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Abstract: Lignin is the second most abundant component, next to cellulose, in lignocellulosic biomass.
Large amounts of this polymer are produced annually in the pulp and paper industries as a co-
product from the cooking process—most of it burned as fuel for energy. Strategies regarding lignin
valorization have attracted significant attention over the recent decades due to lignin’s aromatic
structure. Oxidative depolymerization allows converting lignin into added-value compounds, as
phenolic monomers and/or dicarboxylic acids, which could be an excellent alternative to aromatic
petrochemicals. However, the major challenge is to enhance the reactivity and selectivity of the
lignin structure towards depolymerization and prevent condensation reactions. This review includes
a comprehensive overview of the main contributions of lignin valorization through oxidative de-
polymerization to produce added-value compounds (vanillin and syringaldehyde) that have been
developed over the recent decades in the LSRE group. An evaluation of the valuable products
obtained from oxidation in an alkaline medium with oxygen of lignins and liquors from different
sources and delignification processes is also provided. A review of C4 dicarboxylic acids obtained
from lignin oxidation is also included, emphasizing catalytic conversion by O2 or H2O2 oxidation.

Keywords: biorefineries; lignocellulosic biomass; lignin; depolymerization; oxidation; phenolic
monomers; vanillin and syringaldehyde; dicarboxylic acids

1. Introduction

Lignocellulosic biomass, including hardwood, softwood, and herbaceous crops, is an
abundant renewable resource mainly composed of cellulose, hemicellulose, and lignin [1,2].
The typical lignin content may vary from 18 to 33% in softwoods, 15 to 30% in hardwoods,
and 5 to 30% in herbaceous crops [2,3]. However, most biorefineries are currently focused
on the valorization of cellulose and hemicellulose, a so-called sugar-based platform. In this
context, lignin is usually considered as a low-value residual product and has significant
potential as a renewable resource to produce bio-based materials, fuels, and valuable
chemicals [4].

In the literature, the main lignin valorization strategies are focused on the depoly-
merization of lignin into valuable compounds that could be used as platform molecules
for industry. The oxidative depolymerization of lignin could be performed through dif-
ferent types of oxidants, and the characteristics of each oxidant determine their activity
and selectivity in the oxidation reaction [5]. Therefore, oxidant selection is based on the
properties that allow obtaining the maximum yields of the required products. Valuable
low molecular weight phenolic compounds, such as vanillin and syringaldehyde, are fre-
quently obtained as the main depolymerization products from lignin oxidation in alkaline
medium using oxygen as an oxidant and are the focus of many research works. Vanillin
(V, 4-hydroxy-3-methoxybenzaldehyde) is the most commonly produced aroma compound
worldwide, with an annual production of 20,000 tons, 15% of which comes from lignin,
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and only 40 to 50 tons per year are produced from natural vanilla extract [6]. Around 85%
of the world supply is produced from petro-based intermediates, especially guaiacol [7].
Vanillin is used as a flavoring and fragrance ingredient in the food or cosmetic industries.
It is also an essential intermediate for synthesizing fine chemicals such as pharmaceuticals,
e.g., L-DOPA (L-3,4-dihydroxyphenylalanine) [3,8]. Syringaldehyde (S, 4-hydroxy-3,5-
dimethoxybenzaldehyde) is a valuable starting material for the chemical and pharmaceuti-
cal industries, being a precursor for the synthesis of 3,4,5-trimethoxybenzaldehyde [3,9].
This aromatic aldehyde is also a precursor for the food and cosmetic industry, and it has
been synthesized from gallic acid, pyrogallol, and V itself [8,10].

In addition to the phenolic product conversion, dicarboxylic acids have also been
obtained from the aromatic ring cleavage of lignin or its fragments using more potent
oxidants and/or more severe reaction conditions [11]. Dicarboxylic acids such as muconic
acid, maleic acid, succinic acid, and malonic acid are valuable platform chemicals and
intermediates used in the polymer, pharmaceutical, and food industries [12–14]. C4 dicar-
boxylic acids were selected as one of the 12 building blocks for a future bio-based economy,
receiving particular attention in recent years [15]. Commercial dicarboxylic acids are all
produced from petroleum-based feedstocks or fermentation of edible biomass [12,14]. Usu-
ally, severe oxidations have low selectivity, requiring further purification steps. However,
their yields show a significant dependence on the type of lignin, extraction techniques,
and operating conditions (e.g., pressure, temperature, lignin concentration, and stirring
rate). Catalyst presence is also essential to achieve a high yield of a specific acid [12,16,17].
The development of a producing pathway of C4 dicarboxylic acids from lignin will arouse
interest in chemical industries and biorefineries.

This work provides a brief overview of lignin oxidation research, emphasizing the
work performed by the research group in the Laboratory of Separation and Reaction
Engineering (LSRE), University of Porto, Portugal. A strong emphasis is given to lignin
oxidation under an alkaline medium with oxygen to produce aromatic compounds, such
as aldehydes and acids, comparing different lignin sources, delignification processes,
and oxidation technologies. It also includes recent advances on lignin depolymerization
towards C4 dicarboxylic acids, mainly by catalytic oxidation.

2. Lignin: Valorization, Structure, and Classification

Lignin, along with cellulose and hemicellulose, is one of the principal components of
the lignocellulosic biomass, accounting for up to 40% of dry biomass weight. A biorefinery
concept that integrates processes and technologies for biomass conversion demands an
efficient utilization of all three components. Since lignin is the largest non-carbohydrate
component in biomass and composed of aromatic compounds, its utilization can signif-
icantly enhance the cost competitiveness of the biomass biorefinery. For effective lignin
applications, recent biorefinery and lignin valorization developments have tried to fraction-
ate lignin selectively from other components with minimal structural modifications. A new
strategy has emerged in the past few years, named the “lignin-first” approach [18,19]. This
strategy considers lignin disassembly prior to carbohydrate valorization, through the com-
bination of lignocellulose fractionation with integrated lignin depolymerization [18–21].
However, a lack of information still exists between the selective and efficient application
of this approach in native lignin and the utilization of the obtained compounds in the
production of value-added products, thereby influencing the overall economic feasibil-
ity of lignocellulosic biorefineries. Consequently, most of the biorefinery schemes are
focused on the utilization of easily convertible fractions, while lignin remains relatively
under-valorized concerning its potential [22].

Nowadays, it has been estimated that 0.5–3.6 billion tons of lignin are produced
annually in nature [23]. As the largest chemical process that utilizes plant biomass as raw
material, the pulp and paper industry generates 60 million tons of lignin each year [23].
More than 98% of the generated lignin is burned as a source of energy, primarily in the
paper and pulp industry, and only 2% of the produced lignin is utilized for commercial
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macromolecular applications (polyurethane foams, epoxy resins, dispersing or emulsifying
agents, and as an additive for concrete and rubber) [24,25]. Apart from its valorization as a
polymer or material, lignin can undergo depolymerization reactions towards valuable low
molecular weight compounds. However, lignin depolymerization and valorization remain
a challenge.

The lack of established processes that add value to lignin can be attributed mainly
to its chemical recalcitrance and complex and heterogeneous composition and structure.
Adding to this complexity, the lignin structure is highly dependent on the type of plant
and species, the delignification process, and the depolymerization method applied [2,26].
Lignin is a complex three-dimensional amorphous and highly branched aromatic polymer
constituted of methoxylated phenylpropane units. Its crucial function in woody biomass
is to provide strength, rigidity, and resistance to degradation [2]. There are three pri-
mary monomers, syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H), derived from the
monolignols p-coumaryl, coniferyl, and sinapyl alcohols (Figure 1). Depending on the
biomass source, lignin varies in the monomer composition. Herbaceous crops contain all
three monomers and are relatively rich in H units. Gymnosperm lignins, isolated from
softwoods, lack S units, while angiosperm lignins, isolated from hardwoods, are rich in G
and S.
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Figure 1. Sinapyl, coniferyl, and p-coumaryl alcohols, precursors of S, G, and H units, respectively.

The lignin polymerization process leads to a variety of inter-unit linkages, includ-
ing aryl ether bonds (β-O-4, α-O-4, 4-O-5) and carbon-carbon linkages (5-5′, β-5, β-1,
β–β) [25,27]. The frequency of each type of linkage in lignin’s structure depends on the
relative contribution of each monomer to the polymerization process. In native lignin, the
most abundant dilignol linkage is the β-O-4 type (structure A, Figure 2), accounting for
more than 50% of the interunit linkages in lignin structure [8,28]. Therefore, the β-O-4
content of isolated lignins strongly depends on the separation method used and the severity
of the applied process conditions.

The existence of various interunit linkages, high propensity for the formation of
condensed structures when thermochemically processed, poor product selectivity, and ease
of use as a solid fuel are the major barriers to the development of lignin-based biorefining
technologies [28]. For these reasons, valorization of technical lignins requires detailed
insight into the structure and composition impact of the type of plant and species, the
delignification process, and the isolation method applied [2].



Molecules 2021, 26, 4602 4 of 21Molecules 2021, 26, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 2. Main structural moieties in lignin structure: (A) β-O-4, (B) 5-5, (C) α-O-4, (D) β-5, (E) β-β, 
(F) 4-O-5, and (G) β-1. (Reprinted from [22] Copyright 2011, with permission from John Wiley and 
Sons.) 

The LSRE lignin research group established a classification tool for lignins based on 
the major structural characteristics of lignin that allows evaluating lignin relative to its 
viability as a source of added-value low molecular phenolic compounds, such as vanillin 
and/or syringaldehyde [26,29,30]. Radar plots represent an effective classification tech-
nique for lignins and are a useful approach for assessing their characteristics to maximize 
lignin valorization [26]. This classification tool combines the assessment of crucial struc-
tural characteristics such as H:G:S ratio, condensation, and β-O-4 content and allows a 
qualitative prediction of the yield expected by oxidative depolymerization of different 
lignins under similar reaction conditions. These characteristics are the descriptors used to 
build the radar plot for each studied lignin, reducing the unavoidable complexity of lig-
nin structure to its key aspects while maintaining the scientific basis of the data sets with 
quantitative information [26]. In the works developed in LSRE, the radar plot was built to 
describe and compare the potential of different lignins to produce vanillin and/or syrin-
galdehyde by oxidative depolymerization with oxygen in an alkaline medium [26,29,30]. 
The key characteristics selected are the contents in β-O-4 structures, non-condensed 
structures (NCS), S and G units, and the yield of vanillin and syringaldehyde obtained by 
nitrobenzene oxidation (Figure 3). 

 

Figure 2. Main structural moieties in lignin structure: (A) β-O-4, (B) 5-5, (C) α-O-4, (D) β-5, (E) β-β,
(F) 4-O-5, and (G) β-1. (Reprinted from [22] Copyright 2011, with permission from John Wiley
and Sons.)

The LSRE lignin research group established a classification tool for lignins based on the
major structural characteristics of lignin that allows evaluating lignin relative to its viability
as a source of added-value low molecular phenolic compounds, such as vanillin and/or
syringaldehyde [26,29,30]. Radar plots represent an effective classification technique for
lignins and are a useful approach for assessing their characteristics to maximize lignin
valorization [26]. This classification tool combines the assessment of crucial structural
characteristics such as H:G:S ratio, condensation, and β-O-4 content and allows a qualitative
prediction of the yield expected by oxidative depolymerization of different lignins under
similar reaction conditions. These characteristics are the descriptors used to build the radar
plot for each studied lignin, reducing the unavoidable complexity of lignin structure to
its key aspects while maintaining the scientific basis of the data sets with quantitative
information [26]. In the works developed in LSRE, the radar plot was built to describe
and compare the potential of different lignins to produce vanillin and/or syringaldehyde
by oxidative depolymerization with oxygen in an alkaline medium [26,29,30]. The key
characteristics selected are the contents in β-O-4 structures, non-condensed structures
(NCS), S and G units, and the yield of vanillin and syringaldehyde obtained by nitrobenzene
oxidation (Figure 3).

The radar classification presented allows the screening of lignins resulting from in-
dustrial or preindustrial processes for their potential as a source of valuable phenolic
compounds. Considering lignin’s current availability in the side streams of pulp industries
and biorefineries, this could be an important approach given lignin exploitation for high
added-value applications, improving the economic viability of the plant.
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3. Oxidative Depolymerization of Lignin

Considering the vast literature about lignin valorization, the major challenge for
converting lignin into value-added compounds is the selective bond cleavage during the
depolymerization process. While native lignin is highly reactive towards depolymerization,
lignin streams isolated from biorefinery processes such as kraft, sulfite, or organosolv
pulping are much more recalcitrant as a consequence of the structural condensation and/or
degradation that takes place during the biorefinery process [4,26]. Structural degradation
involves cleavage of labile ether and ester linkages (mainly the β-O-4 ether bond) and
formation of stable carbon-carbon linkages through condensation [25,28,31]. The cleavage
of carbon-carbon linkages is the big challenge of lignin depolymerization. This type
of linkage is significantly more resistant and most of them remain in lignin’s structure
regardless of the depolymerization process, having a strong influence on lignin reactivity.
Consequently, products derived from lignin depolymerization strongly depend on the
depolymerization method itself but also on the lignin isolation process and the lignin
source [2,23,26].

Various thermal- and chemical-based lignin depolymerization processes have been
proposed and applied in the literature [1,22,32–40]. Pyrolysis (thermolysis), gasification,
hydrogenolysis, hydrolysis under supercritical conditions, and oxidation reactions are the
major depolymerization methods studied (Figure 4).
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Despite all the depolymerization methods, oxidation aroused great interest in the
field of lignin valorization since it represents an effective method for added-value com-
pound production from different sources of lignin [35,40–46]. Oxidative conversion gives
a complex mixture of products highly dependent on the nature of the raw material and
the selected reaction conditions. Among them, it is possible to find oligomeric products,
phenolic, and non-phenolic compounds. In most studies, the authors focused their atten-
tion on producing valuable platform chemicals, including low molecular weight phenolic
compounds, with high selectivity and yields. Moreover, the formation of dicarboxylic acids
and quinone structures have also been commonly observed as products from the oxidative
depolymerization of lignin or its fragments [42]. The activity and selectivity of the oxidative
depolymerization of lignin depend on the type and characteristics of the oxidant and the
severity of the reaction conditions [5]. Nitrobenzene, some metal oxides (copper (II) oxide),
and oxygen (with or without catalyst), all of them in alkaline medium, are mild oxidants
that preserve lignin’s aromatic ring and produce mainly aldehydes [22,45]. Nitrobenzene
is an effective oxidant that gives the highest product yield. Still, it is an expensive and
harmful chemical, and its reduction products are difficult to separate from the reaction
medium [47]. However, nitrobenzene is frequently employed for characterization purposes
and as a reference in lignin oxidation since it allows one to estimate the maximum conver-
sion of lignin into functionalized phenolics [39,48,49]. In this perspective, some authors
have suggested that the yields obtained by NO are about 40–50% of the yield of oxidation
with O2 in an alkaline medium [39,50]. The use of oxygen in lignin depolymerization is
advantageous when economic and environmental questions are considered [48]. This is
an inexpensive and green oxidant, which preserves the lignin aromatic rings during the
oxidation reaction and presents a high efficiency per weight of oxidant [8,51].

Lignin oxidation using oxygen has been extensively studied in the recent decades
concerning depolymerization of condensed lignin substrates such as lignosulfonates and
kraft lignins. Oxygen delignification proceeds predominantly through a radical chemistry
mechanism that plays an essential role in producing functionalized aromatics (Figure 5).
Since oxygen is a weak oxidizing agent in its normal state, the reaction requires basic
conditions to ionize free phenolic hydroxyl groups in lignin units [1,42]. Consequently,
when aromatic products are targeted, the oxidation is mainly performed aerobically in
aqueous alkaline (usually NaOH) medium since this enables the selectivity production of
phenolic aldehydes such as vanillin and syringaldehyde [40].
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3.1. Phenolic Compounds from Lignin Oxidation

The history behind utilizing lignin as a source of valuable phenolic compounds can
be dated back to the mid-twentieth century as part of the paper industry’s search for new
valorization pathways for lignin [52,53]. However, it is well known that the structural
transformations and chemical treatments suffered by lignin have a considerable influence
on the formation of phenolic compounds since modified lignin has less availability of
phenolic precursors in its structure. Alkaline oxidation converts lignin into a complex
mixture of products that could be phenolic monomers, dimers, and oligomers. As already
stated, the selectivity and efficiency of oxidative depolymerization depend strongly on
processing conditions and lignin origin. Alkaline oxidation of softwood lignins produces
mainly vanillin and vanillic acid, while syringaldehyde and syringic acid are obtained
from hardwood lignins. A literature overview of some representative works about alkaline
oxidations of lignin using oxygen shows values in the range of 4–12% w/w lignin for
vanillin and 5–20% w/w lignin for syringaldehyde, depending on the origin, type, and
processing of each lignin [8,22,39,43,44,48,49,54].

Lignin valorization is a solid research field, of more than 30 years, at the Laboratory
of Separation and Reaction Engineering (LSRE) (Figure 6). The LSRE group has vast
experience in studying alkaline oxidation using oxygen to produce added-value phenolic
compounds from lignin, namely vanillin and syringaldehyde. The potential of several
lignins and liquors from different sources of biomass and delignification processes was
evaluated through batch [26,39,41,43,44,48,55] and/or continuous experiments [56–58].

The batch oxidation experiments were performed in a jacketed reactor with a capacity
of 1 L with initial temperature and pressure control at the beginning of the reaction.
During the oxidation, the system’s total pressure was kept constant through the continuous
feeding of oxygen to the reactor, and the reaction mixture (solution of lignin in NaOH with
a selected concentration) was maintained under stirring. The experimental setup used for
batch oxidation experiments at LSRE is presented in Figure 7.
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and biorefineries”, 2017; (f) Inês Mota, “Fractionation of syringaldehyde and vanillin from oxidation of lignin”, 2017; (g) Elson Gomes, “Development of a continuous process for the
production of vanillin and syringaldehyde from kraft black liquor”, 2019; (h) João Pinto (IPB), “Development of sustainable polymer solutions”, 2019; (i) Carlos Alberto Vega-Aguilar
(Costa Rica), “Dicarboxylic acids from lignin”, 2021; (j) Filipa Casimiro (IPB), “Studies on lignin oxidation and degradation of phenolic products”, 2022; (k) Eduarda Baptista, “Ultrafiltração
de extrato de casca de Eucalyptus globulus para recuperação de compostos polifenólicos”, 2013; (l) CYTED IV.2—“Transformación de lignina en produtos de alto valor agregado”;
(m) POCTI/1999/EQU/33198—“Development of an integrated process for the production of vanillin from the black liquor of the pulp industry”; (n) POCI/EQU/61738/2004—“Purification
of vanillin from the lignin oxidation broth”, 2007; (o) BIIPP (SI IDT—11551/2010)—“Biorefinaria Integrada na Indústria da Pasta e Papel”; (p) BIOBLOCKS—“Concepção de produtos de
base biológica como precursores para a bioindústria de síntese química e de biomateriais a partir de fontes lenhocelulósicas”; (q) FEUP/RJR/2014/01—Production of Vanillin from tobacco
biomass lignin (R. J. Reynolds Tobacco Company, USA); (r) Collaboration with SAPPI—“Lignosulphonate’s characterization”, 2020.
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The effect of one or several process parameters on lignin oxidative depolymerization
performed through batch experiments have been intensively investigated with the primary
objective of achieving the ideal conditions for obtaining the maximum conversion of lignin
while avoiding the oxidation of the phenolic monomers produced [8,41,43,47,48,54,55,59].
The origin, composition, and processing of lignin (pulping process, isolation method,
pretreatment, etc.), the oxygen partial pressure, the initial temperature, and the lignin
and sodium hydroxide concentration in the reaction solution were studied, and its ef-
fect on the selectivity and efficiency of alkaline oxidative depolymerization process was
evaluated [8,48,51,56,59,60]. It was found that a high partial pressure of oxygen reduces
reaction time but leads to an increased rate of vanillin oxidation. Increasing the oxygen
pressure accelerated both product formation and degradation, and therefore shortened
the time needed to reach the maximum product yields [43,61]. In similar works, Schutyser
and coworkers found that lignin oxidation under an inert atmosphere produced mainly
oligomeric products, while the same reaction under oxygen primarily generated monomeric
products [46]. Concerning the effect of pH of the mixture, it was concluded that during
the lignin oxidation process, the yield of vanillin decreased when the pH value began to
decrease. Moreover, there was a smaller vanillin degradation for strong alkaline conditions
that increased significantly when pH was smaller than 11.5 [41,47]. Consequently, high
alkali concentrations (pH > 12) are needed to reduce vanillin degradation. For temperature,
it was found that an increase in this reaction condition can shorten the reaction time but,
on the other hand, results in faster degradation of the aldehydes produced. However,
Pacek and coworkers verified that even if usual reaction temperatures were 150–170 ◦C,
the alkaline hydrolysis reaction, caused by the high temperature and strongly alkaline
conditions, started at around 120 ◦C [62]. These authors also argued that hydrolysis started
at just above 100 ◦C, and it produced not only vanillin but also vanillic acid, traces of
acetovanillone, and other compounds. Finally, the lignin itself is a variable with a huge in-
fluence on the final yields of oxidation products. Considering lignin content in the reaction
medium, Fargues et al. found that the vanillin yield only increased for lignin concentration
of up to 60 g/L, decreasing for higher values [48]. Moreover, a lignin with a low molecular
weight and a less condensed structure tends to give better oxidation results, the presence of
residual sugars is highly unfavorable, and the fewer structural transformations or chemical
treatments lignin suffers, the better the reactivity toward oxidation and consequently the
better the yields of phenolic compounds obtained [39,45,47].

Using the experimental results from evaluating the main reaction conditions’ effect
in the alkaline oxidation with oxygen in a batch reactor, the authors developed a kinetic
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study of vanillin production [48,56,59,61]. The objective was to measure the reaction orders
regarding lignin, oxygen, and vanillin species, as well as the influence of temperature
on the kinetic rate constants to discuss the overall process of lignin oxidation [48]. The
mathematical model proposed by the authors showed to be able to predict the behavior of
vanillin oxidation for the different operating conditions tested. Since the vanillin produced
by lignin oxidation is also oxidized and depends on the pH and the temperature of the
solution, the influence of these two parameters on the kinetics of vanillin degradation had
been studied on vanillin alone. The validation of a kinetic model for vanillin degradation
separately confirmed that its degradation can be well predicted in the lignin oxidation
experiments [56]. More recently, the kinetic model developed for vanillin degradation was
improved by evaluating the degradation of all the main phenolic monomers produced
from lignin oxidation: vanillin, vanillic acid, acetovanillone, syringaldehyde, syringic acid,
and acetosyringone [59]. The kinetic study considering these individual products is of
great interest since; during oxidation, their formation can be simultaneously accompanied
by their degradation process that is dependent on the applied oxidation conditions. In
Figure 8, the effect of initial concentration, oxygen partial pressure, and temperature on
the degradation as a function of reaction time for vanillin (V) and syringaldehyde (Sy) is
shown [59].
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All the performed studies allowed us to confirm that a trade-off between enhancing
the phenolics conversion and minimizing oxidation is achieved for a temperature of around
120 ◦C, oxygen partial pressure around 3 bar, and lignin concentration of 60 g/L, prepared
in a solution of 2 N NaOH [2,8,43,48]. Having these conditions as a starting point for the
oxidative depolymerization of lignin, the LSRE team studied the potential of a wide variety
of lignins from different origins and delignification processes. The yields of vanillin and
syringaldehyde achieved for each lignin by nitrobenzene oxidation and alkaline oxidation
with oxygen in the batch reactor are summarized in Table 1. In addition to vanillin
and syringaldehyde, other phenolics such as vanillic acid, acetovanillone, syringic acid,
and acetosyringone were also identified in minor quantities; their occurrence also has a
significant role in the study of reaction efficiency. Moreover, the presented data allow the
evaluation of the benefit of lignin source and isolation on product yields.

Table 1. Yields of vanillin and syringaldehyde obtained by nitrobenzene oxidation (NO) and alkaline
oxidation using O2 of lignins studied at LSRE (experimental conditions of alkaline oxidation using
O2 and performed in reactor batch: Ti = 120 ◦C; [lignin] = 60 g/L; [NaOH] = 80 g/L; pO2 = 3 bar;
pt = 9.8 bar).

Vanillin, % w/w lignin * Syringaldehyde, % w/w lignin *

NO ** Alkaline Oxid. NO ** Alkaline Oxid.

LInAT 1,2 9.3 3.4 - -
LWest 1 12.1 4.4 - -

LBoostS 1 11.1 3.1 - -
LOrgs 1 4.8 1.2 13.2 2.5

KL 3 2.9 0.73 12.5 1.9
KLlig 3 3.4 1.2 13.6 2.8
EKL 3 2.2 0.71 9.2 1.4

EKLlig 3 2.5 0.82 9.5 2.0
HTEKL 3 3.4 0.54 9.8 1.5

HTEKLlig 3 2.6 0.94 9.8 2.0
SL 3 2.5 1.5 11.3 3.3

LTobObut
4 2.8 0.74 2.5 0.34

LTobOethan
4 7.2 1.2 4.8 0.94

LCelbi 1.7 0.81 9.5 2.1
* Values reported on dry weight and corrected to non-volatile solid weight after deducting ashes and carbohy-
drates; ** NO conditions detailed in the literature [63]. 1 [39]; 2 [56]; 3 [44]; 4 [26]. (LInAT—lignin Indulin AT,
industrial pine kraft lignin from Westvăjco; LWest—kraft lignin from southern pine (Pinus spp.), supplied by
Westvăjco; LBoostS—kraft lignin from softwood (mainly spruce) isolated by LignoBoost process; LOrgs—lignin
extracted from beech wood by organosolv process using aqueous ethanol, supplied by Fraunhofer (Germany);
KL, EKL, and HTEKL—Eucalyptus globulus kraft liquor collected at different stages of a Portuguese bleached
kraft pulp plant: at the outlet of kraft digester (KL), after the evaporation stage (EKL), and after heat treatment
just before the recovery furnace (HTEKL); KLlig, EKLlig, and HTEKLlig—lignins isolated from kraft liquors
KL, EKL, and HTEKL, respectively; SL—industrial spent liquor from magnesium-based acidic sulfite pulping of
E. globulus collected after the evaporation step in a Portuguese sulfite pulp mill; LTobObut and LTobOethan—lignin
from tobacco stalks produced by organosolv process using butanol and ethanol, respectively; LCelbi—kraft lignin
from hardwood (eucalyptus), supplied by Celbi.).

Most of the works focused on lignin oxidation have been performed in batch mode.
However, from an industrial point of view, the continuous process of lignin oxidation
presents more advantages due to the large volumes of liquor generated, the easier control
of the process, and the lower overall investments and operating costs [55]. Araújo [56] built
an experimental pilot setup to promote lignin oxidation in a continuous operating mode.
The schematic diagram of the pilot installation is shown in Figure 9. The bubble column
reactor was made in 316L stainless steel with 8 L capacity, and the gas–liquid reaction
takes place in the cylindrical body of the reactor. It has a 10 cm internal diameter and
70 cm height and is filled with three modules of Mellapak 750.Y structured packing (Sulzer
Chemtech, Switzerland) that enhance the system’s overall mass transfer performance.
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(Reprinted from [55] Copyright 2009, with permission from Elsevier.)

However, oxidation in the continuous reactor showed that the lignin conversion
was substantially lower than that obtained for the batch process [56–58]. To improve the
performance of the continuous reactor and reach the production yields obtained in bath
mode, some studies focused on the influence of the main reaction were performed [55,56,60].
The results showed that the oxygen mass transfer from the gas phase to the reaction medium
of sodium hydroxide and lignin was the limiting step to vanillin formation, and the use
of pure oxygen in the gas feed was considered. In this case, the liquid residence time was
decreased as the oxygen mass transfer rate increased to avoid excessive vanillin oxidation.
A value of vanillin yield, in the exit stream, of approximately 85% of the maximum value
obtained in the batch reactor was achieved considering the improvements in the continuous
reaction [56,60].

3.2. Dicarboxylic Acids from Lignin Oxidation

A harsh depolymerization causes cleavage of the remaining bonds that were not
broken in mild depolymerization [11]. When the aromatic ring is cleaved (Figure 10), C6
acids are obtained (mainly muconic acid), which are quickly degraded to lower carbon-
content acids (C2-C4 acids) [12]. The products can be completely mineralized to CO2 and
H2O under very harsh conditions. Even though C6 acids have important industrial uses,
they are very unstable and are swiftly converted to C4 dicarboxylic acids (C4-DCA), which
are relatively stable and can be easily separated at the end of the reaction.
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The acids with a higher prevalence in lignin oxidation are succinic (SA), malic (MAL),
and maleic acids (MA), with small amounts of fumaric (FA) and tartaric (TA) acids. Most of
these acids are currently used in food, pharmaceutical, and polymer industries, as well as
chemical precursors for 1,4-butanediol, tetrahydrofuran, and γ-butyrolactone [13–15,65–70].
In the last 15 years, several authors have studied C4-DCA from lignin and lignin model
compounds under catalytic and non-catalytic conditions, using different strong oxidants,
i.e., O2, O3, H2O2, and peracetic acid. Some of these works were focused on lignin de-
polymerization towards aromatic monomers and reported the C4-DCA as a degradation
product. Yet, this information is valuable to identify possible research lines and optimal
conditions for lignin depolymerization.

3.2.1. Non-Catalytic Harsh Oxidation

Even though O2 is widely used for lignin depolymerization to phenolics, it can cause
ring-opening reactions. However, its oxidant power is lower than other oxidants, being
less effective towards C4-DCA [16,36,71,72]. Demesa et al. [71] performed alkali lignin
oxidation using O2, achieving up to 3 wt% of succinic acid (SA). Ozone, a stronger oxidant,
was used on pyrolytic lignin, obtaining a small amount of SA (2.0 wt%) and maleic acid
(MA) (2.3 wt%) [73]. Comparatively, previous works from other research groups using O3
on technical lignins showed low yields of C4-DCA [74,75].

Hydrogen peroxide has received a strong focus when ring-opening reactions are the
objective because it is more reactive than O2, with the benefit of being environmentally be-
nign, allowing milder conditions, and avoiding mass transfer barriers that appear between
liquid and gas phases [22,76–78]. However, given that H2O2 is a weak acid, its reactivity
is strongly associated with the pH, being stable at acidic conditions but decomposing in
alkaline conditions [79,80]. Lignin model compounds (guaiacol, syringol, and phenol) were
oxidized using H2O2 at 300 ◦C and short times, obtaining different C1-C6 dicarboxylic
acids [81]. Catechol oxidation reached very high yields of TA, FA, and MAL, with up
to 41% C4-DCA [79]. Both studies concluded that the oxidation of the phenolic model
compounds goes through o-benzoquinones and p-benzoquinones, yielding muconic and
2,5-dioxo-3-hexenoic acids, which are highly unstable and are degraded to C4-DCA. Some
C4-DCA were identified in hardwood kraft lignin oxidation using peracetic acid [82]. Flow
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reactor oxidation of alkali lignin using H2O2 showed up to 13 wt% SA [83] when using very
high temperatures and short times. SA was formed above 150 ◦C, confirming that harsh
conditions are required to achieve valuable yields, at least in a non-catalyzed reaction.

Following the interest in the C4-DCA obtained from lignin, the LSRE group analyzed
the peroxide oxidation of lignin and lignin model compounds [84], studying the effect
of the methoxy substituents in the lignin aromatic ring on the production of C4-DCA.
It was found that methoxy substituents increased reactivity toward peroxide oxidation,
causing lignin model compounds with more methoxy substituents (syringic acid) to be
degraded easily, while p-hydroxybenzoic acid (without methoxy substituents) was more
resistant to oxidation. Compounds with lower methoxy substituents (p-hydroxybenzoic
and vanillic acid) showed higher overall C4-DCA yield and higher succinic acid (SA) yield
than syringic acid. Interestingly, when two lignins with different S:G ratios were compared,
the hardwood lignin (higher S:G ratio) not only showed a better lignin conversion but
also achieved a higher SA yield (3.2 wt%). The softwood lignin achieved a lower SA
yield (2.5 wt%) but a higher MAL yield in the first minutes of the reaction. This study
demonstrated that even though the methoxy substituent can reduce C4-DCA production
from model compounds, they boost lignin reactivity towards peroxide oxidation, making
it easier to depolymerize lignin into smaller fragments that will be converted to C4-DCA,
increasing their final yield.

3.2.2. Catalytic Lignin Harsh Oxidation

Peroxide oxidation of lignin towards C4-DCA can be performed using different types
of catalyst, which can vary from expensive noble metals, cheaper zeolites, or even homoge-
neous metal ions, such as Fenton’s reagent [71]. More than 65% of the latest publications
on lignin conversion to C4-DCA use catalytic conversion, and those works were focused
on two oxidants: O2 and H2O2, with the latter having a higher amount of research.

Homogeneous catalysts are mainly transition metal ions with at least two oxidation
states, e.g., Cu+/2+ and Fe2+/3+. Oxygen oxidation with these catalysts produced very
low C4-DCA yields [85,86]. With H2O2 in Fenton’s conditions, phenol oxidation yielded
8% of MA [87], and other model compounds produced small amounts of MA and FA
(<2%) [88]. However, no C4-DCA was obtained when lignin was oxidized [89], concluding
that Fenton’s catalyst approach is not efficient for depolymerization towards C4-DCA.

Different heterogeneous catalysts have been used with distinct outcomes. Perovskite-
type oxides (such as chalcopyrite) have in their structures transition metals with at least two
different oxidation states, which catalyzes H2O2 oxidation [42,90]. Chalcopyrite (CuFeS2)
presented promising results in model compounds [12] and biorefinery lignins (diluted-
acid corn stover lignin: 7% SA, 1% MAL), but with low SA yields for bagasse lignin [91].
Chalcopyrite nanoparticles used on lignin at acidic pH produced high yields of SA (12%)
with low yields of FA and MA (1%, each) [92]. Other catalysts, such as sodium percarbonate
in alkaline conditions, yielded ~1% SA and MA/FA traces for bagasse oxidation [91].
Gas-phase O2 oxidation using aluminium-vanadium-molybdenum oxide and vanadium
pyrophosphate in a fluidized bed only produced small amounts of MA (1.5 wt%) [93],
while eight supported metal catalysts (involving V, Mo, Mg, and W) produced a small
amount of C4-DCA (SA and/or MA/FA) [94]. It was V-W/HZSM-5 that produced the
highest yields (nearly 2% SA and 12% MA/FA), confirming that V5+ activates the aromatic
rings in monomeric units.

Titanium silicalite 1 (TS-1), a zeolite with an MFI structure and no more than 3% of TiO2
in its structure, has hydrophobic properties that permit peroxide oxidation of non-polar
compounds in an aqueous medium. The H2O2 is adsorbed in the Ti tetrahedral sites to form
Ti-OOH groups that act as the active species, increasing the overall reactivity. Currently, it
is used for cyclohexanone ammoximation to caprolactam and the production of propylene
oxide [95–97]. Guaiacol peroxide oxidation using TS-1 in mild alkaline conditions achieved
high percentages of MA and oxalic acid, with small percentages of FA and MAL [98]. Other
works oxidizing furfural reported good yields on MA [99,100]. Following these promising
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results, the LSRE research group selected this catalyst to evaluate the conversion of lignin
and lignin model compounds into C4-DCA, with particular attention on SA yield, due to
its high value to polymer production and chemical precursor [13,65]. An initial approach
by Vega-Aguilar et al. [101] used vanillic acid as a lignin model compound to evaluate
different operating conditions under H2O2 oxidation. Specific C4-DCA type and yield
were affected by pH, achieving more hydroxylated acids in alkaline pH, while SA was the
primary acid in acidic pH (Figure 11). After the optimum reaction time, the acid yields were
slowly degraded to low molecular weight compounds, e.g., formic, acetic, and oxalic acids.
Additional modifications of TS-1 catalyst were made with Fe, Cu, and Co oxides by wet
impregnation due to the observed catalytic effects of these transition metal oxides. Only
the Fe/TS-1 catalyst increased SA yield slightly in acidic pH. Oxygen oxidation of vanillic
acid was also tested using TS-1 in a Büchi reactor, but no promising results were obtained.
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The TS-1 catalyst was used for oxidation of different industrial lignins (Indulin AT
(IAT), Alkaline lignin (ALK), Lignol (EOL) lignin, and E. globulus kraft lignin (EKL)). In this
work, Vega-Aguilar et al. [102] evaluated different operating conditions and the catalyst
reusability in several cycles. The C4-DCA showed a strong dependence on pH, temperature,
reaction time, catalyst load, and H2O2 load. The main C4-DCA were MAL and SA, and
there was an increase in the SA yield between the non-catalyzed and the catalyzed reactions,
up to four times for indulin AT and alkaline lignins (Table 2). High temperatures were
needed to achieve a good lignin conversion and C4-DCA yields, but acid degradation also
happened at these temperatures. Acidic and neutral pHs showed the best yields, with the
neutral pH being the best operating condition since lignin shows a poor solubility at acidic
pH. A 10 wt% H2O2 loading was the optimum amount; a higher amount over-oxidized the
products, while a lower one avoided complete conversion. Interestingly, the best reaction
parameters were similar to vanillic acid oxidation. The catalyst showed stability and a slight
C4-DCA yield decrease after five cycles, due to catalyst loss during the centrifugation steps,
associated with the small particle size, and not contamination or catalyst degradation. This
study showed that TS-1 can be a valuable catalyst to improve SA as the main C4-DCA after
lignin oxidation, and further studies can be conducted to enhance its use on larger scales.
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Table 2. Best C4-DCA yields for four industrial lignin oxidations for catalyzed and non-catalyzed
wet peroxide oxidations using TS-1 catalyst [102].

Lignin Catalyst Acid Yields (wt%)
Succinic Malic Maleic Fumaric Tartaric

ALK
No 1.6 1.0 n.d. n.d. n.d.

TS-1 5.8 6.6 0.1 0.04 0.9

IAT
No 2.4 4.8 n.d. n.d. n.d.

TS-1 11.3 10.1 0.1 0.06 n.d.

EOL
No 6.9 22.6 n.d. n.d. n.d.

TS-1 9.7 19.5 0.1 0.04 n.d.

EKL
No 0.6 3.6 n.d. n.d. n.d.

TS-1 7.6 5.5 n.d. n.d. n.d.
n.d.: not detected.

As mentioned before, this research line has not only recently been followed in the
LSRE, but also worldwide. Therefore, as results are relatively new and the process has not
the maturity of the lignin oxidation process for aromatic monomers, this topic has not been
included yet in the integrated process developed by Prof. Rodrigues’s research group.

4. Integrated Process

In addition to all the work developed regarding lignin oxidation, the LSRE team
has been working on a general concept of an integrated process that combines reaction
engineering and efficient separation processes for converting lignin from pulping spent
liquors into value-added aldehydes, such as vanillin and syringaldehyde.

The integrated concept proposed starts with the oxidation of a portion of the by-
product streams generated in biorefineries. The pulping liquors or isolated lignins, ob-
tained by acidification/precipitation or ultrafiltration, will be depolymerized through
alkaline oxidation with oxygen [41,43,44,48,57]. Then, the oxidized stream continues to
an ultrafiltration process, leading to the separation of high molecular weight fraction of
degraded lignin from the lower molecular weight species [58,103,104]. Vanillin and sy-
ringaldehyde go preferentially to the permeate stream due to their low molecular weights,
while the oxidized high molecular weight fraction of lignin remains in the retentate. The
fraction retained by the membrane during the ultrafiltration process, the retentate, can be
considered as a raw material for lignin-based polyurethanes. The production of polymers
from lignin is an attractive approach since it can take advantage of its functional groups
and macromolecular proprieties. This application has been the topic of intense research in
the Polytechnic Institute of Bragança (IPB), and materials with quite promising properties
were already obtained [105–107].

After a membrane separation step, the permeate, containing the low molecular weight
phenolates and excess NaOH, flows through a packed bed with a polymeric resin [58,108].
The separation of the different species will be achieved by adsorption, which can fractionate
the permeate solution in families of chemicals, namely phenolic acids, aldehydes, and
ketones [109,110]. In the end, the phenolic compounds of interest, aldehydes in this case,
that are present in the enriched desorbed fraction will be recovered by crystallization [60].

This complete process (reaction and separation steps), represented in Figure 12, could
be integrated into a pulp and paper industrial plant, considering the possibility of part
of the lignin from side streams (spent liquor) to be deviated to produce high added-
value chemicals instead of only being burned to generate energy. Moreover, this process
perfectly fits into the scope of new emerging lignocellulosic-based biorefineries concerning
lignin valorization.
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