
molecules

Article

Antibacterial Activities and Molecular Docking of Novel
Sulfone Biscompound Containing Bioactive
1,2,3-Triazole Moiety

Huda R. M. Rashdan 1,* , Ihsan A. Shehadi 2, Mohamad T. Abdelrahman 3 and Bahaa A. Hemdan 4

����������
�������

Citation: Rashdan, H.R.M.; Shehadi,

I.A.; Abdelrahman, M.T.; Hemdan,

B.A. Antibacterial Activities and

Molecular Docking of Novel Sulfone

Biscompound Containing Bioactive

1,2,3-Triazole Moiety. Molecules 2021,

26, 4817. https://doi.org/10.3390/

molecules26164817

Academic Editor: Jianmin Gao

Received: 1 July 2021

Accepted: 7 August 2021

Published: 9 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research
Division, National Research Centre, Dokki, Cairo 12622, Egypt

2 Chemistry Department, College of Science, University of Sharjah, Sharjah 27272, United Arab Emirates;
ishehadi@sharjah.ac.ae

3 Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo 12311, Egypt;
mohamadt.abdelrahman@gmail.com

4 Water Pollution Research Department, Environmental Research Division, National Research Centre,
33 El Buhouth Street, Cairo 12622, Egypt; be.hemdan@iitg.ac.in

* Correspondence: hr.rashdan@nrc.sci.eg

Abstract: In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived
from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and
it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected.
MICs values and ATP levels were determined. Further, toxicity performance was measured using
MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes:
DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the
studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as
Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity
results showed that the compound is biocompatible and safe without toxic impact. The molecular
docking of the compound showed interactions within the pocket of two enzymes, which are able
to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this
study recommends that the established compound could be an outstanding candidate for fighting a
broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and
pharmaceutical applications.
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1. Introduction

As the resistance of pathogenic bacteria to the available antibiotics is rapidly becoming
a significant international challenge, the development of new compounds to combat antibi-
otic resistance is among the most significant facets of preliminary antimicrobial research. In
particular, it is recognized that antibacterial medications do not even have specific potency,
regardless of the biological similarity between human cells and types of pathogens [1].

A broad range of pathways are involved in the emergence of resistant bacteria, in-
cluding the genetic modifications of horizontal genome transmission and alterations [2].
Additionally, the excessive consumption and abuse of antibiotics can produce multi-drug
resistant bacteria that do not require a prescription, leading to the appearance and de-
ployment of antibiotic resistance [3]. Fundamental features have been ascertained in
various bacterial strains, encouraging them to resist and block antibiotic attacks [4]. The
isolated strains of Staphylococcus aureus possess significant resistance to many types of
antibiotics, including lactams, glycopeptides, aminoglycosides, and fluoroquinolones [5].
Moreover, Pseudomonas aeruginosa is distinguished by its capability to persist in highly
antibiotic-resistant biofilm accumulation [6].
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Consequently, a large number of studies should be devoted to producing new antibac-
terial drugs with entirely different chemical formulations and specific potential applica-
tions [7]. For some compounds with 1,2,3-triazole, their antimicrobial activity has been
recognized [8–13]. Dapsone, a sulphone analog known as diaminodiphenyl sulfone (DDS),
is a standard antibiotic widely used in combination with clofazimine and rifampicin for the
treatment of leprosy. It is the second-line medication for the prevention and treatment of
pneumocystis pneumonia. Additionally, it can be used to prevent toxoplasmosis in patients
with poor immune function. It has also been used for dermatitis herpetiformis, acne, and
other skin disorders [14]. It has been documented as an effective antimicrobial agent [15].

2. Results and Discussion
2.1. Chemistry

4,4′-sulfonylbis(azidobenzene)(1) was submitted to react with acetylacetone in ethanol
in the presence of sodium methoxide under reflux to afford the corresponding target
compound (Scheme 1). 1H NMR spectrum of the product showed characteristic two singlet
signals at δ 2.36 and 2.42 for the protons of 4-methyl groups, and two douplet signals at
7.75 and 8.11 for the aromatic protons; 13C-NMR showed significant signals at δ 9.74, 27.69,
126.65, 129.33, 138.10, 139.18, 141.41, 142.98, 193.33; the structure was also supported by its
mass spectrum (m/z (464)) [M+], which agrees with its molecular formula C22H20N6O4S
(details are presented in the Supplementary Chart 1 and Chart 2).
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2.2. Biology

In this study, an inhibitory zone assay was applied to assess the antibacterial properties
of the newly synthesized compound towards E. coli O157, P. aeruginosa, K. pneumonia,
S. aureus, B. subtilis, and L. monocytogenes, using an agar well diffusion assay. The obtained
results indicated that the newly synthesized compound displayed significantly higher
potency for inhibiting a broad spectrum of examined Gram-negative species, including
E. coli O157, P. aeruginosa, and K. pneumoniae at a concentration of 20 mg/ mL, with the
ZOI being 22 ± 0.14, 23 ± 0.28, and 25 ± 0.23 mm, respectively, using a disc diffusion
assay, and the ZOI being 24 ± 0.14, 26 ± 0.24 and 27 ± 0.12 mm, respectively, using a
well-diffusion assay (Table 1). Simultaneously, the ZOI values of the compound against
the examined Gram-positive species, including S. aureus, B. subtilis, and L. monocytogenes,
were 19 ± 0.26, 17 ± 0.16, and 18 ± 0.22, respectively, using the well-diffusion assay. The
obtained results show that Gram-negative bacterial species were more susceptible to the
compound than Gram-positive.

The obtained results are in agreement with El Malah et al. [16], who revealed that the
novel synthesized 1,2,3-triazoles have potent antibacterial activity against a spectrum of
bacterial species, including P. aeruginosa and S. aureus, with the inhibitory zone diameter
being around 25 and 19 mm. On another side, the width of the ZOI around discs was
smaller than that around wells. These results are compatible with El Nahrawy et al. (2021a),
who exhibited that the width of the ZOI in the well-diffusion assay is larger than the disc
diffusion assay. The ZOI width of Vancomycin as a reference drug was less than the ZOI of
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the newly synthesized compounds 2. This means that the inhibitory efficacy of the tested
compound is higher than the reference drugs (Vancomycin and Ciprofloxacin) [17] used.

Table 1. Inhibition zone testing and ZOI diameters of the synthesized compound against tested harmful bacterial strains.

Tested Bacterial
Pathogens Width of ZOI (mm)

Synthesized Compound Vancomycin Ciprofloxacin

Disc Diffusion Well Diffusion Disc Diffusion Well Diffusion Disc Diffusion Well Diffusion

E. coli O157 22 ± 0.14 24 ± 0.14 15 ± 0.22 17 ± 0.24 16 ± 0.23 18 ± 0.14
P. aeruginosa 23 ± 0.28 26 ± 0.24 17 ± 0.17 19 ± 0.11 18 ± 0.09 20 ± 0.05
K. pneumoniae 25 ± 0.23 27± 0.12 16 ± 0.15 18 ± 0.25 17 ± 0.25 19 ± 0.22
S. aureus 19 ± 0.26 22 ± 0.21 13 ± 0.24 15 ± 0.15 12 ± 0.21 14 ± 0.14
B. subtilis 17 ± 0.16 20 ± 0.23 12 ± 0.18 14 ± 0.16 10 ± 0.14 12 ± 0.13
L. monocytogenes 18 ± 0.22 21 ± 0.16 10 ± 0.20 13 ± 0.18 8 ± 0.12 11 ± 0.08

2.3. Estimation of MIC and IC50

Different concentrations of the newly tested compound were then subjected to the MIC
test to confirm their antibacterial activities further. Interestingly, as shown in Figure 1, the
tested compound revealed good antibacterial effects against all bacteria tested, with differ-
ent values of MICs depending upon the concentrations (mg/mL) and contact times (min).
The results of the MIC test exhibited hat the compound has powerful antibacterial effects
against E. coli (MIC = 40 mg/mL within 20 min), P. aeruginosa (MIC = 40 mg/mL within
10 min), K. pneumonia (MIC = 40 mg/mL within 10 min), S. aureus (MIC = 50 mg/mL within
20 min), B. subtilis (MIC = 40 mg/mL within 20 min) and L. monocytogenes (MIC = 40 mg/mL
within 30 min). Results noticed that the MIC values of the compound were lower in Gram-
negative than in Gram-positive bacteria. The antibacterial activity difference of the tested
compound could be found due to variations in chemical composition in bacterial cell walls
and its ability to enter the membranes of bacterial cells [18].

Regarding the estimated MIC values for the reference antibiotics drugs (Vancomycin
and Ciprofloxacin), the results indicated that S. aureus was more susceptible to Vancomycin,
while E. coli O157 and P. aeruginosa were more resistant than the others. On the other hand,
S. aureus was more resistant to Ciprofloxacin (Table 2).

The IC50 values for the newly synthesized compound against the investigated bacterial
strains are presented in Table 3 and Figure 2. From the IC50 value results, the compound
appears to act as a vigorous bactericidal agent against the tested bacteria. The IC50 values
of E. coli O157, P. aeruginosa, K. pneumoniae, S. aureus, B. subtilis, and L. monocytogenes were
22.42, 11.11, 16.54, 25.31, 26.66, and 31.38 µM, respectively. These results accord with the
results of El Nahrawy et al. [19]. In other words, to develop several pharmaceutical coatings
expressing anti-HIV, antitumor, and antimicrobial actions, the 1,2,3-triazole dependent
heterocycles are well manipulated [13,20–23].

2.4. Kinetic Modeling Using the Pseudo-First-Order Kinetic Model

The pseudo-first-order kinetic model was applied to estimate the inactivation fre-
quencies of the examined bacterial species after their being exposed to the studied com-
pound. The results revealed that the compound could quickly suppress the growth of
P. aeruginosa from kinetic modeling using the pseudo-first-order model, whereas the min-
imum inhibition frequency was registered for L. monocytogenes organisms. Further, the
effective concentration of the compound was the one that could efficiently suppress the
growth of all bacterial strains studied, depending on the type of bacterial species tested,
throughout various retention periods. It is significant to mention that the L. monocy-
togenes species studied were damaged over a prolonged period. The results acquired
revealed that the rate of inactivation of the tested compound as a K1 constant was rapid in
E. coli > P. aeruginosa > K. pneumoniae > S. aureus > B. subtilis > L. monocytogenes (Table 4).
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Molecules 2021, 26, 4817 5 of 15

Table 2. Estimated MIC values of reference antibiotics drugs used.

Tested Bacterial Pathogens
Reference Antibiotics Drugs Used

Vancomycin Ciprofloxacin

E. coli O157 50 µg/mL 20 µg/mL
P. aeruginosa 50 µg/mL 20 µg/mL
K. pneumonia 40 µg/mL 30 µg/mL
S. aureus 20 µg/mL 50 µg/mL
B. subtilis 30 µg/mL 40 µg/mL
L. monocytogenes 30 µg/mL 40 µg/mL

Table 3. The calculated IC50, Log IC50, and R2 of the studied compound.

Tested Bacterial Pathogens
Compound

IC50 (µM) Log IC50 (µM) R2

E. coli O157 22.42 1.35 0964
P. aeruginosa 11.11 1.02 0.945
K. pneumonia 16.54 1.21 0.936
S. aureus 25.31 1.40 0.978
B. subtilis 26.66 1.43 0.983
L. monocytogenes 31.38 1.50 0.965
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Table 4. Kinetic values (K1 (min−1)) of pseudo-first-order calculation for the newly synthesized
compound’s inactivation of tested bacterial strains.

Tested Bacterial Pathogens
The Synthesized Compound (50 mg/mL)

K1 R2

E. coli O157 0.4273 0.9688
P. aeruginosa 0.3702 0.9737
K. pneumonia 0.3001 0.9931
S. aureus 0.2981 0.9812
B. subtilis 0.2478 0.9888
L. monocytogenes 0.1847 0.9886
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2.5. Physiological Altering of Bacterial Species

As seen in Figure 3, the results revealed that all the tested bacterial species’ growth
rates decreased gradually and significantly after exposure to the new combined effective
dose of the compound. The results obtained showed that when comparing the bacterial
growth curves in all studied bacteria, the slope of the bacterial growth curve was faster and
more significant for P. aeruginosa bacteria, and conversely, the rate of decrease was lower
for L. monocytogenes species.
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In the same context, the level of ATP is an excellent indicator of the activity and
vitality of the bacterial cells and the extent of their ability to grow and cause infection and
damage. The results represented in Figure 4 revealed that the level of ATP was significantly
decreased in the bacterium P. aeruginosa compared to that in the other species tested, while
the level of decrease was lower in L. monocytogenes.
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2.6. Protein Release

In terms of protein leakage from weakened bacterial cells, as seen in Figure 5, the find-
ings showed that after submitting the cells to the successful concentration of the compound,
the quantities of protein released increased dramatically. The level of protein released by
P. aeruginosa, an indicator of Gram-negative bacteria, was increased in which the amounts
of liberated protein were greater than for other species (Figure 5). Due to the small cell
wall, porous interstitial structures, and the formation of weak lipopolysaccharides, these
results corroborate those of Jiang et al. [24], who reported that the protein release rate and
quantities from compromised E. coli cells were quicker and more meaningful, respectively
than those found in S. aureus. Therefore, it could be inferred that the studied compound
may trigger substantial morphological changes in the microbial cell wall and measurable
cell material outflow [25]. Gram-negative bacteria such as E. coli and P. aeruginosa have less
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ability to withstand environmental stress, which results in losses or deformation due to a
lack of bacterial arrangements. Softly porous bacterial cells are produced by antimicrobial
compounds [26].
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Conversely, the cell wall of Gram-positive bacterial strains makes up about 90% of
the peptidoglycan, which gives their walls more robust mechanical properties. Wher one
of these features can enhance the resistance of these microbial species to antimicrobial
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compounds [27]. Several pieces of evidence indicate that the slope in the bacterial growth
curve, as well as the level of released protein as a result of cell destruction, were more
significant in Gram-negative bacteria compared to the Gram-positive species, and this is
due to the rigid and inflexible structure of the Gram-positive cell wall, which makes it more
resistant to bactericidal agents [28].

2.7. Toxicological Performance Assay of Compound

Due to the prevalence of antibiotic-resistant species, drug manufacturers are looking
for promising alternative biocompatible antibacterial agents that do not show long-term
toxicity. Appraising cytotoxic effects is obviously a noteworthy phase in evaluating a
potential antimicrobial drug since a helpful drug must be safe and non-toxic for the
intended host. By testing its possible toxicity to the bioluminescent marine bacterium
‘Aliivibriofischeri,’ the biocompatibility of the studied compound was assessed. In Table 4,
experimental approximate EC50 % values for the tested compound are listed. The toxicity
assay was implemented to verify the newly synthesized compound’s safety, and the result
indicated toxicity records at three separate intervals (5, 15, and 30 min), and the results
showed that the compound tested had no toxic impact and was safe for humans. The
EC50 % readings after 5, 15, and 30 min were 247, 235, and 218, respectively. The results
also indicated that the tested compound’s EC50 % values were higher than 100% at various
times, indicating that the compound is non-toxic (Table 5).

Table 5. The values of Microtox®® EC50 percent concentrations of the studied compound.

Studied Compound EC50 % Conc. EC50% Degree Toxicity Level

Compound after 5 min 247 0–19 Extremely toxic
20–39 Very toxic

Compound after 15 min 235 40–59 Toxic
60–79 Moderately toxic

Compound after 30 min 218 ≥100 Non-toxic and safe

Moreover, a MMT assay was applied to measure the compound’s cytotoxic effect
by estimating the CC50 and safe dose of the tested compound against HEp-2 cell lines;
the results showed that the CC50 was 0.825 mg/mL, which means that the synthesized
compound had no cytotoxic effect on HEp-2 cells.

These results accord well with the results of El Malah et al. [16]. Similarly, cytotoxicity
testing has been performed in several other research studies, all of which confirmed that
the synthetic triazole did not show long-term toxic effects [29].

2.8. Computational Studies

Because of their vital role in DNA duplication, topoisomerase enzymes have become
a significant focus for drug developers. DNA gyrase is a type II topoisomerase that exists
within every bacterium and dictates the DNA topological status. Relaxing the supercoiled
DNA is a substantial step for either replication or transcription [30]. Therefore, blocking
this step by inhibiting DNA gyrase is the key role of many antibiotics and antimicrobial
compounds [31]. In the current study, molecular docking results showed that the com-
pound exhibited good binding affinity, with a high dock score of (−8.8 kcal/mol) recorded
against 1KZN protein (DNA gyrase), when compared with the co-crystallized drug cloro-
biocin (−9.7 kcal/mol), with both sharing some binding positions. Both the docking and
experimental results show that the compound stands as a promising antimicrobial drug
candidate. The compound showed the number of interactions that stabilize the blockage of
the 1 KZN pocket. It could form two hydrogen bonds between the two oxygen atoms of
the sulphone group, and could also form the amino acid residue Arg76 with bond lengths
of 3.16 and 3.25 Å. An attractive charge interaction between (a) aryl group and Glu50
(b) N in the triazole ring and Asp73 also took place. Another hydrophobic interaction
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occurred between the two benzene rings and residues pro79 and 78. Those two hydropho-
bic interactions are also present in the case of clorobiocin presence in the DNA gyrase
pocket (Figure 6).
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Dihydropteroate synthase (DHPS) is a critical enzyme in the biosynthetic machinery
of folic acid, which is indispensable for bacterial survival. DHPS catalyzes the reaction
of 6-hydroxymethyl-7,8-dihydropterin-pyrophosphate with p-aminobenzoic acid (pABA)
to produce the folate intermediate 7,8-dihydropteroate (DHF) [32]. Compounds that
compete with pABA and bind to the active site of DHPS inhibit it from preventing bacterial
growth. Sulfonamide antibiotics work with a similar mechanism [33]. In the current study,
compound 2 was docked against DHPS (PDB ID: 3TYE). Compound 2 could fit in the
pocket and make interactions that stabilize its docking in the active site of DHPS. Two
hydrogen bonds formed between the O atom of the terminal carbonyl and the residue
of Arg254, while the second was among the O of sulphone and Ser221. The bond length
was 3.27 and 2.9 Å, respectively. A Pi-interaction type formed between the benzene ring
and the pro69 and lys220 residues and the N of triazole and lys220. Another type of
H-bond (Pi-donor H-bond) formed between the terminal carbonyl and His256 and Lys220.
A possibly unfavorable positive–positive interaction formed between the N of triazole and
lys220. Like the co-crystallized inhibitor (sulphoneamide compound) complexed to3TYE,
the compound shared various interactions with the residues of ser221, lys220, pro69, and
arg254 in strength and nature. The ability of the compound to dock and stabilize in two
pockets of two different vital microbial enzymes makes it a promising lead for antimicrobial
drugs (Figure 7).
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3. Materials and Methods
3.1. Chemistry
3.1.1. Experimental Instrumentation

All melting points were determined on an electrothermal apparatus and are uncor-
rected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotome-
ter. 1H NMR and 13C NMR spectra were recorded in (CD3)2SO solutions on a BRUKER500
FT-NMR system spectrometer, and chemical shifts are expressed in ppm units using TMS
as an internal reference. Mass spectra were recorded on a GC-MS QP1000 EX Shimadzu.
Elemental analyses were carried out at the Microanalytical Center of Cairo University.

3.1.2. 1,1′-((Sulfonylbis(4,1-phenylene))bis(5-methyl-1H-1,2,3-triazole-1,4-diyl))bis(ethan-1-one) (2)

A mixture of 4,4′-sulfonylbis(azidobenzene) (3 g, 10 mmol) and Acetyl acetone (2 mL,
20 mmol) were stirred under reflux in ethanol containing sodium methoxide (0.5 g,
10 mmol) for 5 h; the resulting solid that formed after cooling was collected and recrys-
tallized from ethanol to give white crystals, m.p. 248–250 ◦C; yield (95%); FT-IR (KBr,
cm−1): v 2919, 2852 (CH), 1617 (C=C); 1H NMR (500 MHz, DMSO-d6): δ 2.36 (s, 6H, 2CH3),
2.42 (s, 6H, 2CH3), 7.75 (d, 4H, J = 10.0 Hz, ArH), 8.11 (d, 4H, J = 10.0 Hz, ArH);13C-NMR
(100 MHz, DMSO-d6): δ 9.74, 27.69, 126.65, 129.33, 138.10, 139.18, 141.41, 142.98, 193.33;
MS: m/z [%]: 464 (M+, 17), 450 (22), 448 (18), 378 (3), 273 (21), 177 (100), 165 (18), 77 (90),
55 (45). Analysis: calcd. For C22H20N6O4S (464): C, 56.89; H, 4.43; N, 18.09% found: C,
56.92; H, 4.39; N, 18.02%.

3.2. Biology
3.2.1. Evaluation of Antimicrobial Properties of the Synthesized Compound
Antibacterial Susceptibility Testing (AST)

The antimicrobial efficacy and zone of inhibition (ZOI) diameters of the synthesized
compound were assessed using the Kirby–Bauer agar diffusion assay (disc and well dif-
fusion) against six different kinds of pathogenic bacteria, including three Gram-negative
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(E. coli O157:H7 ATCC 35150, Pseudomonas aeruginosa ATCC 10145, and Klebsiella pneumonia
ATCC 13889) and three Gram-positive (Staphylococcus aureus ATCC 43300, Bacillus subtilis
ATCC 4342, and Listeria monocytogenes ATCC 25152) bacteria. On plates of nutrient agar for
bacterial strains, each strain’s pure colonies were sub-cultured and incubated at 37 ◦C for
24 h. McFarland standard 0.5 microbial suspensions (1.5 × 106 CFU/mL) in the saline tube
were prepared using the McFarland reader [34].

The above-mentioned checked strains were carefully dispensed with standardized
inoculum on the Mueller Hinton Agar (MHA) plates’ surface. Under aseptic circumstances,
the disc-diffusion assay was conducted. The sterile discs were saturated with 50 µL
of the newly synthesized compound at a 20 mg/mL concentration and kept in aseptic
surroundings for drying. The saturated discs were then placed tightly on the surface of the
MHA plates using sterile forceps. In the well-diffusion assay, the wells (6 mm in diameter)
in the MHA agar medium with a deep layer were punched using a sterile cork borer. A
particular volume of 50 µL of the newly synthesized compound was aseptically dispensed
into each well. The negative regulation was sterile purified water, and antibiotic resistance
(vancomycin, Ciprofloxacin) discs were applied as positive controls. After this, all plates
were inverted and placed in an incubator at 37 ◦C overnight. The zone of inhibition (ZOI)
values across the discs and wells were recorded using a Vernier caliper [35]. In addition,
the IC50 values and log IC50 record (concentrations that can eliminate fifty percent of cell
viability) for the specific compound were calculated in GraphPad Prism using nonlinear
dose-response modeling., following Lavorgna et al. [36].

3.3. Determination of Minimum Inhibitory Concentrations

The minimum inhibitory concentrations (MICs) of the synthesized compound were
assessed using a macrodilution assay. The synthesized compound concentration range
obtained was from 10–50 mg/mL. In three tubes, the positive control (media containing
antibiotic inoculum), negative control (media containing inoculum), and synthesized
compound solution (media containing the doses of the synthesized compound) were
added. After several retention times, ranging from 10–30 min, one mL of each tube was
transferred to sterile plates, and the appropriate volume of melted nutrient agar medium
was poured. Then, all inoculated plates were incubated at 37 ◦C for 24 h. By comparing the
positive and negative control tubes, MIC values were determined. MICs were characterized
as the lowest concentration with no growth in plates. The findings were presented as the
mean values for two different replicates. CLSI identified the breakpoints of MICs (µg/mL)
for antibiotics [17].

3.4. Pseudo-First-Order Kinetic Modeling

To estimate the destructive values (k1) of each bacterial species considered, kinetic
modeling was utilized to identify the number of viable cells bearing the required concen-
tration of the synthesized compound tested over different retention times (Nt) to the initial
cell numbers (N0), by using the equation below (1) [37].

log(qe − qt) = logqe −
K1t

2.303
(1)

where k1 (1 min−1) is the rate of inactivation; qe (mg·g−1), and qt (mg·g−1) are the amounts
adsorbed at equilibrium and at time t (min), respectively. A straight line of ln (qe − qt)
versus t suggested that this kinetic model was applied to the data [38].

3.5. Physiological Altering of Bacterial Strains

Functional variability in the growth and structure of the examined bacteria were
investigated by injecting 100 µL of bacterial cells into two tubes containing 50 mL of sterile
Typricase soy broth. The tested compound’s effective concentration (50 mg/mL) was
inserted into one of these tubes, while another volume (without any compound) was tested
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as a negative control. All tubes were placed in a shaking incubator at 37 ◦C, shaking at
200 rpm, and samples were collected over 24 h (n = 12 readings) every 2 hrs [19].

3.6. Bacterial Growth Rate

One ml was obtained from each specified tube to estimate optical density at 600 nm
using the spectrophotometer to calculate each studied bacterial strain [39].

3.7. Estimation of Amounts of Released Protein

The quantities of protein extracted from destroyed cells were assessed with the
Coomassie blue assay [40,41].

3.8. ATP Bioluminescence Assay

When ATP levels decrease rapidly after cell death, ATP represents a considerable
variation in cell viability. Through quantifying the extracellular ATP levels using the
luciferin-luciferase process, bacterial activities and viabilities were measured. A 30 µL ATP
aliquot solution was combined with a 270 µL luciferin-luciferase aliquot mixture through-
out this simple assay, and the mixture was ultimately applied to the optical detection cells.
Using the ATP luminometer, the luminescence patterns and luminescence intensity were
estimated and distinguished as relative light units (RLU) [42].

3.9. In Vitro Toxicological Performance Assay of the Tested Compounds

Using a Microtox® Model 500 (M500) analyzer (Modern Water, New Castle, DE, USA),
the toxic effects of the compound were verified to ensure their safe and productive use for
medicinal and biomedical applications without any harmful effects on individuals. The
toxicity level was measured at the maximum concentration (50 mg/mL) of each compound
tested [43].

The cytotoxicity assay on the HEp-2 cell lines by a colorimetric MTT assay was ap-
plied to determine the percentage of surviving cells. MTT (3,4,5-(dimethylthiazol-2-yl)
2-5-diphenyl tetrazolium bromide) is reduced to its violet formazan product by metaboli-
cally viable cells. The MTT assay was utilized to determine the compound’s cytotoxicity.
As indicated above, the cells were subjected to multiple compound concentrations and kept
in the incubator for 24 h at 37 ◦C. The MTT procedure was conducted when the culture
medium was substituted with a new medium. At 570 nm, the purple color product was
measured. [1−Absorbance of treated cells/Absorbance of untreated cells] × 100 = per-
centage cell viability. The remaining absorbance from the wells containing untreated cells
(negative control) was applied to determine the vitality of the cells. Camptothecin (5 mM,
20 L) was a positive control [44] (Soysa et al., 2014).

3.10. Computational Studies

DNA gyrase and Dihydropteroate Synthase X-ray protein structures were downloaded
from the protein data bank (www.rcsb.org, accessed on 30 June 2021) PDB ID: 1KZN, 3TYE
respectively. For both proteins, water molecules and co-crystalized ligands were removed,
then the prepared structures were saved as PDB files by BioviaDiscoverstudio2021 for
further docking steps. The CB-DOCK webserver was used for cavity detection, and
molecular docking [45] was accessed via (http://clab.labshare.cn/cb-dock/php/, accessed
on 30 June 2021) to perform a docking with its default standard protocol. The compound
was docked against 1KZN at Cavities volume 379, grid box dimensions x: 20.15, y: 23.67, z:
35.5 and box size x: 27, y: 27, z: 27. The compound was docked against 3TYE using the
same server at Cavities volume 739, grid box dimensions x: −79.12, y: 90.52, z: 96.84, and
box size x: 27, y: 27, z: 27.

4. Conclusions

1,1′-((sulfonylbis(4,1-phenylene))bis(5-methyl-1H-1,2,3-triazole-1,4-diyl))bis(ethan-1-
one) (2) was synthesized via the reaction of 4,4′-sulfonylbis(azidobenzene) (1) with acety-

www.rcsb.org
http://clab.labshare.cn/cb-dock/php/
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lacetone and sodium methoxide in ethanol. Its chemical structure was inferred from correct
microanalytical and chemical data. It was also screened to assess its antibacterial efficacy.
The reported results revealed that the tested compound exhibited outstanding antimicro-
bial properties against Gram-negative and positive strains. Hence, it might be applied in
biomedical and pharmacological uses.

Supplementary Materials: The following are available online, Chart 1: 1HNMR spectrum of com-
pound 2, Chart 2: C13NMR spectrum of compound 2.
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