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Abstract: While investigating the possible synergistic effect of the conventional anticancer therapies, 

which, taken individually, are often ineffective against critical tumors, such as central nervous 

system (CNS) ones, the design of a theranostic nanovector able to carry and deliver chemotherapy 

drugs and magnetic hyperthermic agents to the target radiosensitizers (oxygen) was pursued. 

Alongside the original formulation of polymeric biodegradable oxygen-loaded nanostructures, 

their properties were fine-tuned to optimize their ability to conjugate therapeutic doses of drugs 

(doxorubicin) or antitumoral natural substances (curcumin). Oxygen-loaded nanostructures 

(diameter = 251 ± 13 nm, ζ potential = −29 ± 5 mV) were finally decorated with superparamagnetic 

iron oxide nanoparticles (SPIONs, diameter = 18 ± 3 nm, ζ potential = 14 ± 4 mV), producing stable, 

effective and non-agglomerating magnetic nanovectors (diameter = 279 ± 17 nm, ζ potential = −18 ± 

7 mV), which could potentially target the tumoral tissues under magnetic driving and are 

monitorable either by US or MRI imaging. 
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1. Introduction 

In spite of the dramatic progress in tumor control, some specific organs and/or tumor 

stages require multi-treatment approaches to counteract cancer progression. This is the 

case, for instance, in unresectable head and neck tumors, which are normally treated with 

chemoradiotherapy and also benefit from external hyperthermic treatments [1,2]. 

Moreover, pancreatic cancer normally requires multimodal treatments since the response 

to traditional therapies is largely unsuccessful [3]. 

Most importantly, tumors of the central nervous system (CNS) are still poorly treated 

because, very often, it is almost impossible to reach their site without seriously damaging 

the nearby structures.  

Besides surgery, less invasive approaches are also critical, mainly due to the presence 

of biological membranes (such as the blood–brain barrier, BBB) preventing the passage of 

drugs [4–6]. 

As far as conventional radiotherapy is concerned, most of the tumor tissues are 

weakly radiosensitive, also because of their hypoxic state. 
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The main therapeutic approaches are scarcely effective when applied individually; 

therefore, it may be useful to investigate whether their combination may induce 

synergistic effects.  

Consequently, we developed a multimodal approach to target all the above critical 

issues with a unique theranostic system. 

1.1. Loading and Delivery of Oxygen to Hypoxic Tissues 

The feasibility of oxygen delivery to hypoxic tissues and organs has been investigated 

in various studies [7,8]. Hemoglobin-loaded particles (Hb particles), encapsulated within 

a biodegradable polymer, have been prepared for use as oxygen carriers [9] and showed 

a oxygenation capacity similar to that of native hemoglobin, as well as a prolonged 

circulation time after administration, in mice. Albumin microbubbles for oxygen and 

nitrogen delivery have been formulated [10] for use as contrast agents, together with lipid-

coated perfluorocarbon (PFC) microbubbles, which were tested in a model of anemic rats 

[11,12], allowing survival at very low hematocrit levels.  

Due to their excellent solubility for oxygen, perfluorocarbons were used also in the 

so-called ‘liquid-assisted ventilation’ technique, where PFC recruitment of surfactant-

deficient (e.g., neonatal hyaline membrane disease) or impaired alveoli was shown to be 

very effective [13].  

Reducing the dimension of the bubble allows larger internal partial pressures due to 

Laplace’s law, and oxygen, being very soluble in perfluorocarbons both storing and 

delivering oxygen in hypoxic tissues, is enhanced by nanodimensions: oxygen-loaded 

nanobubbles have therefore been developed. Because of their theranostic property, 

oxygen-loaded nanobubbles are also very appealing nanocarriers for potential application 

in cancer therapy. 

1.2. Loading and Delivery of Anticancer Drugs  

Interestingly, the choice of vectors in the nanometric scale is challenged by the 

presence of very selective biological barriers [14] or when the specific position is difficult 

to target. Due to their small size, nanoparticles have distinct properties compared with 

the bulk form of the same materials, and the interactions of nanoscale objects with living 

systems have yet to be thoroughly investigated. For instance, in biological fluids, proteins 

interact with nanoparticles, inducing in vivo responses [15], which may limit the efficiency 

of the systemic delivery of drugs and active compounds expected to reach a specific organ. 

As a matter of fact, nanocarriers can improve the drug’s transport efficiency and targeting 

of the cancer cells and, acting at a specific site, they can reduce the side effects on the body. 

Significant improvements in the effectiveness of treatment by ‘nano-carried’ or ‘bulk’ 

drugs are, however, debatable. As gene therapy is a new frontier in cancer care, the use of 

(non-viral) nanovectors for genetic material delivery is very promising [16]. 

To improve the local effectiveness, many targeting systems have been devised, 

mainly based on the actual bias concerning the coupling of targeting substances on the 

surface of the nanostructure. 

In addition to chemical ones, physical targeting methods have also been investigated 

in the past [17]. Ultrasounds (US), in an appropriate frequency and intensity range, were 

shown to be able to transiently open the BBB, allowing the safe and effective delivery of 

drugs to the CNS. Based on this concept, a technique called Focused Ultrasound (FUS) 

has been developed, and many applications, mainly performed under MRI control, have 

already been demonstrated under FDA permission [18]. 

Details on the US-mediated oxygen release can be found in the literature [19]. Such 

physical enhancement is of great importance whenever tissues can be effectively 

sonicated, e.g., the depth of the lesion to be treated is not too large and there are no 

interposed tissues with high impedance. For this reason, sonication is scarcely of interest 

for application in the CNS since the skull almost completely shields the mechanical waves. 
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1.3. Magnetic Physical Targeting and Hyperthermia 

Another physical targeting method near to maturity is based on the use of magnetic 

fields able to drive nanoparticles with proper magnetic properties to their site of action. 

Many papers have focused on the feasibility of external driving implants [20], on the 

biodistribution of the magnetic vectors [21], on their ability to overcome the BBB [22] and 

on their toxicological properties [23,24]. 

SPION-decorated dextran-sulfate-shelled OLNBs, i.e., magnetic oxygen-loaded 

nanobubbles (MOLNBs), manufactured by adding SPIONs to the surfaces of polymeric 

nanobubbles, have been designed as promising theranostic carriers for delivering oxygen 

and chemotherapy to critical tumors, such as CNS ones. Physicochemical and 

cytotoxicological properties and in vitro internalization by human brain microvascular 

endothelial cells, as well as the motion of MOLNBs in a static magnetic field, have 

therefore been investigated [25]. Previous studies showed the potentiality of MOLNBs to 

be magnetically drivable using external permanent magnets [25]. A challenging goal 

could be tailoring the driving magnetic field based on the position and dimension of the 

tumor and the membranes to be crossed. 

Hyperthermia, a treatment designed to raise the temperature of cancerous regions of 

the body to 40–43 °C, can cause cancer cell death by enhancing the cytotoxic effects of 

radiotherapy and chemotherapy. Although it is rarely used as a single treatment method 

in contemporary oncological management, several randomized studies show that, in 

conjunction with radiotherapy, it has the potential to improve the results of concomitant 

cancer treatments without significantly increasing their toxicity [26]. 

Magnetic hyperthermia, consisting of the endogenous production of heat from 

nanomagnetic structures precisely inserted into the target tumor by applying an external 

time-varying magnetic field, is one of the most efficient and safe therapeutic approaches 

[27]. 

Details on the Materials and Methods are given in the Section 4. 

2. Results 

2.1. Oxygen-Loaded Nanosystems: Loading and Delivery of Oxygen to Hypoxic Tissues 

Different oxygen-loaded nanosystems have been studied by our team, differing both 

for the polymer in the shell and the inner fluorocarbon agent storing oxygen to enhance 

the structure stability. A detailed description is given in Table 1 and an illustration in 

Figure 1. 

Table 1. Different oxygen-loaded nanosystems. OLNB: oxygen-loaded nanobubbles; OLND: 

oxygen-loaded nanodroplets. 

Shell Polymer 

Perfluoropentane C5F12 

(PFP) 

Core 

Decafluoropentane 

C5H2F10 (DFP) Core 

Chitosan/Dextran/Dextran 

sulfate 
OLNB OLND 
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Figure 1. Structure of the oxygen-loaded nanosystem. 

The main difference between PFP and DFP is their boiling point (28 °C for the former, 

in vapor state at human body temperature, therefore forming bubbles, and 55 °C for the 

latter, which is liquid at body temperature, forming droplets). This difference in boiling 

points might also impact the echogenic properties and the possibility of detection by US. 

Both PFP and DFP are suitable for human use and are expected to be completely elimi-

nated by expiration. Furthermore, all the natural polysaccharide polymers used in the dif-

ferent formulations are biodegradable and biocompatible.  

According to the manufacturing details given in Section 4, oxygen-loaded nanosys-

tems can be characterized by the natural polysaccharide used for the shell, which defines 

their surface properties, their ζ potential and the oxygen exchange effectiveness. For the 

cases of chitosan and dextran, details can be found in [28,29].  

Due to their dimensions and physical characteristics, the morphology of the above 

nanostructures can be investigated by transmission electron microscopy (TEM) (Figure 

2a), fluorescent microscopy provided an FITC-labeled shell has been applied (Figure 2b) 

and, especially for OLNBs, by US (Figure 2c). 

 
 

 

(a) (b) (c) 

Figure 2. TEM (a), optical fluorescence (b) and US (c) imaging of OLNBs. 

Precise quantification of the oxygen contained in the nanostructures is very difficult; 

however, indirect estimates, e.g., based on salt oxidation, give an average value of 400 

μg/mL for OLNBs [30]. Besides their composition, oxygen release kinetics from the 

OLNBs by passive diffusion depend also on the characteristics of the considered external 

medium, its temperature and its initial oxygen concentration. Moreover, the rate and ex-

tent of the oxygen release can be significantly increased by sonication [29,30] (see Supple-

mentary Materials, Figure S1).  

In Figure 3, the rate of oxygen exchange between the donor compartment containing 

the OLNBs and the receiving compartment composed of different liquids, i.e., saline and 

Perfadex ®, used as perfusion medium in lung transplants, is shown (Figure 3a), together 

with the experimental device designed for the measurement (Figure 3b) (details given in 

Section 4). 
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(a) (b) 

Figure 3. Examples of passive oxygen release in fluids: (a) oxygen concentration in different liquids, saline and Perfadex, 

in normoxic and hypoxic bulk at 4 °C; (b) illustration of the device for measuring oxygen diffusion from the donor com-

partment to the bathing medium. Data were measured with accuracy of ±1.5% of the nominal value. 

According to the results presented in Figure 3, oxygen exchange occurs by passive 

diffusion and is therefore accelerated in hypoxic media. The coefficient of diffusion is 

markedly dependent on the characteristics of the external media.  

Preliminary experiments of oxygen diffusion were performed on animal models us-

ing dextran-shelled OLNDs (see Supplementary Materials).  

2.2. Drug-Loaded Oxygen-Loaded Nanosystems: Loading and Delivery of Anticancer Drugs 

Oxygen-loaded nanodroplets (OLNDs) can be loaded with drugs and/or natural sub-

stances to counteract the development of tumors or prevent their local recurrence. Doxo-

rubicin (DOX) and curcumin (Curc) have been previously investigated in this context 

[31,32]. Doxorubicin is easily encapsulated in the chitosan-shelled nanodroplet structure 

and in DOX-loaded OLNDs, showing, even at low doses, marked effectiveness when ad-

ministrated both in vitro and in vivo to TUBO cells, in a cloned rat Her2/neu+ cell line 

established from lobular carcinoma of a BALB-neuT mouse (Figure 4). Internalization of 

DOX-loaded OLNDs occurred also in vivo after administration in tumor-bearing mice, 

and the tumor growth limitation is related to the variable uptake efficiency of the nano-

vector [31].  

 

Figure 4. DOX in OLND promotes synergistic antitumor effects. Cell viability was evaluated by 

MTT assay. Data are expressed as percentage vs. control. TUBO cells were left untreated or incu-

bated for 48 h with DOX (0.005 μM), OLNDs (2.5% v/v) or DOX-loaded OLNDs (0.005 μM/2.5% 

v/v). Results are shown as means ± SD from three independent experiments. Significance of the 

differences: * p < 0.05; ** p < 0.005; *** p < 0.001. 
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The in vivo results confirmed the potential of OLNDs as oxygen and drug delivery 

systems [31] after administration in mice. 

Another formulation based on the association of dextran sulfate-shelled OLNBs and 

curcuminoids (Curc) was shown to be effective in vitro against prostate cancer cells. The 

inhibition of the viability of PC-3 and DU-154 tumor cells is greatly improved when Curc 

is delivered by OLNBs at all doses (see Figure 5). Moreover, other important inhibitory 

effects of Curc-loaded OLNBs on cell motility and adhesivity were detected [32]. 

  

(a) (b) 

Figure 5. Percentage of inhibition of viability: (a) PC-3 tumor cells; (b) DU-145 tumor cells. 

2.3. SPION-Decorated OLNBs: Manufacturing and Physicochemical Characterization of 

MOLNBs 

The physicochemical characterization of OLNBs and MOLNBs is reported in Figure 

6. A scheme of MOLNB is given in Figure 7. The highly negative ζ potential (around -29 

mV) of OLNBs is due to the presence of dextran sulfate on the nanobubble surface. The 

average ζ potential of MOLNBs decreased to -18.33 mV because of the electrostatic inter-

action between the positively charged SPIONs decorating the negatively charged OLNBs. 

The pH values of OLNBs, SPIONs and MOLNBs were 6.6, 7.3 and 6.8, respectively. 

Other crucial parameters of the MOLNB nanosuspension, such as viscosity and os-

molarity, were 0.96 cP and 354 mOsm, respectively. These values, together with their non-

hemolytic activity [25], indicate that they are suitable for administration in animal models. 

 

 
(a) (b) (c) 

Figure 6. Physicochemical characteristics of nanocarrier formulations: (a) average diameter (nm); (b) polydispersity index; 

(c) ζ potential (mV) for OLNBs (blue), SPIONs (red) and MOLNBs (green). 
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Figure 7. Illustration of MOLNBs (negatively charged dextran shell NBs decorated with positively 

charged SPIONs by electrostatic interaction). 

The MOLNB structure can be visualized in high-angle annular dark-field imaging 

(HAADF-STEM) mode at different scales (Figure 8). The atomic number contrast images 

clearly show the core/shell structure of the NBs and the SPIONs (bright spots) embedded 

in the polymeric shell of MOLNBs. 

 

   

 

(a) (b) (c)  

Figure 8. HAADF-STEM images of the MOLNBs decorated with SPIONs taken at different magnifications (a = 500 nm, b 

= 200 nm, c = 20 nm). 

Oxygen release at different temperatures (Figure 9) was evaluated, showing a signif-

icant increase at hyperthermic temperatures. In fact, when stored at 4 °C, MOLNBs were 

stable for up to 90 days, and their ζ potential slightly changed from (−18.3 ± 2.8 mV) to 

(−16.2 ± 1.7 mV), confirming the chemico-physical stability of the nanostructure. 

 

Figure 9. Oxygen release study performed by passive diffusion in saline solution at different tem-

peratures over 24 h. Data of oxygen concentration were measured with accuracy of ±1.5% of the 

nominal value. 
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2.4. Magnetic Characterization of MOLNBs  

In Vitro MRI Test 

The properties of MOLNBs as contrast agents were investigated in vitro by MRI scan-

ning using clinical equipment (3.0 T, Vida, Siemens), evaluating their relaxation time at 

different concentrations of the decorating SPIONs by transverse relaxation (T2) mapping. 

T2 values were obtained from exponential fitting of the signal and TE and are shown in 

Table 2, which indicates that an increasing concentration of SPIONs led to a T2 reduction 

(see Supplementary Materials, Figure S2).  

Table 2. T2 signal values obtained from curve fitting. 

Concentra-

tion(mg/mL) 
Blank 0.5 1 2 2.5 

T2 (ms) 2000 58.82 55.55 30.30 29.41 

2.5. Magnetic and Hyperthermic Properties of MOLNBs  

The magnetic properties of OLNBs, SPIONs and MOLNBs were measured at room 

temperature by an alternating gradient force magnetometer (AGFM) by applying a max-

imum magnetic field μ0H = 1.8 T.  

The sample of OLNBs showed a weak diamagnetic signal, obviously negligible with 

respect to that of SPIONs and MOLNBs, whose magnetic cycle is, respectively, described 

in Figure 10a,b.  

In Figure 10a, the magnetization cycle of SPIONs is reported. It showed a superpar-

amagnetic behavior, with a magnetization value of 30 Am2/kg at the maximum applied 

field μ0H = 1.8 T. 

Furthermore, the MOLNB sample showed superparamagnetic behavior, with a spe-

cific magnetization value of 14 Am2/kg at the maximum applied field μ0H = 1.8 T, which 

is compatible with the known mass concentration of SPIONs (i.e., around 40%) in 

MOLNBs when taking into account the experimental error of the magnetic measurements. 

In conclusion, these results confirm that MOLNBs show superparamagnetic behavior 

with the magnetic moment expected for a specific quantity of incorporated SPIONs. 

 
(a) (b) 

Figure 10. (a) Magnetization cycle of SPIONs; (b) magnetization cycle of MOLNBs. In the insets, a 

zoom of the measurements is reported, highlighting the superparamagnetic behavior of the sam-

ples (i.e., absence of magnetic hysteresis and remanence). 

According to these magnetic properties, MOLNBs are effective candidates for hyper-

thermic agents [33]. 

The hyperthermic experiment was carried out by exposing a colloidal aqueous sus-

pension of curcumin-containing MOLNBs to an RF magnetic field for 30 min. In Figure 

11, the time dependence of the temperature of the samples under irradiation is reported 

for MOLNBs with two different (low) concentrations of SPIONs (0.5 and 1 mg/mL). More-

over, NBs without SPIONS were exposed following the same procedure in order to eval-

uate the effects of the thermal dispersion of the equipment (which was subjected to the 
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MOLNB temperatures). After 30 min of exposure, the temperature increase in the curcu-

min-loaded MOLNBs containing 0.5 mg/mL and 1 mg/mL SPIONs ranged between 2 and 

4.8 °C and the corresponding SAR value ranged between (9 ± 1) and (19 ± 1) W/g, respec-

tively. 

The increase in the temperature of MOLNBs is obviously tunable by properly tailor-

ing the nanobubbles and SPION concentration, the RF power and its timing in order to 

reach the hyperthermic temperature required by the clinical application. 

 

Figure 11. Magnetic hyperthermia measurements under an alternating (f = 429 kHz) magnetic field 

of 300 Oe for 30 min: temperature increase as a function of time of the curcumin-loaded dextran 

MOLNBs at different concentrations of SPIONs (1 mg/mL and 0.5 mg/mL). 

The curcumin concentration in the solution, after filtering the curcumin-loaded 

MOLNBs, was evaluated by HPLC and no significant difference was detected before and 

after HT. 

2.6. Drivability by the Application of Weak Static Magnetic Fields of MOLNBs 

We proposed a setup aimed to simulate the motion of MOLNBs inside fluids in the 

presence of magnetic fields in different configurations (which can be positioned, for in-

stance, on the skull for CNS tumors), monitoring by US (see Supplementary Materials).  

After injecting MOLNBs in the setup under US and monitoring the effect of the mag-

netic field, a significant deviation in MOLNBs’ motion toward the magnets was observed 

(Figure 12b) with respect to the homogeneous flow of MOLNBs in the vertical direction 

in the absence of a magnetic field (Figure 12a). 

 

Figure 12. US imaging snapshot of MOLNBs in the absence (a) and the presence (b) of the mag-

netic field generated by two magnets (distance 4 cm from each other). Images were recorded at 

different time frames (5, 15, 30 sec) from the injection. 
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3. Discussion 

Our team developed a multifunctional theranostic nanovector able to act as an oxy-

gen reservoir for delivering to the hypoxic site of interest (e.g., the tumor) the amount of 

oxygen required to optimize the effect of radiotherapy, in controlled and prolonged ki-

netics. Due to the presence of gases or vaporizable compounds within the inner core (ox-

ygen and fluorocarbons), these nanovectors are called oxygen-loaded nanobubbles 

(OLNBs) or oxygen-loaded nanodroplets (OLNDs) depending on the vapor or liquid sta-

tus of the core. 

While their shells, made of phospholipids, polymers and surfactants, stabilized the 

structures, because of their gas cores, they were echogenic and could be used as contrast 

agents in ultrasonic and photoacoustic imaging. These bubbles, which have novel prop-

erties and flexible structures, can be engineered in a variety of sizes as vehicles for gas and 

drug delivery applications [34].  

The main characteristics of oxygen-loaded nanostructures manufactured with differ-

ent natural biocompatible and biodegradable polymers containing different perfluorocar-

bons are revised looking at their possible application as radiosensitizers, based on previ-

ous in vivo experiments of oxygen diffusion monitored by transcutaneous oximetry 

(tcpO2) and by photoacoustic imaging on mouse legs, which demonstrated a sustained 

oxygenation effect of OLNDs for up to 1 h [30]. 

Their ability to carry and deliver anticancer agents is discussed as well. The cell via-

bility studies confirmed that these multifunctional nanovectors can act as drug delivery 

systems, improving the effectiveness of the encapsulated drugs, e.g., DOX in OLNBs, 

which promoted a synergistic antitumor effect, and curcumin-loaded OLNBs, which im-

proved the inhibition of tumor cell viability. Although our evidence is based on two cases, 

the nanosystems are very flexible and could be easily designed for administrating a large 

variety of different drugs. 

Adding to the above nanostructures specific magnetic properties greatly enhances 

their potentiality either for diagnosis (MRI imaging, in addition to US), therapy (hyper-

thermia) or the possibility of physical targeting of tissues by exploiting the magnetic driv-

ing. 

Other indirect advantages are also expected, e.g., the temperature in the hyperther-

mic range induces a marked change in oxygen release over time, with increases in the 

external aqueous solution oxygen concentration of up to 0.5-1 mg/L. This oxygenation 

effect might further enhance the therapeutic outcome when hyperthermia is combined 

with radiation therapy. 

By gradient force magnetometry, we confirmed the superparamagnetic behavior of 

our nanosystems, with the magnetic and hyperthermic properties being correlated with 

the small size of the MOLNBs and the average number of decorating SPIONs. 

In particular, we detected a specific magnetization of 30 Am2/kg for SPIONs, and 

following the decoration of the OLNBs (without any intrinsic magnetic property) with 

SPIONs at 40% in mass concentration, the final value of 14 Am2/kg for MOLNBs is ac-

ceptable within the experimental errors. The specific magnetization can be finely tuned 

by varying the mass concentration of SPIONs according to any specific application, i.e., 

the position and characteristics of the target and of the driving magnetic field. 

The SPION concentration also defines the hyperthermic efficiency of MOLNBs, as 

well as the increase in temperature required by the therapy to induce cellular damage or 

to promote tumor oxygenation in combination with radiotherapy (or possibly also to en-

hance the penetration across biological membranes such as the BBB). 

Curcumin-loaded MOLNBs with different concentrations of SPIONs (0.5 and 1 

mg/mL) showed a mild heating response to HT treatment, increasing by 2 °C and 4.8 °C, 

respectively, after 30 min. 

Moreover, the curcumin concentration before and after HT was not significantly dif-

ferent, indicating that no disruption or shrinking occurred during their heating. This is an 
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important result demonstrating safe and long-lasting drug delivery also under HT treat-

ment. 

Figure 12 showed that by applying an external magnetic field generated by perma-

nent magnets, it is possible to induce a significant deviation in the motion of the MOLNBs 

towards the magnets. This behavior might be exploited for targeted drug delivery. 

Interestingly, the possibility of US monitoring may be useful for triggering drug re-

lease from MOLNBs. In combination with MRI, it may allow MOLNBs to be used for pre-

cision medicine applications. 

As a matter of fact, although such in vitro investigations are very promising, the 

above hypotheses need accurate validation on in vivo animal models in order to under-

stand the capability of MOLNBs to reach the critical tumors that they intend to target. For 

instance, their main weakness for application to CNS tumors is that we have presently no 

data concerning the in vivo BBB trespassing of MOLNBs. Although our preliminary meas-

urements seem to exclude relevant cell toxicity and hemolytic activity [25], the possibility 

of systemic administration and BBB overcoming should be tested, to better understand 

the final fate of MOLNBs. 

In fact, BBB crossing is another very challenging task: although such an ability of 

nanovectors similar to MOLNBs has been shown in the literature [14], specific interactions 

between CNS cells and MOLNBs need to be more deeply understood. Interestingly, the 

behavior and safety of magnetic nanoparticles and their motion in brain tissue under a 

magnetic field were previously investigated, showing no adverse effects associated with 

their motion [35]. In addition, innovative approaches to characterize the BBB permeability 

and the interaction with nanoparticles can be found in the literature [36], highlighting the 

crucial importance of computational models to tune an optimal magnetic force-field. 

All the collected results show that MOLNBs are a versatile theranostic tool whose 

strengths are their multi-imaging capability and their ability to physically trigger the de-

livery of active molecules in combination with therapy protocols.  

Thus, MOLNBs could represent a promising nanoplatform for applications to fulfil 

non-trivial therapeutic needs, such as those related to head and neck tumors, pancreatic 

tumors and CNS pathologies.  

Finally, our results seem to encourage the possibility of non-systemic administration 

approaches, e.g., the feasibility of some magnetic driving of the MOLNBs from the brain 

ventricles (filled by the cerebrospinal fluid (CSF), in which MOLNBs could be injected 

from the intravertebral spaces) to the nearby tumors to which the cargoes have to be de-

livered. The contact of CSF with the CNS makes it an attractive medium for drug delivery, 

circumventing systemic barriers. Several studies demonstrated the possibility of the in-

trathecal administration of nanoparticles [37] and the administration of active agents di-

rectly into the ventricles [38]. 

Such a driving approach would require a ‘personalized’ model, based on CT or MRI 

imaging and a grid of permanent magnets producing the required magnetic field. How-

ever, some of the difficulties can be overcome by the fact that MOLNBs, being a 

theranostic system, are monitorable either via MRI or US sonography, allowing a real-

time tracing of their path. 

In conclusion, although still speculative, the availability of versatile theranostic nan-

ovectors such as MOLNBs could open new scenarios for future integrated therapies. 

4. Materials and Methods 

Ethanol, perfluoropentan, Fe+2 and Fe+3 were from Sigma-Aldrich. Epikuron® 200 (soy 

phosphatidylcholine 95%) was a kind gift from Cargill. Palmitic acid and dextran sulfate 

sodium salt (Mw = 100,000) were from Fluka (Buchs, CH).  

4.1. Preparation of Chitosan Oxygen-Carrying Nanobubbles 

At 25 °C, a saturated solution of O2 in 0.9 mg/mL NaCl was prepared and used for 

nanobubble preparation. Then, 300 μl of an ethanolic solution containing Epikuron 200 
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(1%, w/v) and palmitic acid (0.3%, w/v) was injected into a sealed vial of 10 mL of the O2 

solution under stirring. The system was homogenized for 2 min at 20,000 rpm using an 

Ultra-Turrax TA 18 homogenizer (IKA), which allowed the tool head to work at high pe-

ripheral speeds to generate very high shear rates for fast and efficient sample processing. 

Then, under continuous oxygen purging, 400 μl of 2.5% chitosan solution in acetate buffer 

with pH 5 was added as a polymeric shell for the nanobubbles. Then, 1 N NaOH solution 

was added under gentle stirring to obtain the desired pH. 

4.2. Dextran and Dextran Sulfate Oxygen-Loaded Nanodroplets 

For oxygen-loaded nanodroplet liquid formulations, 1.5 mL DFP (Fluka, Buchs, Swit-

zerland) along with 0.5 mL polyvinylpyrrolidone (Fluka, Buchs, Switzerland) and 1.8 mL 

soy lecithin (Degussa, Hamburg, Germany) solved in 1% w/v ethanol (Carlo Erba, Milan, 

Italy) and 0.3% w/v palmitic acid solution (Fluka, Buchs, Switzerland) were homogenized 

in 30 mL water (preparation A) or phosphate-buffered saline (PBS) (preparations C-D) for 

2 min at 24,000 rpm by using an Ultra-Turrax SG215 homogenizer (IKA, Staufen, Ger-

many). Ultrapure water was obtained using a 1–800 Millipore system (Molsheim, France). 

Thereafter, the solution was saturated with O2 for 2 min. Finally, 1.5 mL dextran sulfate 

solution was added dropwise and homogenized for 2 min at 13,000 rpm. PFP was used as 

a core fluorocarbon in the OLNB water formulation. Without adding oxygen, oxygen-free 

nanodroplet (OFND) and nanobubble (OFNB) water formulations were produced accord-

ing to OLND and OLNB methods. The OLND preparation process was used for the oxy-

gen-saturated solution (OSS) water formulation, skipping the inclusion of dextran and 

DFP. Core fluorocarbon without adding oxygen, oxygen-free nanodroplet (OFND) and 

nanobubble (OFNB) water formulations were produced according to OLND and OLNB 

methods.  

4.3. Synthesis of SPIONs 

There are numerous methods for synthesizing SPIONs. The co-precipitation method 

is the simplest chemical method for producing iron oxide nanoparticles. Using this 

method, we dissolved 0.99 g and 2.7 g of Fe+2 and Fe+3 in 50 mL of distilled water, respec-

tively. Magnetite is prone to oxidation; therefore, inert gas (nitrogen) purging was re-

quired under continuous stirring at 85°C for 45 min to prevent magnetite transformation 

to maghemite. The reaction mixture was then treated with 10 mL of 30% ammonia solu-

tion until the pH reached 12, and we continued stirring overnight, resulting in a black-

colored precipitation. After the system reached a precipitation state, the precipitation was 

allowed to cool and settle at the bottom of the flask at room temperature. A permanent 

magnet was used to separate the black precipitates from the supernatant. The precipitate 

was rinsed with distilled water and allowed to dry in open air for 24 h. 

4.4. Preparation of MOLNB Formulations 

The mixture of Epikuron 200 (2.5% w/v) and palmitic acid (0.5% w/v) was prepared 

in ethanol. Then, 400 μl of perfluoropentane was added to 300 μl of the mixture of Epiku-

ron 200 and palmitic acid in an ice bath. Then, 4.8 mL distilled water was added dropwise. 

After this, the complete system was homogenized for 2 min at 20,000 rpm by using a high-

shear homogenizer (ultra-turrax TA 18) until the formation of a nanoemulsion. Thereafter, 

the nanoemulsion was incubated at 37 °C and saturated with oxygen for 10 min. Then, 

400 μl of an aqueous solution of dextran sulfate sodium salt (2% w/v) was added dropwise 

as a polymeric shell under oxygen purging. Finally, 5.9 mg (1 mg/mL) and 2.95 mg (0.5 

mg/mL) of SPION suspensions were added to NB under stirring, to obtain MOLNBs of 

two different concentrations [25]. MOLNBs containing 1 mg/mL and 0.5 mg/mL SPIONs 

correspond to around 25.76 % w/w and 14.78 % w/w SPION concentrations and were used 

directly without separating uncoated SPIONs. 
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4.5. In Vitro Oxygen Release Study 

In vitro study of oxygen release from MOLNBs was performed at different tempera-

tures (i.e., 25 °C, 37 °C, 41 °C). Dialysis bag technique was used for oxygen release: the bag 

was filled with 3 mL of donor phase, such as MOLNBs. Then, the bag was placed in 50 

mL of saline solution (NaCl 0.9% w/v); the oxygen concentration of the saline solution was 

previously reduced up to 2.5 mg/L by purging inert gas (nitrogen, argon). The oxygen 

release by diffusion was monitored for 24 h using an oximeter (Hach.) HACH HQ 40D is 

a digital oximeter connected with a LDO 101 digital, luminescent/optical dissolved oxy-

gen (LDO) probe. We set a 30 min time interval for determining oxygen release, and every 

30 min, the instrument recorded the oxygen concentration in the sample [28]. 

4.6. Physicochemical Characterization of OLNBs, OLNDs and MOLNBs 

The mean diameter, polydispersity index (PDI) and ζ potential were determined by 

dynamic light scattering spectroscopy (DLS) at room temperature. The samples were di-

luted with distilled water in an electrophoretic cell. Each determined value was the aver-

age of five reciprocals for diameter measurement and 10 reciprocals for ζ potential deter-

mination; a 15 V/m electric field was used for ζ potential determination. The viscosity and 

osmolarity were determined at room temperature by using a capillary viscosimeter and 

osmometer, respectively.  

4.7. Morphological Evaluation 

The morphological examination of OLNBs, OLNDs and MOLNBs was carried out by 

transmission electron microscopy (TEM) in conventional mode, by using a JEOL 2200FS 

microscope working at 200 kV. MOLNBs were also investigated by high-angle annular 

dark-field scanning transmission electron microscopy (HAADF-STEM). To minimize the 

radiation damage from the electron beam, the HRTEM images were acquired using a very 

low beam current and low exposure time. 

4.8. Magnetic Measurements and Hyperthermic Properties  

The magnetic properties of OLNBs, SPIONs and MOLNBs were measured at room 

temperature by an alternating gradient force magnetometer. The magnetization cycles 

were performed by applying a maximum magnetic field μ0H=1.8 T.  

Calorimetric measurements using an AC commercial applicator were used to evalu-

ate the hyperthermia properties (nanoScale Biomagnetics DM100, Zaragoza, Spain). The 

specific needs involved in the process of applying a magnetic field and in measuring and 

analyzing the results were thoroughly examined and approached one at a time, leading 

to an integrated and final solution that ensured the highest standards in magnetic hyper-

thermia research. 

MOLNBs containing two different low concentrations of SPIONs (0.5 and 1 mg/mL) 

were tested by means of a DM100 nanoScale Biomagnetics apparatus for the measurement 

of magnetic hyperthermia. They were exposed for 30 min to an RF alternating magnetic 

field with amplitude = 300 Oe and frequency = 429 kHz. To avoid coupling with the RF 

field, the temperature increase was measured with an optical fiber thermometer. Based on 

a report from the manufacturer, an uncertainty level of ±10% in the temperature measure-

ments was assumed. 

The specific absorption rate (SAR) in W/g of the formulation was calculated by the 

following equation: 

��� =  
c. ρ

�

dT

��
 

where c is the specific heat capacity of the sample (assumed to be 4.18 J/g °C), ρ the density 

of the solvent (equal to 1 g/mL), C the concentration of the magnetic NB in the solvent (1 

g/L and0.5 g/L) and dT/dt the heating rate of the sample, calculated by fitting its temper-

ature increase ΔT with a linear trend at an early time point. 
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4.9. Evaluation of Antitumor Effect of Doxorubicin and Curcumin-Loaded OLNDs 

TUBO cells, from a cloned rat Her2/neu+ cell line established from lobular carcinoma 

of a BALB-neuT mouse, were incubated for 48 h in the absence/presence of different con-

centrations of OLNDs, free chitosan or DOX (either free or carried by OLNDs). 

Curcumin-loaded OLNBs were prepared at different concentrations (1-15 uM) and 

delivered to PC-3 and DU-145 cultured cells. Cell viability was checked by 3-(4,5-dime-

thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT). All measurements were 

performed with the same batch, incubation time and microplate reading techniques. 

4.10. Curcumin Release during HT 

The in vitro curcumin release from curcumin-loaded MOLNBs was studied before 

and after HT using a multi-compartment rotating cell. Curcumin-loaded MOLNBs were 

placed in the donor chambers. The receiving and the donor chambers were separated by 

a semi-permeable cellulose membrane (cut-off 14 KDa). The receiving phase for all for-

mulations was 2–Hydroxypropyl-beta-cyclodextrin (5% w/v). Moreover, 1 mL of sample 

was withdrawn at fixed times during the experiment, which lasted 26 h. The curcumin 

concentration was evaluated by HPLC (Shimadzu, UV/VIS detector SPD-20AV.) 

4.11. MRI Testing 

MRI experiments were performed in a clinical magnetic resonance (MR) Scanner (3.0 

T, Vida, Siemens). MOLNBs were suspended in tubes at different concentrations of SPI-

ONs, such as 2.5, 2, 1, 0.5 mg/mL. The tubes were placed into the MR scanner and several 

MR sequences were run. We acquired multiple spin echo varying 10 times the echo time 

(TE) in steps of 15 ms (max 150 ms, the repetition time was 3000 ms, TR, and the total 

duration of the measurement was around 20 min). We repeated the experiment 3 times, 

computing means and SD. To measure signal intensity, manually drawn regions of inter-

est were used for each sample in DICOM viewer software. The data were fitted in Mi-

crosoft Excel 2010 with an exponential curve to obtain T2 estimates. 

4.12. Magnetic Field and US Imaging Monitoring 

Suspension of MOLNBs was injected into a plastic cylinder and sonicated. Two per-

manent cylindric magnets (diameter = 6 mm, height = 0.75 mm) of neodymium covered 

with Ni-Cu-Ni (https://calamite.org) were located on the cylinder wall (see Supplemen-

tary Figure 3) and the magnetic fields were calculated by using Python package Magpylib 

[39]. B-mode US imaging was performed to study the reaction of MOLNBs to the external 

magnetic field. MOLNBs (at concentration 1×1010 NB/mL) were injected in the plastic cyl-

inder containing demineralized water with a syringe, through a glass tube. The experi-

ment was carried out at a temperature of 25 °C. MOLNBs were sonicated using US clinical 

equipment (MyLab™25Gold Esaote, Genova, Italy), connected to a linear array trans-

ducer (LA523, 7.5 MHz central frequency, Esaote, Genova, Italy) operating in B-mode 

(small parts imaging preset). B-mode cineloops (30 sec) were acquired and recorded for 

postproduction both in the absence and in the presence of the magnets. Snapshots from 

cineloops were extracted at different time frames (5, 15, 30 sec) after the initial injection in 

the different configurations. 

5. Patents 

YES: A NANOSTRUCTURE FOR THE VEHICULATION OF GAS AND/OR ACTIVE 

INGREDIENTS AND/OR CONTRAST AGENTS AND USES THEREOF, PCT EXTEN-

SION, WO2015/028901 A1. 

Supplementary Materials: The following are available online, Figure S1: Graphical representation 

of the mechanism of oxygen release from OLNBs core: by the application of an external stimulus, 

i.e., US (a) or by passive diffusion (b), Figure S2: (a) Signal intensities of blank OLNBs at different 



Molecules 2021, 26, 4591 15 of 16 
 

 

TE value and (b) signal intensity of 0.5, 1, 2.0 and 2.5 mg/mL. SPIONs concentration on MOLNBs at 

different TE value as a function of echo delay time. T2 is inversely proportional to concentration of 

SPIONs loaded on MOLNBs, increased concentration shows a sharp reduction in the signal inten-

sity. The error bars show SD. Figure S3: The setup used for the evaluation of the response of 

MOLNBs: (a) two magnets positioned on the side of the cylinder wall, at 4 cm distance from each 

other; (b) projections of magnetic field lines in the XY and XZ plane. 
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