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Abstract: α-glucosidase is a major enzyme that is involved in starch digestion and type 2 diabetes
mellitus. In this study, the inhibition of hypericin by α-glucosidase and its mechanism were firstly
investigated using enzyme kinetics analysis, real-time interaction analysis between hypericin and
α-glucosidase by surface plasmon resonance (SPR), and molecular docking simulation. The results
showed that hypericin was a high potential reversible and competitive α-glucosidase inhibitor,
with a maximum half inhibitory concentration (IC50) of 4.66 ± 0.27 mg/L. The binding affinities
of hypericin with α-glucosidase were assessed using an SPR detection system, which indicated
that these were strong and fast, with balances dissociation constant (KD) values of 6.56 × 10−5 M
and exhibited a slow dissociation reaction. Analysis by molecular docking further revealed that
hydrophobic forces are generated by interactions between hypericin and amino acid residues Arg-315
and Tyr-316. In addition, hydrogen bonding occurred between hypericin and α-glucosidase amino
acid residues Lys-156, Ser-157, Gly-160, Ser-240, His-280, Asp-242, and Asp-307. The structure and
micro-environment of α-glucosidase enzymes were altered, which led to a decrease in α-glucosidase
activity. This research identified that hypericin, an anthracene ketone compound, could be a novel
α-glucosidase inhibitor and further applied to the development of potential anti-diabetic drugs.

Keywords: hypericin; α-glucosidase inhibitor; mechanism

1. Introduction

Diabetes mellitus (DM) pertains to a range of metabolic disorders that are character-
ized by chronic hyperglycemia, coupled with insufficiencies and/or dysfunctional insulin
secretion [1]. Approximately 451 million people around the world have been diagnosed
with diabetes in 2017, and this is expected to increase to 693 million by 2045 [2]. Hyper-
glycemia is the most important index of all types of diabetes and can lead to various compli-
cations, such as cardiovascular disease, renal failure, neuropathy, lipid metabolism disorder,
and others [3,4]. Epidemiological studies showed that postprandial hyperglycemia was
an important factor leading to impaired glucose tolerance and development of type 2
DM. Postprandial hyperglycemia is a major factor contributing to diabetic macrovascular
complications and microvascular complications. Regulating postprandial blood glucose
plays an important role in preventing vascular complications [5]. Maintaining postprandial
blood glucose levels in a normal range is one of the important ways to control blood glucose
fluctuation, which prevents the occurrence of cardiovascular and cerebrovascular diseases,
and reduces the mortality of cardiovascular and cerebrovascular diseases [6]. Therefore,
controlling the blood sugar level is very important for diabetics [7,8].

α-glucosidase, as an important carbohydrate hydrolase, plays a key role in the process
of transforming oligosaccharides and disaccharides into glucose. The monosaccharide
produced can be absorbed by the small intestine, leading to an increase in blood glucose
levels [9]. Therefore, α-glucosidase is considered to be the main target enzyme for the
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prevention and treatment of diabetes [10,11]. Considering the difficulty of obtaining
purity α-glucosidase from mammals, yeast α-glucosidase due to its ease of access is often
used as a model for researching potential α-glucosidase inhibitors (AGI) and inhibitory
mechanism [12]. Yeast α-glucosidase was classified as a member of the retaining glycoside
hydrolase family 13 that included many important digestive enzymes and the hydrolytic
reactions that occurred by splitting of the bond between the anomeric carbon of the glucosyl
residue and glucosidic oxygen [13,14].

α-glucosidase inhibitors (AGIs) are a class of drugs that have been used for the treat-
ment of type 2 DM. At present, AGIs are used as first-line drugs for the treatment of type 2
DM patients with poor diet control as well as the preferred adjuvant for type 1 DM patients
receiving insulin therapy [15]. AGIs can reduce postprandial glucose levels by preventing
the hydrolysis of polysaccharides to glucose and related monosaccharides, which then
decreases the absorption of carbohydrates in the digestive tract [16]. At present, there are
few varieties of α-glucosidase inhibitors, which mainly include acarbose, voglibose, and
miglitol. However, the preparation process of these drugs is cumbersome and costly, and
research progress on their synthesis is slow. Therefore, researchers prefer to screen new
α-glucosidase inhibitors from natural product resources to identify safer and more effective
drugs. Flavonoids, alkaloids, polysaccharides, and phenols have been shown to exhibit
good α-glucosidase inhibitory activity [17].

Hypericum perforatum L. has been extensively utilized for its antibacterial, neuro-
protective, antidepressant, antioxidant, menopause, dentistry, anti-inflammatory, wound
healing, anticancer, antidepressant, and phototoxicity effects [18,19]. It also imparts hypo-
glycemic effects on diabetic rats induced by streptozotocin [20,21] and thus is a promising
resource for the treatment of type 2DM [22]. We have studied the extract of H. perforatum L.
and found that it exhibits strong α-glucosidase inhibitory activity. Hypericin (4,5,7,4′,5′,
7′-hexahydroxy-2′,2′-dimethyl-o-naphthalene dione) is one of the main active components
that consists of a hard polycyclic aromatic quinone. It was extracted from H. perforatum
and showed significant pharmacological effects such as antiviral [23,24], antitumor [25,26],
antidepressant [27–29], and antibacterial [30–32] effects. However, the inhibitory effect of
hypericin, as well as its mechanism and kinetics on α-glucosidase remain unclear.

This study firstly assessed the α-glucosidase inhibitory activity of hypericin using
a p-nitrophenyl-α-D-glucopyranoside (pNPG) substrate. In addition, the mechanism of
hypericin on α-glucosidase was investigated by enzyme dynamics and real-time interaction
analyses between hypericin and α-glucosidase using surface plasmon resonance (SPR) and
molecular docking.

2. Results and Discussion
2.1. Inhibition of α-Glucosidase by Hypericin and Acarbose

The inhibition activity of hypericin against α-glucosidase showed a dose-dependent man-
ner (Figure 1A). The IC50 of hypericin and acarbose was estimated to be 4.66± 0.27 mg/L and
863 ± 49 mg/L, respectively, which suggested that the inhibition potential of hypericin is
superior to acarbose on α-glucosidase and significantly higher than sennoside A and B [33].
The number of hydroxyl groups on the benzene ring in the inhibitor structure has a certain
effect on the binding of the inhibitor to α-glucosidase. There are six hydroxyl groups in
the benzene ring of hypericin, while there are only two hydroxyl groups and one carboxyl
group in the benzene ring of sennoside. This might lead to stronger interactions between
hypericin and enzyme active sites [34].
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Figure 1. Cont.
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Figure 1. Inhibitory effect of hypericin on α-glucosidase activity (A); inhibitory mechanism of hyper-
icin on α-glucosidase activity (B), hypericin concentrations in curves 0-4 were 0, 1.25, 2.5, 5, 10 mg/L,
respectively; inhibitory type of hypericin on α-glucosidase activity (C), hypericin concentrations
in curves 0-4 were 0, 1.25, 2.5, 5, 10 mg/L, respectively; inhibition constants (D) of hypericin on
α-glucosidase; Inhibitory type of acarbose on α-glucosidase activity (E), acarbose concentrations on
curves 0–2 were 0, 250, 500 mg/L, respectively.

2.2. Inhibitory Mechanism of Hypericin on α-Glucosidase Activity

The reversibility of hypericin’s inhibitory activity against α-glucosidase activity was
evaluated using a plot of ν (reaction rate) versus [E] (concentration of α-glucosidase) for
various inhibitor concentrations (Figure 1B). Figure 1B shows that all straight lines had
passed through the origin, and the slope of the line decreased with increasing hypericin
concentration. This meant that the existence of hypericin did not reduce the effective
enzyme dosage while decrease α-glucosidase enzyme activity. These results suggested
that the inhibitory effect of hypericin on α-glucosidase enzymes was reversible, and non-
covalent interactions exist between α-glucosidase and hypericin [35].

2.3. Enzymatic Kinetics of α-Glucosidase Inhibition

According to the Lineweaver–Burk double inverted curve method, the inhibition
kinetic curves of hypericin were applied to determine the inhibition type and inhibition
constant, respectively. Figure 1C,E shows that when the concentration of hypericin and
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acarbose increased, the slope decreased, whereas the vertical axis intercept did not change.
All the straight lines almost intersected the Y axis at one point, which indicated that
hypericin and acarbose were competitive inhibitors of α-glucosidase [36]. A straight
line was obtained by plotting the corresponding inhibitor concentration with the value
of Michaelis constant (km’) under different concentrations of inhibitors. The inhibition
constants (Ki) of hypericin and acarbose were 9.4 mg/L and 40.6 mg/L, respectively. Ki
is the dissociation constant of the enzyme-inhibitor complex. The Ki of hypericin was
lower than acarbose, which indicated that the inhibition of hypericin on α-glucosidase was
stronger than that of acarbose [37].

2.4. SPR Analysis of the Interaction of Hypericin and α-Glucosidase

Surface plasmon resonance (SPR) biosensors are powerful tools for the analysis of
molecular interactions, and the association and disassociation of molecules can be assessed
in real time without labels [38,39]. SPR biosensors have been widely used to study the
biospecific interaction of low-molecular-weight compounds [40,41]. To assess the binding
affinities between hypericin and α-glucosidase, we analyzed the binding and dissociation
of hypericin (25-200 µM) with α-glucosidase that covered the chip surface. The response
signal of the SPR biosensor generated kinetic information on the amount of complex
that had formed on the chip surface at various hypericin compound concentrations. We
injected PBS into the system periodically throughout each experiment; PBS served as the
baseline reference to determine any systematic drifts over time. These findings indicate
that hypericin can effectively bind to α-glucosidase to form a complex. The binding time
of hypericin and α-glucosidase was 240 s, and the time of natural dissociation was 180 s
(Figure 2). Association rate constant value and dissociation rate constant value, the main
binding parameters for hypericin and α-glucosidase, were 118 mol−1·L·s−1, 0.00774 s−1,
and KD 6.56× 10−5 M, respectively, indicating that hypericin and α-glucosidase underwent
the fast-binding and slow dissociation reaction, as well as strong binding.

Figure 2. Surface plasmon resonance (SPR) concentration-signal graph.

2.5. Molecular Docking

Molecular docking is a theoretical simulation method to study the interaction between
molecules and predict their binding modes and affinity such as ligands and receptors. To
further understand the binding between hypericin and α-glucosidase, molecular docking
was conducted in this study. The sequence identity and similarity between α-glucosidase
from baker’s yeast and isomaltase (PDB ID: 3A4A) from Saccharomyces cerevisiae were 73%
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and 85%, respectively. The high sequence homology suggested that a high-quality 3D
structure of α-glucosidase can be expected in molecular docking [42].

Docking score analysis indicated that the target compound well fits into the active
site, with a docking score of −8.4 kcal/mol. It has been reported that the binding energy
of acarbose is −7.9 kcal/mol [43]. Therefore, the binding affinity of hypericin with α-
glucosidase is stronger than that of acarbose with α-glucosidase. Figure 3A showed the
binding pattern of hypericin with α-glucosidase. All of the binding sites were located on the
active site of α-glucosidase. Therefore, hypericin is a competitive inhibitor of α-glucosidase,
and the docking results are in line with the above inhibition kinetics.

Figure 3. The molecular docking result of hypericin on α-glucosidase (A); the interaction of hypericin
with the key residues in the active cavity of α-glucosidase (B).

Figure 3B shows that hydrophobic interactions (gray line) were formed by hypericin
with amino acid residues Arg-315 and Tyr-316, and hydrogen bonds (green line) were
formed between hypericin and amino acid residues Lys-156, Ser-157, Gly-160, Ser-240, His-
280, Asp-242, and Asp-307. The main amino acid residues around acarbose were reported
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to include Tyr-158, Ser-240, Asp-242, Gln-279, Asp-307, Arg-315, Tyr-316, and Glu-411 [43],
which suggested that hypericin and acarbose bind to α-glucosidase at the same or similar
major amino acid residues, so the inhibition type of hypericin is comparable to that of
acarbose. Some of these residues involved in the binding of hypericin to α-glucosidase
were reported to play an important role in the catalytic mechanism of glycosidase [44].
Moreover, all seven hydrogen bonds formed between the phenolic hydroxyl group in
hypericin and the amino acid residue with more than 2.01 Å bond length, respectively,
which indicated that the hydrogen bond was an important force for hypericin to bind with
glycosidase [45]. The formation of hydrogen bonds might reduce the hydrophilicity of
α-glucosidase and increase its hydrophobicity, which was conducive to improving the
stability of the complex [46]. In addition, the methyl of hypericin was inserted into the
hydrophobic region to interact with residues Arg-315 and Tyr-316 which were reported to
be located at the entrance of the active site pocket [47]. The phenomenon was consistent
with the results from the inhibition kinetics analysis. Therefore, hypericin inserted into the
active pocket of glucosidase prevented the substrate from entering, reduced the catalytic
activity, led to the change of enzyme conception, and finally led to the inhibition of
glucosidase activity. Yamamoto et al. reported that isomaltase contained three domains,
namely A, B, and C, and domain A was shared by glycoside hydrolase family 13 [47]. The
docking results showed the binding regions of hypericin with glucosidase were in domain
A, which means the mechanism of hypericin binding to other enzymes of GH13 may be
the same. Hence, the results of molecular docking may explain the observed high potential
of hypericin as an α-glucosidase inhibitor.

3. Materials and Methods
3.1. Materials

α-glucosidase (EC 3.2.1.20) derived from Saccharomyces cerevisiae was obtained from
Sigma-Aldrich (St. Louis, MO, USA) and dissolved in 0.1 M sodium phosphate buffer
(pH 6.8). Hypericin (analytical grade) and acarbose were obtained from Shanghai Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). Stock solutions of acarbose and hyper-
icin were prepared with dimethyl sulfoxide (DMSO). pNPG was obtained from Aladdin
Reagent Co., Ltd. (Shanghai, China) and dissolved in 0.1 M sodium phosphate buffer
(PBS pH 6.8). All other chemicals were of analytical grade. We used ultrapure water in all
conducted experiments.

3.2. Determination of α-Glucosidase Activity Using Hypericin

The α-glucosidase inhibitory activity of hypericin was assessed as previously de-
scribed [48,49]. Enzyme activity is represented by a change in reaction product concentra-
tion as catalyzed by glucosidase. In a 0.25-mL reaction system, the α-glucosidase solution
(1 U/mL) was mixed with hypericin at different concentrations. The mixtures were then
incubated at 37 ◦C for 10 min and later cooled to room temperature. The reaction was
initiated through the addition of 50 µL of 0.5 mM pNPG (substrate) and incubated at
37 ◦C for 20 min. The reaction was later terminated by adding approximately 50 µL of
0.1 M Na2CO3. The absorption of the product at a wavelength of 405 nm was measured to
determine the concentration by using an epoch2 spectrophotometer (BioTek Instruments,
Inc., Winoosk, VT, USA). The enzymatic activity measured in the absence of an inhibitor
was set as 100% and acarbose was employed as a positive control. We expressed the
α-glucosidase inhibitory activity of hypericin using the median effective concentration for
inhibitory activity (IC50), i.e., the amount of tested hypericin necessary to achieve a 50%
decreased in α-glucosidase inhibitory activity. α-glucosidase enzyme inhibition rate was
calculated using the following equation:

Inhibition rate(%) =
Ac− (As− Asb)

Ac
× 100% (1)
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where Ac is the absorbance value of control group, and As and Asb are the absorbance
values of sample and background group, respectively.

3.3. Inhibitory Kinetic Analysis of α-Glucosidase Inhibition

To elucidate the inhibitory mechanism of hypericin on α-glucosidase, kinetic studies
were conducted using Lineweaver–Burk and Dixon plots. The inhibitory effect of hypericin
on α-glucosidase was assessed using the Lineweaver-Burk method [43]. The concentration
of the enzyme was kept constant at 1 U/mL and different concentrations (0.125, 0.25, 0.5,
1, and 2.5 mM) of the reaction substrates (pNPG) were prepared. Various concentrations
of hypericin (1.25–10 mg/L) were also provided. We plotted the double reciprocal lines
of initial velocity (ν) against substrate concentration, which was then used to determine
maximum reaction velocity (Vmax) and Michaelis constant (Km) using the Michaelis–
Menten model. The Lineweaver–Burk equation was used to describe in a double reciprocal
form the competitive inhibition mechanism [50]:

1
ν
=

Km
Vmax

(
1 +

[I]
Ki

)
1
[S]

+
1

Vmax
(2)

The secondary plot can be established from:

Slope =
Km
Ki

[I] + Km (3)

where ν is the enzyme reaction velocity in the absence and presence of hypericin. Km
and Ki represent the Michaelis-Menten constant and inhibition constant, respectively. The
concentrations of hypericin and pNPG are indicated by [I] and [S], respectively. The
secondary plot of slope against [I] is linearly fitted, assuming a single class of inhibitory
sites or a single inhibitory site [48].

3.4. Hypericin and α-Glucosidase Interactions by SPR Measurements

The interaction between hypericin and α-glucosidase at room temperature was ana-
lyzed in real time on an OpenSPR instrument (Nicoya, Kitchener, Ontario, Canada). The
COOH sensor chip was installed on the OpenSPR instrument as per standard procedures.
After achieving a stable baseline, 10 mM HCl was injected to clean the surface of the chip
and run for 1 min. The buffer flow rate was decreased to 20 µL/min, followed by injecting
200 µL of EDC/NHS (0.4 M/0.1 M) solution, which was freshly prepared, into the flow cell
of the SPR instrument to activate the carboxyl situated on the chip surface. Then, 200 µL
of α-glucosidase solution (0.5 mg/mL) diluted with sodium acetate (10 mM, pH 3.5) was
injected into the flow cell to attach α-glucosidase onto the chip surface after deactivation
of excess reactive groups on the surface by a 7-min liquid pulse of 200 µL blocking solu-
tion (20 µL/min, 4 min). Finally, different concentrations of hypericin (25–200 µM) were
injected onto the surface of the α-glucosidase chip, and the sample was loaded at a rate
of 20 L/min. The bound hypericin compound was then desorbed from the α-glucosidase
coating surface using acid and alkali. After these measurements, the surface of the chip was
then regenerated using a 100-µL injection of 2 mM NaOH. The localized surface plasmon
resonance (LSPR) response changed over time and showed the dynamics of the chip surface
binding events. The experimental results and dynamics were analyzed using TraceDrawer
(Ridgeview Instruments AB, Uppsala, Sweden) and a one-to-one analysis model.

3.5. Molecular Docking Analysis

Molecular docking was performed to determine the interaction kinetics [51]. 3D
structures of yeast α- glucosidase (EC 3.2.1.20) are unavailable. However, there are X-
ray structures available for the isozyme isomaltase/a methylglucosidase (EC 3.2.1.10).
The isomaltase with the PDB entry 3A4A has a high-resolution X-ray structure and high
sequence homology (73%) [42]. Therefore, the molecular docking analysis was carried out
by 3A4A that was obtained from Protein Data Bank (https://www.rcsb.org/structure/3A4A

https://www.rcsb.org/structure/3A4A
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(accessed on 10 June 2021)) [43]. Hydrogen atoms were added onto the protein, and all
water molecules were deleted using the AutoDock tools. The 3D structures of hypericin
and acarbose were built in ChemBio 3D Ultra 19.0 and processed by adding hydrogen
atoms, charges, and energy minimization. The grid box was set to contain the whole
molecule. The docked model with the lowest docking energy was selected to represent its
most favorable binding pattern, with prediction performed using AutoDock Vina [52].

3.6. Statistical Analysis

All experimental results including α-glucosidase activity assay and inhibitory kinetic
analysis were measured thrice. The data were expressed as the mean value ± standard
deviation (n = 3). Data analysis was performed with GraphPad Prism 7.

4. Conclusions

Using α-glucosidase inhibition experiments and enzyme kinetics study, we have
shown that hypericin imparts a strong inhibitory effect on α-glucosidase, and this activity
is reversible and involves competitive inhibition of α-glucosidase. This indicates that
the binding sites of hypericin and the enzyme are within the active site. As the first-
line drugs of type 2 diabetes, acarbose and voglibose are both competitive inhibitors
of α-glucosidase. In the computational simulation study, the possible binding mode of
hypericin and α-glucosidase was established, which was the same as the previous study
on polyhydroxy compounds and played a very important role in all binding modes of
hydrogen bond interaction [53]. The major amino acid residues of hypericin and acarbose
binding to α-glucosidase were the same or similar. The binding properties of hypericin
onto α-glucosidase were assessed using a label-free SPR detection system. The results
revealed that hypericin binded to α-glucosidase and formed a new stable complex that
exhibited the fast-binding and slow dissociation reaction, as well as strong binding.

In conclusion, the interaction between hypericin and α-glucosidase was studied by
enzyme dynamics and computational simulation, and the possible binding mechanism
was elucidated. Hypericin has a strong ability of enzyme inhibition, which is similar to
acarbose in the aspects of inhibition type and binding mode. Therefore, hypericin may
be potentially used as a natural substitute for an α-glucosidase inhibitor. This is the first
study that describes the inhibitory activity of hypericin, which may potentially be applied
to the food and industry medical field. In addition, further studies are needed, including
those on the structure–activity relationship of hypericin to α-glucosidase inhibition and its
consequences in vivo.
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Abbreviations

AGI, alpha glucosidase inhibitors; DM, diabetes mellitus; DMSO, dimethyl sulfoxide; EDC,
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; IC50, maximum half inhibitory concentration; KD,
balances dissociation constant; Ki, inhibition constant; Km, michaelis constant; LSPR, localized sur-
face plasmon resonance; NHS, N-Hydroxy succinimide; PBS, phosphate buffer; pNPG, p-nitrophenyl-
α-D-glucopyranoside; SPR, surface plasmon resonance; Vmax, maximum reaction velocity.
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