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Abstract: The purpose of this study was to clarify the effects of biochar on the diversity of bacteria
and fungi in the rice root zone and to reveal the changes in soil microbial community structure in
the root zone after biochar application to provide a scientific basis for the improvement of albic
soil. Rice and corn stalk biochar were mixed with albic soil in a pot experiment. Soil samples were
collected at the rice maturity stage, soil nutrients were determined, and genomic DNA was extracted.
The library was established using polymerase chain reaction (PCR) amplification. The abundance,
diversity index, and community structure of the soil bacterial 16SrRNA gene V3 + V4 region and the
fungal internal transcribed spacer-1 (ITS1) region were analyzed using Illumina second-generation
high-throughput sequencing technology on the MiSeq platform with related bioinformatics. The
results revealed that the biochar increased the soil nutrient content of albic soil. The bacteria ACE
indexes of treatments of rice straw biochar (SD) and corn straw biochar (SY) were increased by
3.10% and 2.06%, respectively, and the fungi ACE and Chao indices of SD were increased by 7.86%
and 14.16%, respectively, compared to conventional control treatment with no biochar (SBCK). The
numbers of bacterial and fungal operational taxonomic units (OUT) in SD and SY were increased,
respectively, compared to that of SBCK. The relationship between soil bacteria and fungi in the
biochar-treated groups was stronger than that in the SBCK. The bacterial and fungal populations
were correlated with soil nutrients, which suggested that the impacts of biochar on the soil bacteria
and fungi community were indirectly driven by alternation of soil nutrient characteristics. The
addition of two types of biochar altered the soil microbial community structure and the effect of rice
straw biochar treatment on SD was more pronounced. This study aimed to provide a reference and
basic understanding for albic soil improvement by biochar, with good application prospects.

Keywords: biochar; albic soil; bacteria; fungi; community structure

1. Introduction

Albic soil is a low-yielding soil that possesses obstacles and exists widely throughout
the world. There are 32 countries or regions throughout the world that exhibit simi-
lar distributions of albic soil, and the total area of albic soil in China is approximately
5.273 million ha [1]. Due to the severe problems caused by dense physical structure, poor
nutrient content, and low biological activity, albic soil has been characterized as a low-
yielding soil [1,2]. It is therefore of great strategic significance to improve low-yielding
albic soil to ensure food security.
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Microorganisms can improve soil fertility and productivity by participating in the
degradation of organic matter, the formation of humus, the transformation of nutrients,
and the cycles of carbon, nitrogen, phosphorus, and other elements [3,4]. The microbial
community structure is closely related to soil quality and is extremely sensitive to changes
in the living environment [5]. Microbial diversity and community structure can be used
as important indicators for assessing soil health status [6]. Plant-growth-promoting rhi-
zobacteria (PGPR) are considered beneficial microorganisms to be used as biofertilizer to
promote plant growth and crop yield [7]. The PGPR in the soil act as biochemists, which
can influence soil pH, contribute to plant biomass, increase enzyme activity, and improve
mineralization (C, N) processes [8]. Various genera of rhizobacteria such as Pseudomonas,
Azospirillum, Azotobacter, Klebsiella, Enterobacter, Alcaligenes, Arthrobacter, Burkholderia, Bacil-
lus, and Serratia have been investigated to improve the growth and productivity of various
plants [9,10].

Biochar is the carbon-rich product obtained from the thermochemical conversion of
biomass under oxygen-limited conditions [11–13]. Many researchers have reported that
biochar contains high levels of carbon and has a structure with physicochemical properties,
including a well-developed pore structure, huge surface area, high degree of stability, great
adsorption properties, and abundant nutrients that are beneficial to crop yield [14]. Biochar
such as rice straw biochar can directly import N, P, K, and Si into this soil [15,16]. The corn
biochar reduced the soil bulk density and improved the soil pH, total porosity, aggregate
stability, and maximum field capacity during the critical period of soybean growth with a
high water requirement [14]. Biochar acts as a conditioner to enhance soil physicochemical
properties, a nutrient source for plants, and a carbon source, and a suitable environment
for PGPR and indigenous microbes to enhance their growth promotion activities [17].

The biochar provides a good “shelter” for the habitat and for reproduction of microor-
ganisms, and it also reduces survival competition among microorganisms [18–20]. The
biochar affects soil microbial growth, diversity, and community compositions by directly
providing growth promoters for soil biota or indirectly changing soil basic properties.
The porous structure, labile C, high pH, and electrochemical properties of biochar play
an important role in determining soil microbial abundance and communities and their
mediated N and P cycling processes [19]. However, some studies have indicated that
biochar has no effect on the overall microbial community structure [21]. The effects of
biochar on microbial community structure are related to the properties of biochar and also
to climatic conditions, crops, soil texture, and soil moisture [22].

The effects of biochar on soil microbial community structure have been studied in
various soil types [21,23,24]. However, there are few reports examining the effect of
biochar on the microbial community structure of low-yielding albic soil in Northeast
China. Improving the microbial community structure of low-yielding albic soil is of great
significance for increasing soil fertility. In this study, rice and corn straw biochar were
selected for a pot experiment, and high-throughput sequencing technology was used.
The effects of biochar on the diversity of bacteria and fungi in the rice root zone were
investigated to reveal the changes in soil microbial community structure in the root zone
after application of biochar to ultimately provide a theoretical basis for the improvement of
low-yielding albic soil.

2. Results and Discussion
2.1. Influence of Biochar on the Nutrient Content of Albic Soil

The abundant organic carbon and minerals in biochar are also beneficial for increasing
soil organic carbon content [15]. As presented in Table 1, SD and SY increased their
soil organic matter content at the rice maturity stage by 1.05% and 1.31%, respectively,
compared to that of SBCK. This may be due to the ability of biochar to adsorb unstable
organic carbon through its surface, inhibit organic carbon mineralization, and promote
the polymerization of adsorbed organic molecules to form organic matter [15]. Biochar
contains a high carbon content (50.6%) and thus directly increases the soil organic matter
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content when applied to soil [2]. In this study, the total C content of corn stalk biochar was
50.60%, and the total C content of rice straw biochar was 51.41%. Moreover, biochar can
release dissolved organic carbon (OC) [15].

Table 1. Effects of biochar on the soil nutrient content in the rice maturation stage.

pH

Organic
Matter
(OC)

(g/kg)

Alkali-
Hydrolyzed

Nitrogen
(AN) (mg/kg)

Available
Phosphorus
(AP) (mg/kg)

Available
Potassium

(AK)
(mg/kg)

Total
Nitrogen

(TN)
(g/kg)

Total
Phosphorus
(TP) (g/kg)

Total
Potassium
(TK) (g/kg)

SBCK 6.80 a 38.27 a 147.67 c 57.20 b 121.00 b 1.85 a 1.04 a 17.33 a

SD 6.30 a 38.67 a 166.67 a 62.47 a 126.00 a 1.94 a 1.08 a 17.40 a

SY 6.60 a 38.77 a 158.67 b 62.13 a 104.67 c 1.93 a 1.13 a 18.27 a

Note: SBCK: conventional control treatment with no biochar; SD: rice straw biochar; SY: corn straw biochar; a–c Columns reporting different
letters are significantly different at p < 0.05 (n = 3, LSD test).

Biochar application has been shown to significantly improve chemical properties of
problem soils. The previous findings strongly indicate that biochar amendment altered the
chemical properties, such as soil CEC, pH, soil TN, and AK contents [14,16,25]. Biochar
applications can enhance the status of nutrients, especially N [26]. Some previous studies
have noted the positive effects of biochar on soil inorganic N [27,28]. In this study, the
content of alkali-hydrolyzed nitrogen (AN) in SD and SY was increased by 12.87% and
7.45%, respectively, compared to that in SBCK. The total nitrogen content (TN) of SD
and SY was increased by 4.87% and 4.33%, respectively, compared to that of SBCK. This
may be related to the following reasons. The biochar addition stimulated the abundance
and growth of soil N-fixing bacteria [24], thereby increasing soil N nitrification and soil
NH4

+ content [28]. Moreover, the increased soil NO3
− from the biochar addition may

have occurred because the biochar promoted soil N mineralization and decreased soil N
leaching [26].

In our study, the content of available phosphorus (AP) in SD and SY was increased
by 9.21% and 8.62%, respectively, compared to that of SBCK. The total phosphorus (TP)
content of SD and SY was increased by 3.19% and 8.63%, respectively, compared to that
of SBCK. The total potassium (TK) content of SD and SY was increased by 0.38% and
5.38%, respectively, compared to that of SBCK. The improvement in soil fertility was partly
dependent on the nutrient supply obtained from the biochar addition [29]. Moreover,
biochar possesses a rich pore structure and exhibits strong adsorption performance, and it
can store nutrients and release nutrients slowly in the soil [30]. Additionally, the improved
soil properties (e.g., the increased aggregation capacity and water storage capacity), which
were favorable for increasing nutrient contents and decreasing nutrient leaching [31] also
led to elevated soil fertility. The improved microbial activity after the biochar addition
could accelerate nutrient release to the soil and elevate the nutrient content [32].

The results revealed that the application of rice straw biochar (SD) could increase the
soil available potassium (AK) content; however, corn straw biochar (SY) exerted a certain
inhibitory effect on the soil AK content, thus indicating that the effects of biochar derived
from different sources on the soil AK content were different.

2.2. Depth Assessment of Soil Sample Sequencing

Using Illumina high-throughput sequencing, nine fungal samples were sequenced,
and 684,677 pairs of reads were obtained. A total of 624,238 clean tags were generated
after double-ended reads assembly and filtration, and each sample generated at least
55,249 clean tags. The average number of clean tags was 69,360. A total of 589,679 pairs
of reads were obtained by sequencing nine bacterial samples. A total of 506,522 clean
tags were generated after stitching and filtering of double-ended reads, and each sample
generated at least 37,163 clean tags with an average of 56,280 clean tags.
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Sequencing sequences were randomly selected, and a curve was constructed by
combining the number of sequences extracted with the number of OTUs that they could
represent [18]. The OTU was clustered at the 97% similarity level, and the dilution curves of
each sample were generated (Figure 1). As presented in Figure 1, the curves of the bacteria
and fungi gradually became flattened, thus indicating a reasonable sequencing quantity.
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Figure 1. Bacterial (A) and fungal (B) rarefaction curves from different soil samples (SBCK: conventional control treatment
with no biochar; SD: rice straw biochar; SY: corn straw biochar). Note: OUT: operational taxonomic units.

2.3. Effects of Biochar on the Abundance and Diversity of Soil Bacterial and Fungal Communities

Changes in soil microbial abundance as a result of biochar addition have been an
area of great concern. The ACE and Chao indices reflect the species abundance of the
community [33,34]. In this study, as presented in Table 2, biochar increased the ACE
and Chao indices of soil bacteria. Compared to SBCK, the ACE indices of SD and SY of
bacteria were increased by 3.10% and 2.06%, and the Chao indexes of SD and SY of bacteria
were increased by 3.25% and 2.26%, respectively. The results revealed that the fungi ACE
and Chao indices of SD were increased by 7.86% and 14.16%, respectively, compared to
SBCK. This may be due to the abundant pore structure of biochar itself that provides a
good “shelter” for the habitat and the reproduction of microorganisms by protecting them
from adverse effects such as invasion and dehydration while at the same time reducing
the survival competition among microorganisms [33]. Biochar amendment increases soil
microbial abundance largely due to a direct result of the utilization of labile C in biochar and
a small amount of nutrients by soil microorganisms [34]. The albic soil in this experiment
is poor in nutrients and compact in physical structure. Biochar can indirectly affect the
composition of the soil microbial community by improving soil properties, such as the
changes of soil pH, adhesion, etc. [34].
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Table 2. The abundance and diversity of OTUs from soil samples where biochar was applied.

Treatment ACE
Index

Chao
Index

Simpson
Index

Shannon
Index

ACE
Index

Chao
Index

Simpson
Index

Shannon
Index

Bacterial (V3 + V4) Fungal (ITS1)

SBCK 1555.28 a 1569.04 a 0.01 a 6.02 a 278.18 ab 269.35 ab 0.12 ab 3.34 a,b

SD 1603.53 a 1619.97 a 0.01 a 6.05 a 300.04 a 307.49 a 0.08 b 3.47 a

SY 1587.25 a 1604.48 a 0.01 a 6.00 a 262.53 b 262.74 b 0.14 a 3.11 b

Note: SBCK: conventional control treatment with no biochar; SD: rice straw biochar; SY: corn straw biochar; a–b: columns reporting different
letters are significantly different at p < 0.05 (n = 3, LSD test); ITS1: internal transcribed spacer-1 region.

However, different types of straw biochar had different effects on fungal abundance.
The corn straw biochar (SY) reduced fungal abundance, the SY reduced the ACE index
and Chao index of fungi to levels that were 5.63% and 2.45% lower, respectively, than
that of SBCK. This may be due to the alkaline nature of biochar, as an increase in soil pH
reduces the abundance of fungi [21]. The pH values of rice straw biochar and corn straw
biochar adopted in this study are 7.87 and 8.50 respectively. The high pH value of corn
straw biochar may inhibit the abundance of fungal community in albic soil. The corn straw
biochar is rich in mineral elements and sufficient nutrients and can adversely affect the
growth of mycorrhiza, and high salt content may inhibit the growth and reproduction of
mycorrhiza in the soil [23]. In addition, the corn straw biochar may not provide a sufficient
number of pores that are suitable for fungal survival [19].

Previous studies have indicated that biochar amendment differs in its effects on
bacterial and fungal diversity. For example, Shuailin Li et al. (2020) reported that bacterial
and fungal alpha diversity hardly changed after two years of addition of biochar alone or
combined with N fertilizer. Hu et al. (2014) reported that bacterial diversity increased but
fungal diversity decreased with short-term biochar addition in a red oxidized loam soil [35].
In this study, biochar had no significant effect on bacterial community diversity. The
SD increased fungal community diversity, but SY decreased fungal community diversity.
The Shannon index of fungi treated with SD was increased by 3.84% compared to SBCK.
However, the Shannon index of fungi in SY was decreased by 6.99% compared to SBCK.
This may be due to the fact that the diversity of microorganisms is jointly determined by
species richness and evenness, and this may vary owing to the proportion of richness and
evenness [36].

Different materials of biochar possess certain differences in composition and structure
that exert different effects on soil physical and chemical properties and thus exert different
effects on microbial community structure diversity [37].

The addition of two types of biochar altered the soil microbial communities, and the
effect of rice straw biochar treatment on SD was more pronounced. This may be due to
the rice straw biochar having better adaptability to the microbial population in albic soil
types. Therefore, in the process of recycling agricultural waste into biochar, the original
crops under specific soil types should be given priority.

2.4. Effects of Biochar on the Relative Abundance of Bacteria and Fungi in Root Zone Soil

Many studies have demonstrated that biochar has an impact on bacterial and/or fun-
gal community compositions on short- or long-term scales [33,38]. However, the changes
in community composition caused by the biochar remain unclear. Figure 2 presents the
bar chart for soil bacteria and fungi at the level of phylum classification. According to
Figure 2A, the bacteria present in soil samples include Proteobacteria, Acidobacteria, Chlo-
roflexi, Verrucomicrobia, Bacteroidetes, Gemmatimonadetes, and other bacteria groups. Pro-
teobacteria, Acidobacteria, Chloroflexi, and Verrucomicrobia exhibit relatively high abundances
of 30.69%~34.97%, 22.20%~24.02%, 9.04%~11.68%, and 8.64%~10.07%, while all other types
of bacteria exhibit a total abundance of 74.46%~76.40%.
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biochar; SD: rice straw biochar; SY: corn straw biochar).

As presented in Figure 2A, biochar increased the relative abundance of Proteobacteria,
Verrucomicrobia, and Bacteroidetes. Proteobacteria are the largest group of bacteria. Compared
to that of SBCK, the relative abundance of Proteobacteria in SD and SY was increased by
13.95% and 9.94%, respectively. Proteobacteria accounted for the largest proportion in the
soil in terms of community composition and relative abundance, and this is consistent with
the conclusions of previous studies [39,40]. This is due to the fact that the Proteobacteria
is a eutrophic bacterium [41], and biochar application has been shown to significantly
improve nutrient properties of albic soils (Table 1), leading to an increase in the abundance
of Proteobacteria.

The relative abundance of Verrucomicrobia in SD and SY was increased by 16.57% and
8.46% compared to SBCK. Biochar may increase the relative abundance of Verrucomicrobia
by increasing soil carbon content and adjusting soil pH [42]. In this study, SD and SY
increased soil organic matter content by 1.05% and 1.31%.

The relative abundance of Bacteroidetes in SD and SY was increased by 0.39% and
23.62%, compared to SBCK. Bacteroidetes is closely associated with the conversion of organic
materials such as DNA, proteins, and lipids [42]. As a carbon source, the application of
biochar to soil is conducive to the improvement of the relative abundance of Bacteroidetes
within the soil.

However, biochar reduced the relative abundance of Acidobacteria, Chloroflexi, Gemma-
timonadetes, Actinobacteria, and Armatimonadetes. The relative abundance of Acidobacteria
in SD and SY was decreased by 7.08% and 7.58%, compared to SBCK. Most Acidobacteria
are acidophilic bacteria, and their abundance is negatively correlated with soil pH. In an
environment possessing a low soil pH, the abundance of Acidobacteria is the highest [43].
Biochar is alkaline, and biochar can reduce the relative abundance of Acidobacteria by
regulating soil pH values. In this study, the albic soil pH value was 5.35, and those of corn
stalk biochar and rice straw biochar were 8.50 and 7.87.

Acidobacteria and Chloroflexi belong to the oligotrophic microorganism group [44,45],
and their growth rate is inhibited and their relative abundance is reduced in the eutrophic
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environment of biochar. The relative abundance of Chloroflexi in SD and SY was decreased
by 22.60% and 21.68%, compared to SBCK. Chloroflexi species are usually predicted to
degrade plant compounds with pathways commonly identified for the degradation of
cellulose, starch, and long-chain sugars and compete for labile carbon with other organ-
isms [46]. Therefore, the lower relative abundance of Chloroflexi in SD and SY may limit the
organic material degradation rate.

The relative abundance of Actinobacteria in SD and SY were decreased. Actinobacteria,
as Gram-positive bacteria, play a vital role in organic matter turnover, including the
decomposition of cellulose and chitin [47]. The decreased populations of Actinobacteria
in SD and SY may symmetrically retard microbial organic matter decomposition, which
partly drives the higher soil CO2 emissions [47].

As presented in Figure 2B, fungi present in the soil samples include Ascomycota, Basid-
iomycota, Rozellomycota, Mortierellomycota, Chytridiomycota, and other fungi. In addition to
other fungi whose species have not been determined, the relative abundance of Ascomycota
and Basidiomycota were 26.19%–58.19% and 2.19%–4.65%, respectively, and these belonged
to the dominant fungi with a cumulative sum of 29.17%–62.84%.

Biochar increased the relative abundance of Rozellomycota, Chytridiomycota, Apheliid-
iomycota, and unclassified fungi. This increase in fungal species led to increased competition
for energy and nutrients among species [48], resulting in a decrease in the relative abun-
dance of major fungal groups and thus further demonstrated that biochar enriched the
community structure of soil fungi.

However, biochar decreased the relative abundance of Ascomycota, Basidiomycota, and
Mortierellomycota. Basidiomycota can roughly be divided into the following, saprobic fungi,
which decompose organic matter; symbiotic fungi, which form a mutualistic relationship
with other organisms; pathogenic or parasitic fungi, which infect plants, animals, and even
other fungi [49]. The relative abundance of Basidiomycota in SD and SY was decreased by
43.22% and 23.46%, respectively, compared to SBCK. Mineralizable C has been reported to
significantly decrease the relative abundance of Basidiomycota, and most fungal OTUs from
Basidiomycota were assigned as nonsaprotrophs. As a microbial C source, the DOC probably
promotes saprotroph growth and enhances their competitive capacity, leading to an overall
decrease in diversity and a decline in fungal pathogens [50]. Hence, the decreased relative
abundance of Basidiomycota in biochar treatments may be due to biochar increasing the
organic matter (Table 1).

Figure 3 presents the bar chart for soil bacteria and fungi at the level of genus classifi-
cation. As presented in Figure 3A, at the genus level of soil bacteria biochar increased the
relative abundance of Sphingomonas, uncultured_bacterium_f_DA101_soil_group, Geobacter,
and uncultured_bacterium_f_Gemmatimonadaceae. However, the relative abundances of uncul-
tured_bacterium_f_Acidobacteriaceae_[Subgroup_1], Candidatus_Solibacter, Anaeromyxobacter,
uncultured_bacterium_f_Anaerolineaceae, Anaerolinea, and Gemmatimonas were decreased.
Bradyrhizobium is widely regarded as a nitrogen-fixing and denitrification bacterium and
participates in the nitrogen cycle [51]. In this study, the effect of different kinds of biochar
on Bradyrhizobium was inconsistent. The corn stalk biochar (SY) increased the abundance
of Bradyrhizobium and rice stalk biochar (SD) decreased. However, the effect of biochar
on other PGPR was not detected. The biochar not only improves the physicochemical
properties of the soil but also serves as carrier material for PGPR inoculation [9,52], and
biochar provides a safer environment against various biological competitors in soil due
to porous structure [53,54]. Further research is needed to confirm the biochar with PGPR
efficacy in the long-term with respect to albic soil conditions.
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Figure 3. Changes in relative abundance of soil bacterial species at the genus level (A) and fungal
species at genus level (B) with biochar applied (SBCK: conventional control treatment with no biochar;
SD: rice straw biochar; SY: corn straw biochar).

As presented in Figure 3B, biochar increased the relative abundance of Cladosporium
and Didymella at the genus level of soil fungi. However, the relative abundance of Pseudeu-
rotium, Alternaria, Mortierella, Solicoccozyma, Oidiodendron, and Neobulgaria were decreased.

Mortierella was shown to successfully suppress the occurrence of clubroot disease
(caused by Sclerotinia sclerotiorum) [55], which includes fast-growing saprobic fungi that
mainly utilize simple soluble substrates and is associated with high cellulose content
in the soil [56]. The relative abundances of Mortierella were positively correlated with
soil TC content [57]. Yao et al. (2017) showed that biochar had no significant effect
on Mortierella abundance. This study showed that biochar reduced the abundance of
Mortierella. Although the biochar provided a carbon source for albic soil, it is speculated
that the dominant fungi genera in the soil compete for carbon sources, leading to the
decrease in Mortierella abundance.

Alternaria is one of the important fungal groups that can cause plant diseases, and
nearly 90% of the reported species of Alternaria fungi in the world can cause field and
postnatal losses [58]. The abundance of Alternaria could be reduced by applying cotton
stalk biochar in soil not polluted by cadmium [55]. The experiment showed that the
abundance of Alternaria was decreased by biochar, and the reduced abundance means that
biochar application may be beneficial to the control of crop diseases. The mechanism of
biochar inhibition of plant diseases is very complex, including direct inhibition of pathogen
growth [59].
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Significance analysis of inter-group differences revealed that when an LDA value
of >4 was set, there were few markers with significant differences between different groups
of samples. When an LDA value of >3 was set, the significant difference markers in soil
bacteria were enriched in the SD and SY treatments, and the significant difference markers
in SD and SY were 3, while that of SBCK was 0. Significant difference markers in soil
fungi were enriched in SBCK and SD treatments, of which nine markers were found for
SBCK and two markers were found for SD. This demonstrates that biochar affects the
composition of bacteria and fungi within the soil (Figure 4).
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2.5. Analysis of Soil Bacteria and Fungi Groups in the Context of Biochar Treatment

The composition and relative abundance of bacteria and fungi in saline-sodic soil
changed after 3 years of applying different dosages of biochar under rice cultivation. The
addition of biochar had no significant impact on the bacterial diversity, but the diversity
of fungi showed a tendency to decrease [60]. The long-term influence of biochar addition
on the fungal community was shown at the genus and OTU levels but not at the phylum
level [48]. As indicated in Table 3, biochar increased the number of bacterial OTUs. The
numbers of bacterial OTU units in SD and SY were 1549.67 and 1546.67, respectively, and
these were increased by 3.01% and 2.81%, respectively, compared to the value of 1504.33 in
SBCK. Biochar increased the number of fungal OUT units, and the number of fungal OUT
units in SD and SY were 288.33 and 251.67, respectively. These were increased by 19.97%
and 4.72% compared to the value of 240.33 in SBCK.

Table 3. Reads for observed soil bacterial and fungal OTUs.

Treatment Bacterial (V3 + V4)
OTU Numbers Coverage Fungal (ITS1)

OTU Numbers Coverage

SBCK 1504.33 a 0.9973 a 240.33 b 0.9998 a

SD 1549.67 a 0.9961 a 288.33 a 0.9997 a

SY 1546.67 a 0.9979 a 251.67 a,b 0.9998 a

Note: SBCK: conventional control treatment with no biochar; SD: rice straw biochar; SY: corn straw biochar; OUT: operational taxonomic
units; a–b: columns reporting different letters are significantly different at p < 0.05 (n = 3, LSD test); ITS1: internal transcribed spacer-1 region.

Venn diagrams can reflect the number of common and unique OTUs between groups
or samples and can intuitively indicate the overlap of OTUs between groups or samples [61].
Apple biochar at 0.5%–4% dosage could significantly increase the number of unique bacteria
OTUs and affect the bacteria groups [62], while the number of unique bacterial OTU was
one to three times the common OTU numbers, but they had no significant effect on the
fungal groups [48]. As presented in Figure 5A, the number of common bacterial OTUs
among different treatments was 1624, the number of unique bacterial OTUs without biochar
application (SBCK) was 1, and the numbers of unique bacterial OTUs in biochar treatment
of SD and SY were 4 and 3, respectively. The number of common fungal OTUs among the
different treatments was 280, the number of unique fungal OTUs in the absence of biochar
(SBCK) was 25, and the numbers of unique fungal OTUs in the biochar treatment of SD
and SY were 34 and 32, respectively (Figure 5B). This indicates that biochar can increase
the number of unique OTUs of bacteria and fungi in soil and can alter the composition of
bacteria and fungi groups. This is due to the ability of biochar to affect soil physical and
chemical properties and biological characteristics to thus create a specific microenvironment
for microorganisms [63].
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Figure 5. Venn diagrams of soil bacterial (A) and fungal (B) communities in soil (SBCK: conventional
control treatment with no biochar; SD: rice straw biochar; SY: corn straw biochar).

2.6. Effects of Biochar on the Interaction of Soil Bacteria and Fungi

In this study, the co-expression analysis based on Python plotting revealed the top
50 different genera with the highest correlation, and these are presented in Figures 6 and 7.
The horizontal correlation network diagram of genera revealed that there is significant
interaction between different genera (the orange line represents positive correlation, the
green line represents negative correlation, the thickness of the line represents the magnitude
of the correlation coefficient, and the number of lines represents the close degree of connec-
tion between nodes). Figure 6 shows that in the interaction network of major soil bacteria
genera, the high relative abundance microorganisms of SBCK were Candidatus_Solibacter,
Uncultured_Bacterium_F_Anaerolineaceae, and Uncultured_Bacterium_F_Da101_Soil_Group.
The groups with higher relative abundance in SD were uncultured_Bacterium_F_Acido-
bacteriaceae_ [Subgroup_1] and Uncultured_Bacterium_F_Da101_Soil_Group. Those with high
relative abundance in SY were Uncultured_Bacterium_F_Acidobacteriaceae_[Subgroup_1], Un-
cultured_Bacterium_F_Da101_Soil_Group and Anaeromyxobacte R. The degrees of correlation
among the bacterial genera were different. Among the SBCK, 38 were negatively correlated,
and 29 were positively correlated. Among the SD treatments, 48 were negatively correlated,
and 34 were positively correlated. In the SY treatment group, 48 were negatively correlated,
and 31 were positively correlated. It can be observed that the correlation of major soil
bacteria genera in the biochar treatment group is stronger than SBCK, and the number of
positive correlations (orange) in the biochar treatment group was higher than SBCK.
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As presented in Figure 7, in the interaction network of major soil fungi genera, Pseudeu-
rotium exhibited the highest relative abundance in SBCK, while Cladosporium, Aspergillus,
and Alternaria exhibited the highest relative abundance in SD. The high relative abun-
dances in SY were Pseudeurotium, Didymella, Alternaria, and Solicoccozyma. The degrees
of correlation among the fungal genera were different. Among SBCK, 39 fungal genera
were negatively correlated, and 30 fungal genera were positively correlated. There were
47 negative correlations and 41 positive correlations among SD treatments. In the SY treat-
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ment group, 43 exhibited a negative correlation, and 35 possessed a positive correlation. It
can be observed that the correlation of soil fungal genera in the biochar treatment group
was stronger than SBCK, and the number of positive correlations (orange) in the biochar
treatment group was significantly higher than that in the SBCK group. Biochar increases
the interaction level between microorganisms, and this may affect the complexity of the
network structure. This indicates that biochar application can not only alter the microbial
community structure but also change the overall microbial interaction.

2.7. Correlation Analysis of Soil Microbial Community and Nutrients

Soil physical and chemical properties such as pH, water content, organic matter, and
soil nutrients are important factors that affect the soil microbial community [24]. As shown
in Figure 8, the RDA results in this study revealed that pH, organic matter, AN, AP, and
AK all exerted a significant influence on soil bacteria and fungi and exhibited a significant
correlation, and these results were similar to those of previous studies [64,65]. pH exerts a
large influence on the suitable living environment for microorganisms [66]. Organic matter
content (OC) is the most important measurement index of soil nutrients, and nitrogen is an
essential nutrient for microorganisms [67].
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Redundancy analysis revealed that the main bacterial populations in the soil were
correlated with the soil nutrients (Figure 8A). The relationship between rays in the figure is
represented by the included angles, with obtuse angles representing negative correlation
and acute angles representing positive correlation. The RDA analysis revealed that the
eigenvalues of the two main axes were 25.74% and 20.95%, respectively. Among these, TK,
OC, and AN were positively correlated with Actinobacteria and were distributed in the first
quadrant. TK, OC, and AN were negatively correlated with Ignavibacteriae, Bacteroidetes,
and Verrucomicrobia, and were concentrated in the third quadrant. AK was positively
correlated with Chloroflexi and distributed in the fourth quadrant, while pH was positively
correlated with Acidobacteria and Armatimonadetes and distributed in the second quadrant.
Soil TK was the environmental factor that possessed the highest explanatory degree.

The major fungal populations in the soil were correlated with soil nutrients (Figure 8B).
The RDA analysis revealed that the two main axis eigenvalues were 33.4% and 19.16%,
respectively. AK was positively correlated with Rozellomycota and Chytridiomycota and was
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distributed in the first quadrant. AK was negatively correlated with Mortierellomycota and
Cercozoa, which were distributed in the third quadrant. AP, AN, and OC were positively
correlated with Aphelidiomycota and were distributed in the fourth quadrant. pH was
positively correlated with Mortierellomycota, Ascomycota, and Basidiomycota, which were
distributed in the second quadrant.

The results showed that the composition of soil bacterial and fungal communities was
closely related to soil nutrient properties, such as soil pH, AN, AP, and AK, suggesting that
the effect of biochar on soil community structure might be indirectly driven by the change
in soil properties.

3. Materials and Methods
3.1. Test Site

The experiment was performed at the 26◦10′ N, 119◦23′ E pot plant test base at
Heilongjiang Bayi Agricultural University. The environmental parameters included an
annual sunshine time of 2726 h, a frost-free period of 166 d, an annual average temperature
of 4.2 ◦C, an annual precipitation of 427 mm, and an annual evaporation of 1635 mm.

3.2. Test Materials

The test soil type was Northeast Meadow albic soil that was acquired from 850 Farm
Science and Technology Park, Hulin City, Heilongjiang Province, China. The background
values of soil basic nutrients (0–20 cm plow layer) included a soil organic matter content
of 34.80 g/kg, a soil total nitrogen content of 1.70 g/kg, a soil total phosphorus content of
0.88 g/kg, an alkali hydrolyzable nitrogen content of 162.00 mg/kg, an available phospho-
rus content of 45.30 mg/kg, an available potassium content of 97.00 mg/kg, a pH value
of 5.35, and a CEC value of 10.16 cmol/kg. Biochar was provided by Liaoning Jinhefu
Co. Ltd., Liaoning, China. The total C content of corn stalk biochar was 50.60%, the total
N content was 1.4%, the ash content was 15.34%, and the pH value was 8.50. The total
C content, total N content, ash content, and pH value of rice straw biochar were 51.41%,
1.45%, 23.89%, and 7.87, respectively. The rice variety was Kenjing 5 and was provided by
the Rice Center of Heilongjiang Bayi Agricultural University.

3.3. Experimental Design

The pot experiment was conducted using a pot with a diameter of 30 cm and a height of
28 cm. Rice straw and corn straw biochar were selected, and the treatments included SBCK
(conventional control treatment with no biochar), SD (rice straw biochar 20 t/ha), and SY
(corn straw biochar 20 t/ha) with a completely random design. Each treatment was set for
3 replicates, and each replicate comprised 20 pots. The weight of albic soil of each pot was
10 kg. The application dosages were 131.4 kg N/ha with urea and diammonium phosphate,
69.0 kg P2O5/ha with diammonium phosphate, and 78.0 kg2O/ha with potassium sulfate.

Urea was applied five times in the form of basal fertilizer, tillering fertilizer, regulating
fertilizer, panicle fertilizer, and grain fertilizer at compositions of 30%, 30%, 10%, 20%, and
10%, respectively. Phosphate fertilizer was used for all base fertilizer applications. Potas-
sium fertilizer was applied twice as basal fertilizer and panicle fertilizer at compositions of
60% and 40%, respectively. Biochar and albic soils were thoroughly mixed. Three holes
of rice were planted in each pot, and three seedlings were planted in each hole. The rest
of the experiments were performed according to the conventional management measures
of rice, weeds, insects, and diseases, which were controlled by either chemical or manual
methods to avoid yield loss.

3.4. Sample Collection

Rice rhizosphere soil with a depth of 0–20 cm was collected at the rice maturity stage
by a stainless steel soil drill with a diameter of 2 cm, and 10 points were randomly selected
from each treatment. After removing the roots, weeds, soil animals, and other impurities,
they were mixed and used as a repeated soil sample for the same treatment. The soil
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sample was put into aseptic sealed bag and temporarily stored in a low-temperature ice
box and was taken back to the laboratory. The soil sample was divided into two parts after
being screened by 2 mm. Part of the soil samples was frozen at −40 ◦C for analysis of
microbial bacteria (16S rRNA) and fungal (18S rRNA) communities, the other part of the
soil was air-dried for the analysis of soil chemical properties.

3.5. Test Methods

Soil samples (0.5 g) were weighed, and DNA was extracted using the Mobo Power Soil
DNA Isolation Kit. The purity, concentration, and integrity of the DNA were detected by
agarose gel electrophoresis and spectrophotometry. The V3 + V4 region of bacterial 16SR-
RNA was amplified using the following primers: 338F: 5’-ACTCCTACGGGAGCAGCA-
3’ and 806R: 5’-GGACTACHVGGGTWTCTAAT-3’. The ITS1 region of the fungus was
amplified using the following primers: 5’-CTTGGTCATTTAGAGGAAGTAA-3’ and 5’-
GCTGCGTTCTTCATCGATGC-3’. The PCR amplification reaction volume was 50 µL. The
reaction procedure included pre-denaturation at 95 ◦C for 5 min, 35 cycles of 95 ◦C for
30 s, 50 ◦C for 30 s, and 72 ◦C for 40s, and then 72 ◦C for 7 min. After amplification, the
original library of the samples was established and sequenced using the Illumina HiSeq
2500 platform (Illumina Corporation, San Diego, CA, USA) with a 2 × 250 bp double-
ended sequencing strategy. The original data were stitched (Flash, version 1.2.11), and the
stitched sequences were filtered according to quality (Trimmomatic, version 0.33). The
UCHIME (version 8.1) was removed to obtain the tag sequence with high quality. When
the sample sequencing depth index value was greater than 99%, the sequencing data were
considered to be reasonable. The extraction and sequencing of soil microbial total DNA
were performed by Beijing Biamark Biotechnology Co. Ltd., Beijing, China [48,68].

Soil pH was measured in 1:2.5 ratio soil solutions (with de-ionized water) with a
pH meter. The organic matter content was measured using the high temperature-volume
method, with heating and oxidation by potassium dichromate. For total nitrogen, H2SO4
was used as an accelerator for digestion, and then the Kjeldahl analytic method was used.
The soil alkali-hydrolyzable nitrogen was measured with the alkaline hydrolysis diffusion
method. Available phosphorus was extracted with sodium bicarbonate and determined
with ultraviolet spectrophotometry (TU-1810, Beijing Pgeneral Instrument Co. Ltd., Beijing,
China). Total phosphorus was measured using the alkali fusion-molybdenum antimony
anti-spectrophotometric method. Soil total potassium (TK) and available potassium (AK)
were quantified using inductively coupled plasma-atomic emission spectrometry (ICPS-
7500, Shimadzu, Japan). All the above chemical indexes were measured according to Soil
Agrochemical Analysis, which was published by China Agriculture Press [69].

3.6. Data Processing and Analysis

OTUs exhibiting a similarity of 97% were randomly selected to generate dilution
curves, and the richness indices for Chao and Ace, Simpson, and Shannon were calculated
using Mothur software (version 1.31.2). The OTU was annotated based on the RDP and
Unite taxonomic databases, and Excel and SPSS were used for data processing. Excel and
R language tools were used to draw histograms and Veen plots for the statistical results of
species composition and relative abundance of the samples.

4. Conclusions

The results of this study revealed that the biochar increased the soil nutrient content
of albic soil, and biochar addition increased soil bacteria and fungi abundance and altered
community structure. The bacteria ACE indexes of SD and SY were increased by 3.10%
and 2.06%, respectively, and the fungi ACE and Chao indices of SD were increased by
7.86% and 14.16%, respectively, compared to that of SBCK. Biochar increased the number
of unique OTUs of bacteria and fungi in the soil. The relationship between soil bacteria
and fungi in the biochar treatments was stronger than SBCK. In addition, the changes in
the soil bacteria and fungi community compositions were closely related to soil nutrient
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characteristics, such as pH, OC, AN, AP, and AK, and these characteristics were correlated
with biochar addition, which suggested that the impacts of biochar on the soil bacteria
and fungi community were indirectly driven by alternation of soil nutrient characteristics.
The addition of two types of biochar altered the soil microbial community structure, and
the effect of rice straw biochar treatment was more pronounced. These results aimed to
provide a reference and basic understanding for albic soil improvement by biochar, with
good application prospects.
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