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Abstract: Background. The past decades have seen numerous efforts to develop new antitubercular
agents. Currently, the available regimens are lengthy, only partially effective, and associated with
high rates of adverse events. The challenge is therefore to develop new agents with faster and
more efficient action. The versatile quinoxaline ring possesses a broad spectrum of pharmacological
activities, ensuring considerable attention to it in the field of medicinal chemistry. Objectives. In
continuation of our program on the pharmacological activity of quinoxaline derivatives, this review
focuses on potential antimycobacterial activity of recent quinoxaline derivatives and discusses their
structure—activity relationship for designing new analogs with improved activity. Methods. The
review compiles recent studies published between January 2011 and April 2021. Results. The final
total of 23 studies were examined. Conclusions. Data from studies of quinoxaline and quinoxaline
1,4-di-N-oxide derivatives highlight that specific derivatives show encouraging perspectives in the
treatment of Mycobacterium tuberculosis and the recent growing interest for these scaffolds. These in-
teresting results warrant further investigation, which may allow identification of novel antitubercular
candidates based on this scaffold.

Keywords: quinoxaline; Mycobacterium; tuberculosis; SAR; biological applications; chemistry

1. Introduction

In 2020, the World Health Organization estimated that about 10 million people (range:
8.9-11.0 million) contracted tuberculosis (TB) in 2019, which was responsible for 1.4 million
deaths [1]. Treatment of drug-susceptible active tuberculosis consists of a standard 6-month
regimen of four antimicrobials (usually isoniazid, rifampin, pyrazinamide, and ethamb-
utol) [2,3]. However, these regimens are lengthy, only partially effective, and associated
with high rates of adverse events. The challenge is therefore to develop new agents with
faster and more efficient action.

Nitrogen-containing heterocycles are of particular interest for the development of
new drugs or novel potential lead molecules [4-8]. Quinoxaline, formed by the fusion
of two aromatic rings, benzene and pyrazine, is one of the heterocycles receiving the
most attention.

The versatile quinoxaline ring possesses a broad spectrum of pharmacological activ-
ities (antiviral [9], anticancer [10], antileishmanial [11]), ensuring considerable attention
to it in the field of medicinal chemistry [12]. In addition, as quinoxaline is also a part of
well-known wide-spectrum antibiotics echinomycin, levomycin, and actinoleutin, quinoxa-
line derivatives are expected to have antimycobacterial activity. One of them, clofazimine,
initially known as B663, is currently under intensive clinical investigation for the treatment
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of drug-resistant TB to assess the compound’s treatment outcomes with multidrug-resistant
and extensively drug-resistant TB (Figure 1).
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Figure 1. Chemical structure of clofazimine.

Some quinoxaline-1,4-di-N-oxide derivatives have also shown excellent antimicrobial
activities against Mycobacterium tuberculosis [13-15], indicating the great interest of these
types of structure for the development of new structural classes of anti-TB drugs. The
oxidation of nitrogen in a quinoxaline ring has a pronounced effect on antimycobacterial
activity [16]. In addition, quinoxaline 1,4-di-N-oxides are species that suffer a bioreductive
process under the hypoxic conditions [17] found in tuberculous granulomas, where non-
replicating persistent forms of Mycobacterium tuberculosis bacilli can survive, leading to the
need for long treatments and the risk of treatment resistance [13]. In continuation of our
program on the pharmacological activity of quinoxaline derivatives, we decided to focus
on the development of new quinoxalines and quinoxaline 1,4-di-N-oxide derivatives as
antitubercular drugs. This review compiles studies published between 2011 and 2021 and
discusses the potential antimycobacterial activity of recent quinoxaline derivatives.

2. Methods
2.1. Data Sources and Searches

The research was conducted using three databases: MEDLINE/PubMed, Web of
Science, and Science Direct Elsevier (Table 1).

Table 1. Data sources and searches.

Site Keyword 1 Boolean Keyword 2 Date Filter
Operator
MEDLINE/PubMed
(National Library of 01 January Document tvpe:
Medicine—www.ncbi.nlm. Quinoxaline AND Tuberculosis 2011-01 April - ype:
. journal articles
nih.gov/pubmed 2021
(accessed on 13 April 2021)
Web of Science (Thomson
Reuters Scientific—www. Qumox.ahne AND Tubercglosw 2011-2021 Documen.t type:
webofknowledge.com (topic) (Topic) only articles
(accessed on 13 April 2021)
Science Direct Elsevier Document type:
(www.sciencedirect.com Quinoxaline AND Tuberculosis 2011-2021 only research

(accessed on 13 April 2021)

articles



www.ncbi.nlm.nih.gov/pubmed
www.ncbi.nlm.nih.gov/pubmed
www.webofknowledge.com
www.webofknowledge.com
www.sciencedirect.com
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2.2. Study Selection

The review was performed by two independent reviewers as described by PRISMA [18].
Eligibility criteria were predetermined by the authors (Table 2).

Table 2. Inclusion and exclusion criteria.

Parameter Inclusion Exclusion
1 Language French, English Any other language
In vitro and/or in vivo studies,  Articles that focus only on synthesis or other
2 Type of study . . . .
biological activity purely chemical parameters
3 Type of publication Original manuscripts Book chapters, posters, reviews
4 Search terms Merely citing keywords in the text

In the first step, duplicates were eliminated. Then, articles’ titles and abstracts were
evaluated according to the inclusion criteria. The authors read each selected full text
and eliminated articles fitting the exclusion criteria. During this stage, the references
of the relevant articles were examined to identify additional studies not retrieved in
computerized databases.

3. Results

The database search identified 148 records; 27 repeated files were discarded, leaving
121 articles.

After the evaluation phase (title/abstract) and full-text reading, 98 records were
excluded. The final total of 23 studies were included in this review. No other paper was
added from the reference lists of the identified studies.

During the 2011-2015 and the 20162021 periods, six articles (two concerning 1,4-di-N-
oxide-quinoxaline derivatives and four concerning quinoxaline derivatives) and 17 articles
(six concerning 1,4-di-N-oxide-quinoxaline derivatives and 11 concerning quinoxaline
derivatives) were published, respectively.

4. Discussion
4.1. Quinoxaline Derivatives as Antimycobacterial Agents

A wide variety of methods for the synthesis of functionalized quinoxalines have
already been reported in the literature. In general, quinoxaline derivatives are obtained
either by condensation of o-phenylenediamine and its derivatives with a dicarbonyl
compound under conventional conditions or reaction of 1,2-diaza-1,3-butadienes with
1,2-diamines [19-22]. Eco-friendly approaches using recyclable catalysts [23,24], oxida-
tive cyclisation of 1,2-diamines and phenacyl bromides [25], microwave-assisted syn-
thesis [26,27], reactions in aqueous medium [28], or one-pot synthesis [29] have also
been described.

4.1.1. Tricyclic Quinoxaline Derivatives

Between 2017 and 2020, three series of original benzo[g]quinoxaline-5,10-dione deriva-
tives were synthesized using a multistep synthetic route from 2,3-dihydroxynaphtalene
and evaluated as potential antimycobacterial agents [30-32] (Figure 2).

Thirteen novel compounds belonging to the pyridine series, 11 new pyrazoline deriva-
tives, and 11 7-[3-(substituted) phenylprop-2-enoyl]quinoxaline derivatives were obtained;
they displayed moderate antimycobacterial activity [30-32] (Table 3).
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Figure 2. Chemical structures of new series benzo[g]quinoxaline-5,10-dione derivatives.

Pyrroloquinoxaline moiety represents a very attractive scaffold in medicinal chem-
istry for its biological anti-infectious properties, including antimycobacterial activity [33].
This, pyrrolo[1,2-a]quinoxaline was chosen as scaffold and led to the synthesis of 23 new
pyrrolo[1,2-a]quinoxaline derivatives (Figure 3) that displayed very encouraging antimy-
cobacterial activity [34].

Ten compounds showed both interesting antimycobacterial activity and moderate
cytotoxicity. Antimycobacterial activity was observed to depend on varying chemical
characteristics, like the replacement of tertiary nitrogen by an NH group, leading to
compounds 7-10 with improved solubility and the lowest minimal inhibitory concentration
(MIC) value (5 pg/mL) (Table 4).

Modification of the linker between R; and pyrrolo[1,2-a]quinoxaline moiety led to a
minor variation in antibacterial activity, although substitutions at the R, position with an
aromatic group led to the most active compounds (Figure 4). Derivative N-((7-chloro-1-(2-
fluorophenyl)pyrrolo[1,2-a]quinoxalin-3-yl)methyl)-2-(3,4-dimethoxyphenyl)ethanamine (9)
was identified as offering the best oral bioavailability. Determination of enzyme inhibition
and molecular docking studies revealed that these original derivatives could act by targeting
the classic anti-TB drug target InhA by forming H bonds as well as Pi-Pi interactions.

In addition, several novel 4,5-dihydropyrrolo[1,2-a]quinoxalines and pyrrolo[1,2-
a]quinoxaline-2-ones were synthesized from the reaction between 2-(1H-pyrrol-1-yl)anilines
and imidazo[1,2-a]pyridine-3-carbaldehyde or isatin and are of current interest as antimy-
cobacterial agents [35] (Figure 5).

Five 4-substitued 4,5-dihydropyrrolo[1,2-a]quinoxalines and only one pyrrolo[1,2-
a]quinoxaline-2-one derivative displayed potent antimycobacterial activity, with MIC
ranging from 6.25 to 12.5 pug/mL. However, no clear structure—activity relationship could
be demonstrated from the small number of synthesized compounds [35].
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Table 3. Chemical structure, minimal inhibitory concentration (MIC) values against Mycobacterium tuberculosis [30-32].

Compound Structure MIC (ug/mL)
HaC.y,-CHs
N
2 1) ‘ 50
)
NS
N
)
HsC
3 9 ‘ 125
_N
LI,
N
O
S
X /N
4 | 25
Cl N
O
W
A /N
5 | 12.5
NS
H,CO N
O
SIS
X /N
6 | 25
HsCO N
OH (0]
Rifampicin - 0.25
Isoniazid - 0.20

4.1.2. Hybrids and Conjugates

Many classes of organic compounds have previously been evaluated for their anti-
mycobacterial activity. A rational design strategy based on combining the biological
properties of different bioactive structures into a single compound could lead to new
compounds with increased activity, combined modes of action, or improved tolerance
profiles compared to parent structures.

Then, the quinoxaline ring fused with azetidinone and thiazolidinone, two struc-
tural scaffolds possessing antitubercular activity [36-38], showed in vitro activity against
Mycobacterium tuberculosis. Quinoxaline derivatives with 2-chloro, dimethylamino and
nitro substitution showed comparable activity to that of isoniazid (MIC = 0.67-0.97 ug/mL
versus 0.46 ug/mL) [39] (Figure 6).
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X=N, 0O n=1,2,3
R, =H, Cl R, =H, Cl, F, Br
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3-CF4-Ph, CeHs,
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CeHs 2-Cl-6-F-Ph
4-Br-Ph
3,4-OCH;-Ph

Figure 3. Chemical structures of new series of pyrrolo[1,2-a]quinoxaline derivatives.
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Figure 4. Structure-activity relationship of novel quinoxaline derivatives with antimycobacterial activity.
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Figure 5. General structure of novel 4,5-dihydropyrrolo[1,2-a]quinoxalines and pyrrolo[1,2-
a]quinoxaline-2-ones synthesized.
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Table 4. Chemical structure and MIC values against Mycobacterium tuberculosis of the best candidates from

pyrrolo[1,2-a]quinoxaline series.

Compound Structure MIC (ug/mL)

HN 5

8
OCHj;
f OCH;
9 HN 5
J/<j(8r
10 5

As vitamin B6 is an important cofactor in a large number of important enzymic reac-
tions and is also used in bioinorganic chemistry as a ligand, a new series of 13 quinoxalines
bearing the pyridoxal moiety was synthesized and tested against Mycobacterium tuberculosis
(Figure 7). In a hydrazone series, the 7-chloroquinoxaline derivative (11) showed the best
activity, with the MIC of 72.72 uM. The number of nitrogen and chlorine atoms in the
radical moiety plays an important role in antimycobacterial activity [40].
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Figure 6. General structure of original quinoxaline derivatives containing azetidinone and thiazolidi-
none moieties.

HO  CH,
/ N
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iy
Cl SN 11 OH

Figure 7. Lead compound of hydrazones and N-acylhydrazones containing vitamin B6 and different
heteroaromatic nuclei.

In order to prevent excessive toxicity due to high lipophilicity and considering the
biosafety profile of sugar conjugates [41-43], some new sugar conjugates of quinoxaline
were synthesized and evaluated for their antitubercular activity. Of a series of six sugar con-
jugates of quinoxaline compounds, all the synthesized derivatives demonstrated interesting
antimycobacterial activity, with the MIC ranging from 0.65 to 9.6 uM [43] (Figure 8).

RCHO

H H
©i IO NH2NH2 :/[ aldoses @Nfo
N0 ©i Sy NH2 - CHyCOO0H/ N SN

CH3CH,OH

12

Ose = glucose: 13a
mannose: 13b
maltose: 13c
lactose: 13d
ribose: 13e
xylose: 13f

Figure 8. Schematic route for the synthesis of sugar conjugates of quinoxaline.
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The ribose conjugate (13e) exhibited the best antimycobacterial activity, with the
MIC = 0.65 uM. All the sugar conjugates were more active than the initial quinoxaline-
2,3-(1H,4H)-dione and the intermediate 3-hydrazono-3,4-dihydroquinoxalin-2(1H)-one
at the MIC > 59.2 uM and the MIC = 27.2 uM, respectively. The structure-activity rela-
tionship showed that monosaccharides had better activity than disaccharides and that
the aldopentoses were more potent than the aldohexoses. As in silico docking analysis
revealed that these compounds could interact with DNA gyrase, it was concluded that the
stereoisomerism of sugar may influence antimycobacterial activity; this was supported by
the fact that the ribose derivative was seven times more potent than the xylose derivative.

Chalcones are compounds with a wide range of biological activities, including antitu-
bercular activity [44,45]. Of a series of 14 original quinoxalinyl chalcones, two derivatives
demonstrated equivalent activity to pyrazinamide and ciprofloxacin taken as reference
with the MIC = 3.12 pg/mL. The structure-activity relationship showed that the presence
of a hydroxyl substituent at position 3 on the phenyl ring increases antimycobacterial
activity. Replacing phenyl with naphthyl resulted in reduced antimycobacterial activity,
indicating that the hydrophobicity /lipophilicity balance plays an important role in these
derivatives’ activity [46] (Table 5).

The efficacy of quinoxaline-derived chalcones has recently been confirmed by the
preclinical evaluation of a new series of derivatives. Of the synthesized compounds, six
molecules inhibited Mycobacterium tuberculosis growth, with the MIC ranging from 3.13 to
12.5 pg/mL [47]. Further investigations on the lead compound (20) also demonstrated that
this derivative exhibited synergistic effect with moxifloxacin and did not cause mutagenic-
ity or genotoxicity (Table 6).

In addition, the modification of nalidixic acid, a representative of the quinolone and
fluoroquinolone antibiotics which are an essential component of treatment strategies for
drug-resistant TB [1], on its -COOH group led to the formation of original quinoxaline
conjugates which showed encouraging antimycobacterial activity. Among the synthesized
derivatives, quinoxalines with azide as side chain (25 and 26) exhibited the two best
activities, with the percentage of inhibition of Mycobacterium tuberculosis at 6.25 pg/mL
of 93% and 91%, respectively, compared to 100% for ciprofloxacin taken as reference [48]
(Figure 9).

As Schiff bases possess antimicrobial and antitubercular properties [49], synthesis of
some quinoxaline-incorporated Schiff bases was performed. Among an original series of
ten different Schiff bases resulting from the reaction between 2-((3-methylquinoxalin-2-
yl)oxy)acetohydrazide (31) and various heterocyclic/aromatic aldehydes, five compounds
exhibited potent antitubercular activity [49] (Figure 10).

H O O
S N

\N AN (0] (0]

Hju/ R N._N. N
e QUG )
_

N 0 H.C N (@) N N CH;
H ° H P

25 26 HsC

Figure 9. Chemical structures of lead compounds in nalidixic acid series.
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Table 5. Chemical structure of some quinoxalinyl chalcones and their MIC values against Mycobacterium tuberculosis.

Compound Structure MIC (ug/mL)
O
N A
SN e aa el
7
N OH
O
Nj/\)J\Q/OH
15 ©i X 3.12
Pz
N
0]
N A
16 seaa el :
Pz
N Br
O
N A Br
17 ©i S 25
Pz
N
O
N AN
18 @ 05
Pz
N
Streptomycin 6.25
Ciprofloxacin 3.12
Pyrazinamide 3.12
A i
N._O
@ I NH ArCHO @NIOQJ\NF[“VAF
N NH2 ~
N" "CHj N~ CHs 27a-j

27

27a: Ar = C6H5

27b: Ar=4-CI-Ph C

27c: Ar = 3-NO,-Ph

27d: Ar = 4-OH-Ph .

27e: Ar = 3,47 (OCHg3),-Ph
27f: Ar = 4-OCH3-Ph
27g: Ar = 4-N(CH),-Ph 2
27h: Ar = 3-indoyl

27i: Ar = 2-furyl

27j: 5-(4-nitrophenyl)-2-furfuryl
Rifampicin

% inhibition at MIC 6.25 pg/mL = 23
% inhibition at MIC 6.25 yg/mL = 15
% inhibition at MIC 6.25 pyg/mL = 6

% inhibition at MIC 6.25 pyg/mL = 58
% inhibition at MIC 6.25 pyg/mL = 25
% inhibition at MIC 6.25 pg/mL = 10
% inhibition at MIC 6.25 pyg/mL= 32
% inhibition at MIC 6.25 yg/mL =7

% inhibition at MIC 6.25 pyg/mL = 56
% inhibition at MIC 6.25 yg/mL = 50

% inhibition at MIC 6.25 yg/mL = 95

Figure 10. Percentage of inhibition of quinoxaline-incorporated Schiff bases against Mycobacterium tuberculosis.
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Table 6. MIC values against Mycobacterium tuberculosis of quinoxaline-derived chalcones.

Compound Structure MIC (ug/mL)
O
N
19 O = O \] 12,5
pZ
N
OCHL
O
20 ] 3.13
Z
N
OCHj
O
H3;CO N
. PRAP® 123
~
H3;CO N
O
H3;CO % N\
22 /j 6.25
H;CO N
OCH3
O
H3;CO N
23 ’ \] 125
~
HO N
O
H3;CO N
24 3 \] 5
7
N
Rifampicin <0.2
Moxifloxacin <0.2
Isoniazid 0.39

Finally, spiroheterocyclic structures are well known for their antimycobacterial proper-
ties [50,51]. Spiropyrrolidine tethered indenoquinoxaline heterocyclic hybrids were synthe-
sized and evaluated against Mycobacterium tuberculosis. Of the 11 synthesized compounds,
bearing m-nitro, p-bromo and o-chloro substituents on the aryl ring showed interesting
antimycobacterial activity, with MIC values ranging from 1.56 to 6.25 ug/mL [52] (Table 7).

4.1.3. Other Structures

Several derivatives of 2-substituted quinoxalines have also shown interesting antitu-
bercular activities. Thus, quinoxaline alkynyl derivatives demonstrated antimycobacterial
activity. Of the 19 original quinoxalines bearing diverse substituents on the alkynyl group
synthesized from quinoxaline-2-ol derivatives, seven compounds had MICgyy < 10 uM and
five compounds had MICyj ranging from 10 to 20 uM [53] (Table 8).
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Table 7. Chemical structure of some spiropyrrolidine tethered indenoquinoxaline heterocyclic hybrids and their MIC values
against Mycobacterium tuberculosis.

Compound Structure MIC (ug/mL)

28 3.125
29 6.25
30 12.5
31 1.56
Ethambutol 1.56
Rifampicin 0.1
Isoniazid 0.05

The presence of an electron-withdrawing group at the C6 position of the quinoxaline
moiety plays an important role in antimycobacterial activity: four of the most active
compounds are derivatives bearing NO, at this position with MICqy < 3 uM.

Moreover, screening of a library of compounds identified three original 2-carboxyquinoxaline
compounds showing activity against Mycobacterium tuberculosis with MICgg values ranging
from 3.1 to 12.5 uM [54]. Among them, the lead compound (39) which exhibited a MICgyg
of 3.1 uM was shown to noncovalently and noncompetitively inhibit DprEl, an enzyme
essential for bacterial wall synthesis by forming hydrophobic interactions and hydrogen
bonds (Figure 11).
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Table 8. Chemical structure and MIC values against Mycobacterium tuberculosis of the best candidates from the quinoxaline
alkynyl series.

Compound Structure MICyg (uM)

N & OH
~
32 /@ | 426
N
O,N N

AN
Nn_Z ©
33 @:/ | 455
S
N
AN
N, & O
34 /<:E/ | 1.13
N\
Cl N
(0]

35 ©i/N o 6.47
|
N

Q
=~ ~0-S—CH,
% feeglit
|
O,N N
@]
N~ oKX
37 /@f | CHj 1.80
NS
O,N N
O
N, & ©
38 ~ | /) S 2.74
X =
O,N N
Rifampicin 0.01

Figure 11. Structure of the lead compound 3-((4-methoxybenzyl)amino)-6-(trifluoromethyl)
quinoxaline-2-carboxylic acid, a new DprE1 inhibitor.
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4.2. Quinoxaline-1,4-di-N-oxide Derivatives Active against Mycobacterium tuberculosis

Quinoxaline-1,4-di-N-oxide derivatives are a class of compounds with a variety of bio-
logical properties, including antitumor, anti-inflammatory, and anti-infectious activity [2].
The classic method of quinoxaline-1,4-di-N-oxide preparation uses benzofuroxane N-oxide
as the reagent [55].

4.2.1. Hybrids and Conjugates

1,2,3-triazole and their derivatives are known for their various biological activi-
ties including antifungal and antibacterial activity [56]. In order to study the influ-
ence of the substitution at the C2 position in quinoxaline-1,4-di-N-oxide series, thirty-
one 1,2,3-triazole analogs of quinoxaline-1,4-di-N-oxide were synthesized and evaluated
against Mycobacterium tuberculosis, yielding 16 compounds with the MIC ranging from
12.5 to 25 pug/mL [56] (Figure 12).

0
X N =
N (@) =
Pz N:N
Y N” CHs
X=H,Cl R:4CH,CH; 2-F 3-NO,
Y=H,Cl 4-F 2-Cl 3-CF4
4-Cl 2-NO,  3-CI-5Cl
4-Br
4-NO,

Figure 12. General structure of 1,2,3-triazole analogs of quinoxaline-1,4-di-N-oxide.

More specifically, in 2-(((1-(substituted phenyl)-1H-1,2,3-triazol-4-yl)methoxy)carbonyl)-
3-methylquinoxaline-1,4-dioxide series, only 2-chloro and 2- or 3-nitro compounds exhibited
high activity. In 3-(((1-(substituted phenyl)-1H-1,2,3-triazol-4-yl)methoxy)carbonyl)-6-
chloro-2-methylquinoxaline-1,4-dioxide series, unsubstituted, ortho-, and para-substituted
derivatives exhibited high activity. The most active compound of the three series, 6-chloro-
2-methyl-3-(((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)carbonyl)quinoxaline-1,4-dioxide, ex-
hibited good antimycobacterial activity, with the MIC of 12.5 ug/mL against the tested
strains versus 3.1 ug/mL for reference drug isoniazid. In the 2-(((1-(substituted phenyl)-1H-
1,2,3-triazol-4-yl)methoxy)carbonyl)-6,7-dichloro-3-methylquinoxaline-1,4-dioxide series,
only para-substituted halogen compounds exhibited activity. These structure—activity re-
lationships also demonstrated that the introduction of an electron-withdrawing group
resulted in less active compounds.

In addition, hybridization of quinoxaline 1,4-di-N-oxide with chalcone, fluoroquinolone,
and thiazolidinone scaffolds was investigated [57,58]. Of the 10 original chalcones newly
synthesized by Claisen—Schmidt condensation, only one displayed potency, with the
MIC = 3.1 uM compared to 6.2 uM, 0.3 uM, and 0.04 uM, respectively, for ethambutol,
isoniazid, and rifampicin taken as reference. In this same study, four of the five most potent
derivatives were fluoroquinolone analogs, with MIC values ranging from 1.6 to 3.1 uM
(Table 9). The structure-activity relationship showed that the presence of an electron-
withdrawing substituent like a halogen atom at position C6 or C7 of the quinoxaline
moiety enhances the activity. In addition, the presence of CF; at position C3 promotes
antimycobacterial activity, while the nature of the lateral side chain substituent at the C2
position of the quinoxaline group seems to have less influence on biological activity [57].
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Table 9. Antimycobacterial activity of quinoxaline derivatives based on molecular hybridization of quinoxaline 1,4-di-N-
oxide with the chalcone and fluoroquinolone scaffolds.

Compound Structure MIC (uM)
O
{ O
Cl N =
A
III CH;
O

(N R o
41 B |/ 3.1
cl CFs

42 1.6
~
F T CF,

43 OCH, 1.6
N CF3
O
S
CHs,
44 3.1
N CF;
O
Ethambutol 6.2
Rifampicin 0.3
Isoniazid 0.04

In thiazolidinone series, out of 26 novel derivatives, four compounds displayed
potent antimycobacterial activity, four compounds—moderate activity [58] (Table 10). The
presence of an electron-withdrawing group at the para position of the phenyl group is
essential for higher activity and the presence of a halogen atom at position C7 of the
quinoxaline nucleus increases antimycobacterial activity. Replacement of halogen atoms
with a methyl or methoxy resulted in decreased antimycobacterial activity.
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Table 10. Antimycobacterial activity of quinoxaline derivatives based on molecular hybridization of quinoxaline 1,4-di-N-
oxide with the thiazolidinone scaffold.

Compound Structure MIC (ug/mL)
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)
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(0]
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Cl N\ N 0]
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As many isonicotinic acid hydrazide derivatives such as isoniazid demonstrated
interesting anti-TB activities, an original series of hybrids resulting from the fusion between
quinoxaline 1,4-di-N-oxide and isoniazid was synthetized; it showed high activity against
Mycobacterium tuberculosis, with ICq ranging from <1.16 to 50.60 M versus 0.21 uM for
isoniazid taken as reference (Figure 13). As isonicotinic hydrazide derivatives can be
considered as a prodrug, these new hybrids could act according to the original mechanism
of action where the hydrolysis of the compounds would lead to the formation of isoniazid
which would act according to its own mechanism of action and of quinoxaline derivatives
which would act synergistically with isoniazid. Position 7 unsubstituted or substituted by
an electron-withdrawing or electron-releasing group does not differ in activity [59].
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Figure 13. Design of 1,4-di-N-oxide quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives.

The quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives used as precursors for
the synthesis of these new series were also evaluated against Mycobacterium tuberculosis.
In these series, molecules substituted with an electron-withdrawing group at position
7 such as CF3, Cl, or F on the quinoxaline ring were the most active compounds, with
the respective ICyy of 1.07, 1.25, and 4.65 uM. In order to explore the structural require-
ments for anti-TB activity, molecular modelling studies were performed on a series of
23 original quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives, with ICgg values rang-
ing from 3.86 nug to 100 pg [60]. The reliable pharmacophore generated was composed
of one aromatic ring, four hydrophobic substituents, three hydrogen acceptors, and one
hydrogen donor. The binding mode of these derivatives was similar to that of coumarin in
novobiocin, which is known to be an inhibitor of Mycobacterium tuberculosis DNA gyrase
active site.

4.2.2. Other Structures

In order to develop new antitubercular agents, a series of 33 original quinoxaline-1,4-
di-N-oxide derivatives variously substituted at the C2 position were synthesized and eval-
uated [61]. Of these, 17 showed significant activity against Mycobacterium tuberculosis, with
the MIC ranging from 0.39 to 6.25 pg/mL and no cytotoxic effects on VERO cells (Table 11).
Compounds bearing a thioether linkage and a sterically bulky aromatic group at the
terminal side chain on the C2 position are the best representatives of these original series.

Additionally, the inhibitory effect of methyl, ethyl, isopropyl, and n-propyl esters
of quinoxaline 1,4-di-N-oxide on Mycobacterium tuberculosis was assessed [62]. Of the
18 original esters of the 1,4-di-N-oxide synthesized, eight derivatives showed similar activ-
ity to that of isoniazid taken as reference (Table 12).

The steric effect of the ester group at position 7 plays a crucial role in enhancing
biological effects. The (CH3),CH substituent at position 7 enhances antimycobacterial
activity. COOCH3 or COOCH,CH3 attached at position 2 on the quinoxaline ring and CF3
substituent at position 3 also result in increased antimycobacterial activity.

Influence of substitution at positions 2, 3, and 7 was also assessed in a new series
of 22 new N-oxide-containing compounds leading to the synthesis of nine quinoxaline
1,4-di-N-oxide derivatives [63] (Figure 14).
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Table 11. Chemical structure of some quinoxaline-1,4-di-N-oxide derivatives variously substituted at the C2 position and
their MIC values against Mycobacterium tuberculosis.

Compound Structure MIC (ug/mL)
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Table 12. Chemical structure on methyl, ethyl, isopropyl, and n-propyl esters of quinoxaline 1,4-di-N-oxide series and their
MIC values against Mycobacterium tuberculosis.

Compound Structure Microplate Alamar Blue Assay
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Figure 14. Design of the quinoxaline 1,4-di-N-oxide derivatives.

For quinoxaline phenyl derivatives, MICq( values ranged from 12 to 30.8 M versus
0.1 uM for the standard drugs isoniazid and rifampicin taken as reference. Antimycobacte-
rial activity was affected by the presence of a para substituent on the phenyl ring: absence of
substitution led to the derivative with lowest activity while the derivatives substituted by a
methoxy group displayed the highest activity. However, no clear evidence of impact from
electron-withdrawing and electron-donating groups was observed. In addition, isosteric
substitution of the phenyl ring by furan led to a more active compound, with MICgj of
5.2 uM.

5. Conclusions

This review highlights the growing interest in the development of compounds bearing
a quinoxaline moiety for antimycobacterial treatment, some of these compounds having
reached the preclinical evaluation phase. From the published studies, both quinoxaline and
quinoxaline-1,4-di-N-oxides with a variety of substituents in positions 2, 3, 6, and 7 showed
anti-TB activity. From these data, it appears that the quinoxaline moiety represents an
interesting scaffold against Mycobacterium tuberculosis. Some structure—activity relation-
ships can be proposed for further investigations on this scaffold. Firstly, it appears that
quinoxaline derivatives with the most potent antimycobacterial activity are unsubstituted
at positions 1, 4, 5, and 8, although the presence of the pyrrolo substituent at position 1 does
not result in a loss of biological activity. Substituents in positions 2 and 3 appear to play an
important role in anti-TB activity as the presence of alkynyl derivatives, azide, hydrazone
or acylhydrazone, chalcone, azetidinone, thiazolidinone, carboxylic acid substituent leads
to significant activity. Various substituents such as thioether linkage, ester, carboxamide,
chalcone, ketone, thiazolidinone, or hydrazide at position 2 lead to derivatives with po-
tent antimycobacterial activity in quinoxaline 1,4-di-N-oxide series. The presence of a
triffluoromethyl or methoxy group at position 3 of the quinoxaline moiety increases the
activity. Substitution at positions 6 and 7 is not crucial, but derivatives substituted with
ester, halogen, nitro, trifluoromethyl group, chalcone, or heterocycle at these positions
exhibited excellent antimycobacterial activity. Hybridization of different pharmacophoric
moieties with a quinoxaline nucleus might help to develop an effective molecule for TB
treatment. These results warrant further investigations, which may allow identification of
novel antitubercular candidates based on this scaffold.
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