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Abstract: Genito-urinary tract infections have a high incidence in the general population, being
more prevalent among women than men. These diseases are usually treated with antibiotics, but
very frequently, they are recurrent and lead to the creation of resistance and are associated with
increased morbidity and mortality. For this reason, it is necessary to develop new compounds for
their treatment. In this work, our objective is to review the characteristics of the compounds of a
new formulation called Itxasol© that is prescribed as an adjuvant for the treatment of UTIs and
composed of β-arbutin, umbelliferon and n-acetyl cysteine. This formulation, based on biomimetic
principles, makes Itxasol© a broad-spectrum antibiotic with bactericidal, bacteriostatic and antifungal
properties that is capable of destroying the biofilm and stopping its formation. It also acts as an anti-
inflammatory agent, without the adverse effects associated with the recurrent use of antibiotics that
leads to renal nephrotoxicity and other side effects. All these characteristics make Itxasol© an ideal
candidate for the treatment of UTIs since it behaves like an antibiotic and with better characteristics
than other adjuvants, such as D-mannose and cranberry extracts.
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1. Introduction

Urinary tract infections (UTIs) affect any part of the urinary tract and may spread
through the urinary tract towards the urethra, bladder and even the kidneys [1]. It has
been estimated that around 150 million people suffer from UTIs annually [2], and they are
associated with an increase in morbidity and mortality [3]. UTIs are more prevalent in
women than in men, which is related to the short length of the urethra favoring bacteria
colonization [4–6], and it has been estimated that 50–70% of women will suffer at least one
urinary infection in their life [6]. Of women suffering from UTIs, 20–30% might suffer from
a recurrent UTI, which is defined as recurrences of uncomplicated and/or complicated
UTIs, with a frequency of at least three UTIs/year or two UTIs in the last six months [7].
UTIs in women are often associated with sexual intercourse [8], poor social conditions
that limit access to female hygiene products for menstruation [9] and use of contraceptive
devices such as diaphragms [10,11]. In the case of postmenopausal women, recurrent UTIs
are related to the low levels of estrogens that produce changes in the vaginal microbiota [12].
In the case of men, UTIs are often related to prostatitis, prostate benign hyperplasia or
any kind of urinary obstructive tract pathology [13,14]. In addition, UTIs are related to
smoking, which is also associated with the development of bladder cancer, and it has been
reported to increase the risk of suffering from UTIs by up to 50% [15].

The main bacteria isolated from cases of UTIs (80%) is E. coli, although other pathogens
have been cultured, such as Klebsiella pneumoniae and Pseudomonas aeruginosa [16]. These
infections represent a major number of hospital- and community-acquired infections, acute
pyelonephritis being one of the major causes of hospitalization [6,17].
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Causes of UTIs are related to sexual intercourse [18], and the incidence increases
with age [19]. Other manifestations of UTIs are cystitis and pyelonephritis [20]. UTIs
are often associated with the use of catheters [20,21], this being a major risk factor in
hospital-acquired UTIs. UTIs are also related with radical cystectomy that is used for the
treatment of different kinds of bladder cancer [22]. It has been estimated that around 35%
of the patients after radical cystectomy surgery suffer from UTIs [23,24]. Of note, there are
multiples cases of asymptomatic bacteriuria that do not require treatment, and they are not
considered UTIs [6].

UTIs may be resolved spontaneously or treated with antibiotics [25]. Antibiotic
resistance is a major problem nowadays [26]; in the European Union alone, it has been
reported that annually, there are around 670,000 cases of infections related to multi-drug-
resistant bacteria with 37,000 associated deaths, representing an enormous socioeconomic
burden [27]. Regular use of antibiotics is related to nephrotoxicity due to interstitial
nephritis, acute tubular necrosis and intratubular crystal deposition, which leads to an
impaired kidney function [28]. Antibiotics also produce changes in the intestinal flora
that trigger pathological processes, such as diarrhea, and alter immunity and metabolism;
furthermore, gut bacteria have become a reservoir of genes for resistance to antibiotics [25].

As in other cases, UTI reinfections are recurrent, which leads to antibiotic resistance
and, therefore, complications in treatment [29,30]. The recurrence of UTIs varies among
different populations [16]. Children and young adult women usually suffer from having
UTIs after a brief period following initial diagnosis [31,32].

Treatment of UTIs depends on various factors, such as the severity of the illness and
the sex and age of the patient. The main first-line treatments are nitrofurantoin, fosfomycin
trometamol, pivmecillinam and trimethoprim/sulfamethoxazole (TMP-SMX), with beta-
lactams and fluoroquinolones being alternative therapies [33,34]. However, antibiotic
usage produces nephrotoxicity in the case of gentamicin [35]. In addition, the occurrence of
antibiotic resistance in UTIs is common [36,37], and this resistance is related to an increase
in mortality due to microbial infections [38–40]. Moreover, regarding the use of antibiotics
in patients with urothelial carcinoma, it has also been reported that patients under antibiotic
treatment show a worse survival rate than that those who do not receive antibiotics [38].

One of the major problems related to the efficacy of antibiotics is the creation of biofilm
by bacteria and fungus [41,42]. Biofilm promotes the propagation of these organisms and
helps them to be more resistant to pharmacological treatments [43,44]. It has also been
demonstrated that the formation of the biofilm plays a key role in catheter-associated
infection [45]. This situation combined with the lack of new antibiotics requires effort to
identify alternatives that might be used to combat recurrent infections. Regarding this
concern, a new group of molecules called drug conjugates have been proposed as an
alternative or a complement to the use of antibiotics alone [46]. These drug conjugates
combine a sustained release, different kinds of antibiotics, and antibacterial activities as
well as carrier composition [47].

It is important to underline that antibiotics come from natural sources and have been
used to treat infections since ancient times. A milestone was reached with the discovery of
penicillin by Sir Alexander Fleming in 1928 [48–50]. In this regard, Itxasol© is a new drug
with a biomimetic origin that has recently been authorized by the Spanish Drugs Agency
that belongs to Health Ministry (Agencia Española del Medicamento, authorization number
C.N. 203621.5) to be used to treat UTIs as an adjuvant. Biomimetic might be defined as
the science that studies nature as a source of inspiration for innovative technologies to
solve human problems through models of systems (mechanics), processes (chemistry) or
elements that imitate or are inspired by nature [51].

Itxasol© is composed of β-arbutin, umbelliferon (UMB) and N-acetyl l-cysteine (NAC).
The three components of Itxasol© act as a natural antibiotic and potentially reduce in-
flammation, biofilm formation and the number of pathogenic microorganisms in the
urinary tract.



Molecules 2021, 26, 4564 3 of 13

Our main aim is to thoroughly review the knowledge regarding the three components
of Itxasol©, a new drug compound, in relation to its efficacy to treat UTIs. Here, we analyze
the mechanism of actions of the components of Itxasol©, namely, β−arbutin, UMB and
NAC, and their main use related to the urinary tract.

2. Material and Methods

We searched PubMed, Web of Science (Clarative Analytics), and the Spanish databases
Medes (https://medes.com/Public/Home.aspx, accessed on 1 June 2021) and IBECS
(https://ibecs.isciii.es, accessed on 1 June 2021) for the following terms: umbelliferon/7-
hydroxycoumarin and urinary tract/biofilm, arbutin and urinary tract/biofilm and
N-acetylcysteine and urinary tract/biofilm (for the Spanish databases, the terms were
written in Spanish). Table 1 summarizes the findings of this strategy search. Although
single terms were found in Spanish databases, we did not find combinations of terms. After
the original search, all abstracts were read, and those that were not related to the original
search were discarded.

Table 1. Results of database search.

Term PubMed Web of Science

Umbelliferon and urinary tract 86 2
Umbelliferon and biofilm 9 1

7-Hydroxycoumarin and urinary tract 20 2
7-Hydroxycoumarin and biofilm 4 5

Arbutin and urinary tract 15 14
Arbutin and biofilm 2 3

N-acetylcysteine and urinary tract 807 54
N-acetylcysteine and biofilm 121 154

2.1. β-arbutin

Arbutin is a glycoside derived from extracts of leaves of Arctostaphylos uva-ursi, plants
from genus Bergenia or other plants that belong to genus Ainsliaea and Calluna. These
plants have been traditionally used for the treatment of urinary tract infections in Europe,
America and Asiatic countries [52]. After its administration, arbutin is transformed into
hydroquinone and glucose (Figure 1). The mechanism of action of hydroquinone (HQ)
is related to the destruction of the bacteria wall, which leads to leakage of intracellular
content and bacteria death [53]. One of the major advantages of β-arbutin treatment is that
the amount of derived HQ that might reach the urinary tract after HQ excretion in urine is
around 65% of the β-arbutin administrated [54].
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The antibacterial activity of β-arbutin has been tested in several studies that demon-
strated that it can destroy both Gram-negative and positive bacteria as well as fungi. In this
list, we can find Pseudomonas aeruginosa, Staphylococcus aureus, S. aureus MRSA K31 (clinical,
antibiotic-resistant strain), Enterococcus faecalis, Escherichia coli, Escherichia coli ESBL R194
(clinical, antibiotic-resistant strain), Enterococcus faecalis HLAR (clinical, antibiotic-resistant
strain), Bacillus subtilis and Candida albicans [53,55,56]. In Table 2, we show the minimum
inhibitory concentration of HQ against different pathogens.

Table 2. Main MIC values for HQ.

Pathogen MIC (µg/mL) Gram Reference

Escherichia coli 256 Negative [57]
Pseudomonas aeruginosa 7.8 Negative [58]

Staphylococcus aureus 15.6 Positive [58]
Staphylococcus aureus 103 Positive [59]

Salmonella typhimurium 512 Negative [57]
Bacillus cereus 512 Positive [57]

Mycobacterium tuberculosis 12.5 Positive [60]

In fact, in vivo, it has been reported in a randomized controlled trial that β-arbutin in
combination with other plant extracts, such as berberine and birch, significantly reduced
the incidence of recurrent cystitis [61]. The use of β-arbutin as a substitute for antibiotic
treatment for UTIs is under study in a double-blind, randomized and controlled clinical
trial on women aged 15 to 75 years old, but the results are yet to be published [62].

One concern regarding the safety of arbutin is that hydroquinone might be nephro-
toxic [63,64]. Extract of strawberry tree Arbutus unedo, which contains arbutin, has been
proven to be safe for the kidney in rats [65]. These extracts did not show any side effects
in kidney function or affect the integrity of the DNA in the kidney cells. It has also been
demonstrated that the administration of arbutin to humans was not toxic for lymphocytes,
and it did not induce damage to the DNA of these cells [66].

Inflammation is an important consequence of UTIs. Regarding this effect, it has
been demonstrated that β-arbutin reduces the kidney inflammation produced by the
administration of lipopolysaccharide to rats. It was concluded that the anti-inflammatory
effects of β-arbutin were mediated by inhibition of the Akt signaling pathway [67]. These
results were dependent on the activity of arbutin, because when a specific arbutin activity
inhibitor was administered, the beneficial effects of arbutin were abolished. Of note,
arbutin, in a polyherbal mixture administered to diabetic rats, resulted in a decrease in
blood sugar and level of cholesterol as well as cardiovascular risk, while it restored several
histopathological changes produced by diabetes in the liver, pancreas and kidney [68]. The
main actions of β-arbutin are summarized in Table 3.

Table 3. Main actions of β-arbutin.

Action Main Findings/Use Reference

Antibacterial action Inhibits Pseudomonas aeruginosa growth at 128 mg/mL [56]
Demonstration of antibacterial activity [55]

Arbutin destroys bacteria through wall cellular disruption (Gram + and Gram −) [53]
Reduction in bacterial load in prevention of UTI recurrence [61]

Clinical trial to reduce the use of antibiotics administering b-arbutin (results not
yet published) [62]

Anti-inflammatory Attenuated damage induced by lipopolysaccharide in rat [67]

Anti-diabetic Ameliorates hyperglycemia, hyperlipidemia and histopathological changes in
pancreas, kidney and liver in a diabetes rat model [68]
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2.2. Umbelliferon (UMB)

UMB (Figure 2) is a coumarin (7-hydroxycoumarin) that can be extracted from fruits [2]
and plants and has demonstrated multiple activities, such as antitumoral, antioxidant (with
the ability to quench free radicals), antihyperglycemic, anti-arthritic and anti-inflammatory
activities, as well as hepatic and cerebral protective functions [17,69–75].
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UMB activity as an antibiotic was described as earlier as 1978. However, it has not
been used due to a lack of knowledge about its mechanism of action and its actions in the
kidney [46]. Although knowledge of the antibiotic action of UMB is scarce, it has recently
been demonstrated that derivates of UMB from plants of genus Ferula are useful against
periodontal bacteria, inhibiting bacteria growth and biofilm formation [76]. In agreement
with these data, it has been described that UMB can inhibit the formation of the biofilm
created by Staphylococcus epidermidis, impairing intracellular adhesion by downregulation
in the expressions of genes related to adherence function [77]. The MIC of UMB against
different pathogens is shown in Table 4.

Table 4. Main MIC values for UMB.

Pathogen MIC (µg/mL) Gram Reference

Escherichia coli 1000 Negative [78]
Escherichia coli 800 negative [79]
Shigella sonnei 1000 Negative [78]

Salmonella typhimurium 500 Negative [78]
Enterococcus faecalis 1000 Positive [78]

Bacillus cereus 62.5 Positive [78]
Staphylococcus aureus 200 Positive [79]

Coumarins are useful against fungus such as C. albicans [80,81]. Thus, this efficacy
might lie in the fact that UMB can produce internal changes, such as an increase in ROS,
DNA fragmentation and externalization of phosphatidyl serine, all of them being related
to an increase in apoptosis [82]. The use of UMB to stop biofilm production in a model of
C. elegans showed downregulation of the expression of genes related to the formation of
filaments and adhesion as well as reducing the formation of biofilm in this nematode in
general [83]. Besides fungi, it has also been reported that coumarins reduce the virulence
and biofilm formation of E. coli O157:H7. Coumarins downregulate the expression of curli
and motility genes, which results in fewer fimbriae and the production of biofilm [84].
In the same sense, UMB prevents the formation of biofilm by the methicillin-resistant
Staphylococcus epidermidis strain at a dose of 500 mg/mL but without affecting the
growth of this bacteria [77].

UMB has also been reported as a good nephron protector when it is used in com-
bination with cisplatin, which is one of the chemotherapeutic agents used against dif-
ferent cancers but with limited use given its nephrotoxicity [85]. In a mouse model of
cisplatin-induced acute kidney injury (AKI), it was demonstrated that UMB reduced the
nephrotoxicity associated with cisplatin use. These effects were achieved by increased
cell tubular proliferation upon enhanced expression of sox9 transcription factor. Another
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kidney-protective effect of UMB was the reduction of necrosis in kidney cells produced by
the inhibition of the RIPK1/RIPK3/MLKL pathway. In a model of methotrexate-induced
kidney injury, the administration of UMB reduced the expression of inflammation me-
diators P38MAPK and NF-κB and the pro-apoptotic molecules BAS and caspase3 while
increasing anti-apoptotic levels of the BLC-2 molecule [86].

On the other hand, UMB has proven useful in treating the nephropathy produced in
diabetic rat models induced with streptozotocin. In this model, UMB reduced the creatinine
level in plasma, renal oxidative stress levels and levels of tissue and circulating TGF-β1
[1]. In another similar rat model study, in addition to the reduction of glucose blood levels,
the beneficial effects of UMB were related to a decrease in inflammatory mediators, such as
TNF-α, IL-6 and IL-1β; a reduction in the levels of mesenchymal–epithelial markers, such
as podocin and CD2AP; and the reversal of some of the histopathological changes mediated
by a diabetic status in the kidney [87]. In fact, this inhibition of the TGF-β1 pathway has
also been reported in carbon tetrachloride-induced liver fibrosis in rats. After treatment
with UMB, liver cells reduced the activation of the Smad/TGF-β1 pathway; downregulated
the expression of NF-κB, collagen I and III and α-Smad; increased the levels of glutathione;
and upregulated the expression of PPARγ. The histology result was a decrease in liver
fibrosis [88]. The principal actions of UMB are summarized in Table 5.

Table 5. Main actions of coumarins and their derivates.

Action Main Findings/Use References

Antifungicidal/antibiotic Antifungicidal activity [74,82,83]
Decreases virulence and biofilm formation of E.coli O157:H7 [84]

Impedes biofilm formation of methicillin-resistant Staphylococcus epidermidis [77]
Destroys periodontal bacteria and inhibits biofilm formation [76]

Antibiofilm properties (Staphylococcus epidermidis) [77]
Antitumoral Inhibits cell growth in lung carcinoma cell lines [73]

Induces cell cycle arrest in G0/G1 in human cell carcinoma [75]
Anti-inflammatory Reduction in inflammation in a model of brain damage in rats [17]
Antihyperglycemic Anti-diabetic effect in a diabetic mouse model induced with streptozotocin [89]
Nephron protection Reduction in the nephrotoxicity associated to cisplatin use [85]

UMB attenuates renal toxicity induced by gentamicin [1,86]
Enhances renal function in diabetic mouse model [87]

Antifibrotic Ameliorates the liver fibrosis signs induced by carbon tetrachloride (CCl4) in rats [88]

2.3. N-Acetyl L-Cysteine (NAC)

The NAC molecule (Figure 3) is well known for its antioxidant, anti-inflammatory
and mucolytic actions [90,91]. Its mechanism of action is related to its ability to reduce
the levels of reactive oxygen species (ROS), such as •OH, NO2 and CO3

−, given that it
is a precursor of glutathione, a renowned natural ROS scavenger [92]. Moreover, there
is compelling evidence regarding NAC as a molecule that destroys biofilms and also
reduces their formation via bacteria and fungus [93,94]. Although the mechanism by which
NAC reduces biofilm formation is still not clear, a recent report by Li and co-workers
demonstrated that NAC can penetrate the bacteria wall, stopping protein synthesis and
leading to bacteria death [95]. Table 6 summarizes the recent reports demonstrating
the ability of NAC to both inhibit biofilm formation and destroy already formed ones.
Besides being useful against UTIs, several pieces of evidence point out NAC as a kidney
protector [96]. Moreover, a recent study demonstrated that the administration of NAC
protected Wistar rats with a kidney injury against long warm renal ischemia. In particular,
NAC administration resulted in an improvement in biochemical parameters and renal
function when compared to the placebo group [97].
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Table 6. Recent reported studies on antibiofilm activities of NAC.

Organism NAC Concentration Reference

C. albicans
C. parapsilosis

C. guilliermondii
C. tropicalis
C. glabrata

10–50 mg/mL [96]

Pseudomonas aeruginosa 0.15–0.23 mg/mL [98]
P. aeruginosa 3–10 mg/mL [99]
P. aeruginosa 32 mg/mL [100]

Candida albicans 25 mg/mL [101]
Staphylococcus aureus 0.5 mg/mL [102]

Stenotrophomonas maltophilia 16–32 mg/mL [103]
Acinetobacter baumannii 16–128 mg/mL [104]

Candida tropicalis 1000 mg/mL [105]
Actinomyces naeslundii, Lactobacillus salivarius,

Streptococcus mutans, Enterococcus faecalis 25–100 mg/mL [106]

Pseudomonas aeruginosa 10 mg/mL [107]
Staphylococcus pseudintermedius Pseudomonas

aeruginosa Corynebacterium spp. and
β-hemolytic Streptococcus spp.

0.115–80 mg/mL [108]

Actinomyces naeslundii, Lactobacillus salivarius,
Streptococcus mutans, Enterococcus faecalis 0.78–1.56 mg/mL [109]

3. Discussion

UTIs have a high economic and social burden and affect large segments of the popula-
tion, such as children, pregnant women, healthy pre- and post-menopausal women and
patients undergoing catheterization and diabetics. In addition, there is a very high risk
of relapse in UTIs, and it is common for these episodes to be caused by the same bacteria
or something different [6]. Unfortunately, many of the current treatments fail to resolve
UTIs and therefore lead to complications and relapses, and in many cases, patients also
experience the adverse effects of medications [110,111].

Taken together, a new compound that combines antimicrobial and anti-inflammatory
action and that does not have side effects is required to manage these diseases. Thus, in
this study, we reviewed the main uses of arbutin, UMB and NAC, and the major actions of
these three molecules are summarized in Figure 4.

There are new natural alternatives that, through an adequate formulation of different
compounds, could contribute to solving this unmet need that constitutes the management
of urinary tract infections. Itxasol© is a formulation that produces a synergistic effect thanks
to its three components that act against urinary tract infections and improve diuresis.
Itxasol© combines antibiotic properties of a natural bactericide and bacteriostat of the
broad spectrum with antibiofilm (both prevention and elimination), nephroprotective,
anti-inflammatory and antioxidant properties.
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(around 8%) as a side effect [114]; moreover, its efficacy in regard to preventing or reduc-
ing UTI incidence remains clear [115]. UMB’s high bioavailability in the urinary tract is 
the characteristic that differentiates it from other coadjutants, such as curcumin (anthocy-
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Figure 4. Combined mechanism of action of the three components of Itxasol©: β-arbutin, UMB
and NAC.

There are other coadjutants that have been used against UTIs, such as cranberry
extracts and D-mannose or combinations of them or with extracts from other plants [111].
D-Mannose has been suggested as a coadjutant in the treatment of UTIs. However, this
monosaccharide that acts by inhibiting the adherence of bacteria (E. coli) to urothelium [112]
lacks antibacterial activity [113] and causes a considerable number of cases of diarrhea
(around 8%) as a side effect [114]; moreover, its efficacy in regard to preventing or reduc-
ing UTI incidence remains clear [115]. UMB’s high bioavailability in the urinary tract is
the characteristic that differentiates it from other coadjutants, such as curcumin (antho-
cyanosises), which can be found in red cranberry anthocyanosises. This feature makes it
a suitable candidate for treating UTIs [116]. Of note, neither D-mannose nor cranberry
extracts have an established dosage, and both are limited to the action of preventing the
adherence of bacteria to the urothelium.

One of the limits of our review is that the combined effect of the molecules that form
Itxasol© is not completely described. However, the antimicrobial activity of the three
molecules has been tested in urinary catheters colonized with Enterococcus faecalis. In this
study, it was demonstrated that these three molecules were able to reduce the formation
of biofilms. In fact, after 72 h of treatment, the catheters treated with UMB (300 mg),
arbutin (60 mg) and N-acetylcysteine (150 mg) showed a significant reduction in loaded
biofilms and loaded bacteria [117]. It is important to highlight that the concentrations of
the different compounds in the formulation are important since, in this study, UMB seems
to work better at high doses (300 mg) accompanied by low doses of NAC (150 mg).

4. Conclusions

Itxasol© represents a promising tool in the treatment and prevention of ITUs, and it
acts mainly as a broad-spectrum antibiotic protecting the kidney. It may be used for an
extended time without generating bacterial resistance, which makes it an excellent alterna-
tive treatment to actual antibiotics and other coadjutants. The design of new controlled
and randomized trials is necessary to confirm the potential of Itxasol© in comparison with
current treatments.
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Huri, E. The examination of the nephroprotective effect of montelukast sodium and N-acetylcysteine ın renal ıschemia with
dimercaptosuccinic acid imaging in a placebo-controlled rat model. Acta Cir. Bras. 2020, 35, 1–9. [CrossRef]

98. Guerini, M.; Grisoli, P.; Pane, C.; Perugini, P. Microstructured lipid carriers (MLC) based on N-acetylcysteine and chitosan
preventing Pseudomonas Aeruginosa biofilm. Int. J. Mol. Sci. 2021, 22, 891. [CrossRef] [PubMed]

99. Kundukad, B.; Udayakumar, G.; Grela, E.; Kaur, D.; Rice, S.A.; Kjelleberg, S.; Doyle, P.S. Weak acids as an alternative anti-microbial
therapy. Biofilm 2020, 2, 100019. [CrossRef] [PubMed]

100. Lababidi, N.; Montefusco-Pereira, C.V.; de Souza Carvalho-Wodarz, C.; Lehr, C.M.; Schneider, M. Spray-dried multidrug particles
for pulmonary co-delivery of antibiotics with N-acetylcysteine and curcumin-loaded PLGA-nanoparticles. Eur. J. Pharm. Biopharm.
2020, 157, 200–210. [CrossRef] [PubMed]

101. Nunes, T.S.B.S.; Rosa, L.M.; Vega-Chacón, Y.; de Oliveira Mima, E.G. Fungistatic action of N-acetylcysteine on Candida albicans
biofilms and its interaction with antifungal agents. Microorganisms 2020, 8, 980. [CrossRef] [PubMed]

102. Pijls, B.G.; Sanders, I.M.J.G.; Kuijper, E.J.; Nelissen, R.G.H.H. Synergy between induction heating, antibiotics, and N-acetylcysteine
eradicates Staphylococcus aureus from biofilm. Int. J. Hyperth. 2020, 37, 130–136. [CrossRef]

103. Pollini, S.; Di Pilato, V.; Landini, G.; Di Maggi, T.; Cannatelli, A.; Sottotetti, S.; Cariani, L.; Aliberti, S.; Blasi, F.; Sergio, F.; et al.
In vitro activity of N-acetylcysteine against Stenotrophomonas maltophilia and Burkholderia cepacia complex grown in planktonic
phase and biofilm. PLoS ONE 2018, 13, e0203941. [CrossRef] [PubMed]

104. Feng, J.; Liu, B.; Xu, J.; Wang, Q.; Huang, L.; Ou, W.; Gu, J.; Wu, J.; Li, S.; Zhuo, C.; et al. In vitro effects of N-acetylcysteine
alone and combined with tigecycline on planktonic cells and biofilms of Acinetobacter baumannii. J. Thorac. Dis. 2018, 10, 212–218.
[CrossRef] [PubMed]

105. Fernández-Rivero, M.E.; Del Pozo, J.L.; Valentín, A.; de Diego, A.M.; Pemán, J.; Cantón, E. Activity of amphotericin B and
anidulafungin combined with rifampicin, clarithromycin, ethylenediaminetetraacetic acid, N-acetylcysteine, and farnesol against
Candida tropicalis biofilms. J. Fungi 2017, 3, 16. [CrossRef]

106. Choi, Y.S.; Kim, C.; Moon, J.H.; Lee, J.Y. Removal and killing of multispecies endodontic biofilms by N-acetylcysteine. Braz. J.
Microbiol. 2018, 49, 184–188. [CrossRef]

107. Kundukad, B.; Schussman, M.; Yang, K.; Seviour, T.; Yang, L.; Rice, S.A.; Kjelleberg, S.; Doyle, P.S. Mechanistic action of weak acid
drugs on biofilms. Sci. Rep. 2017, 7, 4783. [CrossRef]

108. May, E.R.; Conklin, K.A.; Bemis, D.A. Antibacterial effect of N-acetylcysteine on common canine otitis externa isolates. Vet.
Dermatol. 2016, 27, 188-e47. [CrossRef]

109. Moon, J.H.; Choi, Y.S.; Lee, H.W.; Heo, J.S.; Chang, S.W.; Lee, J.Y. Antibacterial effects of N-acetylcysteine against endodontic
pathogens. J. Microbiol. 2016, 54, 322–329. [CrossRef] [PubMed]

110. Nicolle, L.E. Asymptomatic bacteriuria: Review and discussion of the IDSA guidelines. Int. J. Antimicrob. Agents 2006, 28
(Suppl. S1), 42–48. [CrossRef]

111. Cai, T. Recurrent uncomplicated urinary tract infections: Definitions and risk factors. GMS Infect. Dis. 2021, 9, Doc03. [CrossRef]
[PubMed]

112. Bouckaert, J.; Berglund, J.; Schembri, M.; De Genst, E.; Cools, L.; Wuhrer, M.; Hung, C.S.; Pinkner, J.; Slättegård, R.; Zavialov,
A.; et al. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol.
Microbiol. 2005, 55, 441–455. [CrossRef] [PubMed]

113. Scribano, D.; Sarshar, M.; Prezioso, C.; Lucarelli, M.; Angeloni, A.; Zagaglia, C.; Palamara, A.T.; Ambrosi, C. D-Mannose treatment
neither affects uropathogenic Escherichia coli properties nor induces stable fimh modifications. Molecules 2020, 25, 316. [CrossRef]
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