramolecular hydrogen
contacts in these forms, causing a decrease in their dipole moments. However, these
low-polarity forms have slightly higher Gibbs energies, and their content in conformational
equilibrium is insignificant (Table 2).

We have registered the IR spectra of compounds 1–3 in the solid state, in the melt,
and in solution of the trichloromethane (Figure 5, Figures S2 and S3). The comparison of
IR spectra of 1–3 showed a change in the number of bands in the range of 700–800 cm−1,
corresponding to the out-of-plane deformation vibrations of the C–H bonds in the phenyl
substituents. For compound 1, three absorption bands are observed in the melt, whereas
seven bands are observed in the solid sample: the 717 cm−1 band splits in two (717 cm−1

and 724 cm−1), and new bands at 737 cm−1, 758 cm−1, and 770 cm−1 appear. In the case of
compound 2, there are also three absorption bands in the melt and seven bands in the solid
state: the 717 cm−1 band splits in two (715 cm−1 and 723 cm−1), the 793 cm−1 band splits
in two (790 cm−1 and 795 cm−1), and new bands at 740 cm−1 and 774 cm−1 appear. The IR
spectra of 3 also contain three vibrational bands in the melt and six bands in the solid state.
New bands at 760 cm−1, 777 cm−1, and 809 cm−1 appear. These IR spectral data indicate
the presence of conformational equilibrium in acetamides 1–3.

It should be noted that there is no noticeable shift and no change in the number of
vibration bands of the phosphoryl and carbonyl groups when changing the state from solid
to liquid (Table 5). A split peak is observed for the stretching vibrations of the P=O bond in
the spectrum of the solid sample of 1 as well as in simulated spectra of conformers 1a–e,
2a–f, and 3a–f. The theoretical frequencies of the stretching vibrations of the C=O and P=O
groups were calculated using the scaling factor 0.96 [42].
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Table 5. Selected vibration frequencies of the phosphoryl and carbonyl groups of 1–3; theoretical
values are listed for conformers a–f.

P=O C=O

1 2 3 1 2 3

νexp solid 1179, 1188 1187 1181 1648 1642 1632
νexp melt 1194 1194 1195 1643 1640 1641

νexp solution 1184 1184 1182 1639 1639 1634
νtheor a 1178, 1187 1177, 1182, 1194 1179, 1184, 1187 1650 1644 1644
νtheor b 1187, 1192 1190, 1193 1188, 1192, 1193 1642 1639 1639
νtheor c 1193 1162, 1175 1162, 1175 1641 1652 1652
νtheor d 1171, 1181 1179, 1181, 1191 1179, 1184 1647 1643 1643
νtheor e 1180, 1183 1190, 1194 1191, 1194 1659 1632 1632
νtheor f - 1190, 1193 1192, 1193 - 1635 1635

A comparison of experimental and calculated according to vector scheme dipole
moments, IR data, and theoretical results showed that in solution, compounds 1–3 exist as
a conformational equilibrium of several forms, among which highly polar ones prevail.

Preferred conformers 1a–e, 2a–f, and 3a–f can be divided into two groups, with Z-
or E-configuration of the carbonyl and alkyl groups relative to the Csp2–N bond in the
planar amide fragment; in addition, the phosphoryl-containing fragments can be syn- or
anti-oriented relative to the amide plane (Table 2, Figure 6).

Molecules 2021, 26, x FOR PEER REVIEW 12 of 16 
 

 

Preferred conformers 1a‒e, 2a‒f, and 3a‒f can be divided into two groups, with Z- or 
E-configuration of the carbonyl and alkyl groups relative to the Csp2‒N bond in the planar 
amide fragment; in addition, the phosphoryl-containing fragments can be syn- or an-
ti-oriented relative to the amide plane (Table 2, Figure 6). 

 
Figure 6. Structures of preferred conformers of 1–3. 

According to NMR spectroscopy data (1H, 13C{1H}, 31P{1H}, in CDCl3 solutions), 
diphenylphosphinylacetic acid amides 1‒3 exist as two conformers in a ratio of ≈2.5‒3.0:1, 
depending on the structure of the alkyl substituent at the nitrogen atom [37]. However, it 
was not possible to establish the structure of these two conformers. 

A comparative analysis of the obtained experimental and theoretical results and the 
data of NMR spectroscopy [37] allowed us to conclude that in solution, compounds 1‒3 
exist as two sets of conformers: in the first set, the C=O and alkyl groups have 
Z-configuration in rotamers 1a, 1c, and 1e; 2a, 2c, and 2d; 3a, 3c, and 3d, while in the 
second set, these groups have E-configuration in rotamers 1b and 1d; 2b, 2e, and 2d; 3b, 
3e, and 3d, and in all forms except 1e, 2f, and 3f, the phosphoryl-containing fragments 
are syn-located relative to the plane of the amide fragment. We believe that the first set of 
conformers corresponds to the minor conformer, and the second set corresponds to the 
majority conformer, found by NMR spectroscopy data, which is confirmed by the total 
conformer ratio (Table 2). Elongation of the alkyl substituent at the nitrogen atom (me-
thyl‒butyl‒octyl) in a series of 1‒2‒3 led to an increase in the number of preferred con-
formers from five for 1 to six for 2 and 3. However, the structures of the corresponding 
preferred conformers differ slightly, and steric factors—a flat amide fragment, the size of 
bulky phenyl groups, and the configuration of alkyl bridges—are important. 

3. Materials and Methods 
3.1. Materials 

N-methyl-N-[(2-(diphenylphosphoryl)ethyl]diphenylphosphorylamide 1, 
N-butyl-N-[(2-(diphenylphosphoryl)ethyl] diphenylphosphorylacetamide 2, and 
N-octyl-N-[(2-(diphenylphosphoryl)ethyl] diphenylphosphorylacetamide 3 were syn-
thesized according to the following procedure [37]. 

3.2. IR Spectroscopy 
The infrared spectra of crystals were collected on a FTIR Bruker Vertex 70 spec-

trometer (Bruker, Ettlingen, Germany) (600‒4000 cm−1) with a single reflection, germa-
nium crystal ATR accessory (MIRacle, PIKE Technologies) purged under dry air to re-
move atmospheric water vapor. The interferograms were recorded with a resolution of 2 
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According to NMR spectroscopy data (1H, 13C{1H}, 31P{1H}, in CDCl3 solutions),
diphenylphosphinylacetic acid amides 1–3 exist as two conformers in a ratio of ≈2.5–3.0:1,
depending on the structure of the alkyl substituent at the nitrogen atom [37]. However, it
was not possible to establish the structure of these two conformers.

A comparative analysis of the obtained experimental and theoretical results and
the data of NMR spectroscopy [37] allowed us to conclude that in solution, compounds
1–3 exist as two sets of conformers: in the first set, the C=O and alkyl groups have Z-
configuration in rotamers 1a, 1c, and 1e; 2a, 2c, and 2d; 3a, 3c, and 3d, while in the second
set, these groups have E-configuration in rotamers 1b and 1d; 2b, 2e, and 2d; 3b, 3e,
and 3d, and in all forms except 1e, 2f, and 3f, the phosphoryl-containing fragments are
syn-located relative to the plane of the amide fragment. We believe that the first set of
conformers corresponds to the minor conformer, and the second set corresponds to the
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majority conformer, found by NMR spectroscopy data, which is confirmed by the total
conformer ratio (Table 2). Elongation of the alkyl substituent at the nitrogen atom (methyl–
butyl–octyl) in a series of 1–2–3 led to an increase in the number of preferred conformers
from five for 1 to six for 2 and 3. However, the structures of the corresponding preferred
conformers differ slightly, and steric factors—a flat amide fragment, the size of bulky
phenyl groups, and the configuration of alkyl bridges—are important.

3. Materials and Methods
3.1. Materials

N-methyl-N-[(2-(diphenylphosphoryl)ethyl]diphenylphosphorylamide 1, N-butyl-
N-[(2-(diphenylphosphoryl)ethyl] diphenylphosphorylacetamide 2, and N-octyl-N-[(2-
(diphenylphosphoryl)ethyl] diphenylphosphorylacetamide 3 were synthesized according
to the following procedure [37].

3.2. IR Spectroscopy

The infrared spectra of crystals were collected on a FTIR Bruker Vertex 70 spectrometer
(Bruker, Ettlingen, Germany) (600–4000 cm−1) with a single reflection, germanium crystal
ATR accessory (MIRacle, PIKE Technologies) purged under dry air to remove atmospheric
water vapor. The interferograms were recorded with a resolution of 2 cm−1, 128 scans,
and Fourier transformed using a Blackman–Harris apodization function. The thin films
of molten compounds were produced by the heating of crystal between KBr plates in
home-made electrical oven. Temperature was measured by the PT100 sensor and was
kept constant using a PID controller to ensure a standard deviation smaller than 1 K. The
solid phase of samples was produced by slow cooling of thin film of molten compound
(liquid) between KBr plates. The crystallization of the films was observed visually between
crossed polarizers. The comparison spectra of the solid phases after melting and followed
crystallization and the crystals of the same compounds showed their identity. Thus, there
was no decomposition of the samples studied upon melting. KBr cells were used with
a spacer (0.2 mm) to achieve the best signal/noise ratio. Concentrations of compounds
were varied from 0.05 to 0.1 mol/L. Chloroform purified using molecular sieves was used
as a solvent.

3.3. Dipole Moments

The experimental values of the dipole moments were determined using the second
Debye method [38]. Physical parameters of 1–3 were measured for series consisting of
4–6 solutions in benzene at 25 ◦C. The dielectric permittivities of solutions of 1–3 were
determined on a BI-870 instrument (Brookhaven Instruments Corporation, New York,
USA); the accuracy is±0.01. The refractive indices of solutions were measured on a RA-500
refractometer (Kyoto Electronics, Kyoto, Japan); the accuracy is ±0.0001.

The experimental dipole moments were calculated by the Debye Equation (1) [38]:

µ = 0.01283
√

Por.T. (1)

The orientation polarizabilities Por. were calculated by the Guggenheim-Smith
Equation (2) [43,44]:

Por. =
M
d

[
3α

(ε0 + 2)2 −
3γ(

n2
0 + 2

)2

]
(2)

where M is the molecular weight of a substance, d is the solvent density, α and γ are slopes
of the εi–wi and n2

i –wi plots; εi, ni, and wi are the dielectric constant, refractive index, and
mass fraction of the solute of the ith solution, respectively. Equations for α and γ and the
εi–wi and n2

i –wi plots (Figures S4–S6) are given in Supplementary Materials.
In the calculations of dipole moments according to the vector-additive scheme, we

used the theoretical geometry parameters and following dipole moments of bonds and
groups: m(CPh→P) 1.09 D, calculated from µexp (C6H5)3P [41]; m(C=>O) 1.94 D [45];
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m(P=>O) 2.94 D, calculated from µexp C6H5P=O [41]; m(Csp3→P) 0.83 D [41]; m(Csp3→Csp2)
0.75 D, calculated from µexp C6H5CH3 [38]; m(N→Csp2) 0.94 D, calculated from µexp
CH3C(O)NH2 [38]; m(H→Csp3) 0.28 D [46].

3.4. Quantum Chemical Calculations

Quantum chemical calculations with full geometry optimization were performed
using the density functional theory method B3PW91 [47,48] and the 6-311++G(df,p) [49] ex-
tended basis set (calculations of the molecules in vacuum) using a GAUSSIAN 09 software
package [50]. In all cases, the geometric parameters of the molecules were fully optimized.
The solvent has not been taken into account. Correspondence of the found stationary
points to the energy minimums was confirmed by calculation of the second derivatives of
energy with respect to the atom coordinates. All structures identified as energy minima
were characterized by Hessians containing only positive frequencies.

4. Conclusions

We have determined the polarities and carried out experimental and theoretical conforma-
tional analysis of N-methyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide,
N-butyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide, and N-octyl-N-
[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide by the methods of dipole
moments, IR spectroscopy, and DFT calculations.

In solution, compounds 1–3 exist as a conformational equilibrium of several forms
with a predominance of highly polar rotamers. Preferred conformers 1a–e, 2a–f, and 3a–f
are divided into two groups in which the carbonyl group and alkyl substituent have Z- or E-
configuration, and the phosphoryl-containing fragments are syn- or anti-located relative to
the amide plane. The substituents at the phosphorus atoms have eclipsed cis- or staggered
gauche-orientation relative to the phosphoryl groups, and the eclipsed cis-orientation of
the substituents is due to the presence of intramolecular hydrogen bonds P = O· · ·H–
Cphenyl or p,π-conjugation between the phosphoryl group and the phenyl ring. Additional
stabilization of preferred conformers of 1–3 is provided by various intramolecular hydrogen
contacts with the participation of oxygen atoms of the phosphoryl or carbonyl groups and
hydrogen atoms of the methylene and ethylene bridges, alkyl substituents, and phenyl
rings. However, steric factors, such as a flat amide fragment, the size of bulky phenyl
groups, and the configuration of alkyl bridges, make a significant contribution to the
realization of preferred conformers.

The studied tridental phosphorylated acetamides are prospective extractants of var-
ious metal ions and ligands for the preparation of metal complexes with catalytic and
biological activity. The results of the present study can be useful for the prediction and
rationalization of properties and reactivity of modified carbamoylphosphine oxides.

Supplementary Materials: Figure S1: IR spectra of compound 2 in different aggregate states,
Figure S2: IR spectra of compound 3 in different aggregate states, Figure S3. Visualization of
the molecular orbitals for 1e (the interaction between the P = O bond and phenyl substituents is
absent). The positive and negative potentials are shown as blue and red areas, respectively, Equations
for α and γ calculations (Guggenheim–Smith equation) and the εi–wi and n2

i –wi plots, Figure S4.
The εi–wi and n2

i –wi plots for compound 1. Figure S5. The εi–wi and n2
i –wi plots for compound 2.

Figure S6. The εi–wi and n2
i –wi plots for compound 3.
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