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Abstract: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with
multiple causes, characterized by excessive myofibrocyte aggregation and extracellular matrix depo-
sition. Related studies have shown that transforming growth factor-β1 (TGF-β1) is a key cytokine
causing fibrosis, promoting abnormal epithelial–mesenchymal communication and fibroblast-to-
myofibroblast transition. Fedratinib (Fed) is a marketed drug for the treatment of primary and
secondary myelofibrosis, targeting selective JAK2 tyrosine kinase inhibitors. However, its role in pul-
monary fibrosis remains unclear. In this study, we investigated the potential effects and mechanisms
of Fed on pulmonary fibrosis in vitro and in vivo. In vitro studies have shown that Fed attenuates
TGF-β1- and IL-6-induced myofibroblast activation and inflammatory response by regulating the
JAK2/STAT3 signaling pathway. In vivo studies have shown that Fed can reduce bleomycin-induced
inflammation and collagen deposition and improve lung function. In conclusion, Fed inhibited
inflammation and fibrosis processes induced by TGF-β1 and IL-6 by targeting the JAK2 receptor.

Keywords: fedratinib; pulmonary fibrosis; JAK2/STAT3; transforming growth factor-β1; fibroblast-
to-myofibroblast transition

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease
with a poor prognosis with unknown etiology. IPF is characterized by damage in the ep-
ithelium and fibrogenesis in the interstitial tissue, leading to progressing alveolar structure
destruction and pulmonary function failure. Patients diagnosed with PF have a median
survival of only 2−4 years [1]. Pharmacotherapy for PF is emerging in recent years. The
availability of nintedanib and pirfenidone provides patients with more flexible therapeutic
options. However, clinical outcomes reveal them to simply mitigate symptoms or retard
progression and to fail to prolong survival. Given this situation, more pharmacotherapy
strategies are needed for patients to improve their health status.

Alveolar epithelial cell (AEC) dysfunction following epithelial injury initiates fibrosis.
Injured AECs secret numerous mediators that induce the migration of mesenchymal cells
of different origins (such as local fibroblasts or fibrocytes), as well as their differentiation
to myofibroblasts [2]. These myofibroblasts in turn contribute to excessive extracellular
matrix (ECM) deposition and eventually destroy the lung architecture. Some epithelial
cells are also reprogrammed to overexpress mesenchymal markers that contributes to
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the breakdown of the epithelial junction and lung interstitial remodeling. Transform-
ing growth factor β1 (TGF-β1), tumor necrosis factor α (TNFα) and interleukin (IL)-1β
are all expressed by AECs and promote profibrotic responses. Among all these factors,
TGF-β1 is the most potent profibrotic mediator. Exaggerated TGF-β1 promotes aberrant
wound healing of AECs and fibroblast-to-myofibroblast transition (FMT) through multi-
ple signaling pathways [3]. Although TGF-β1 is an attractive target for IPF therapy, few
candidates have reached late-phase clinical trials due to their toxicity, e.g., BG00011, a
humanized monoclonal antibody directed against integrin αvβ6 (NCT01371305). These
factors drive us to explore molecules targeting a less toxic pathway that exhibits crosstalk
with TGF-β1 signaling.

Janus kinase (JAK) is a receptor-related tyrosine kinase that plays a central role in
multiple homeostatic processes including inflammation responses [4], apoptosis [5] and cell
proliferation [6]. JAK2 initiates responses to several inflammatory factors such as IL-6 [7]
and interferon (IFN)-γ [8], and JAK2/STAT3 is also a non-classical signaling pathway of
TGF-β1 [9]. Once activated, JAK kinase recruits and phosphorylates signal transducer and
activator of transcription (STAT) proteins, following STATs’ dimerization and translocating
into the nucleus, where they activate the transcription of several target genes. Alterations
in JAK2 signaling cause profound responses. STAT3 phosphorylation participates in both
lung epithelial cell damage and FMT [10,11] and contributes to fibrogenesis [12]. Studies
also revealed that JAK2/STAT3 signaling undergoes a hyperactivation in IPF patients [12].
Therefore, targeting JAK2/STAT3 signaling has been highlighted as a potential strategy for
treating pulmonary fibrosis.

Fed is a JAK2-selective kinase inhibitor recently approved by the U.S. Food and Drug
Administration (FDA) for the treatment of myofibrosis (MF) [13]. Clinical study shows
that patients with MF receiving Fed have benefited from spleen-size reductions and have
a significantly lower level of several inflammatory factors such as tumor necrosis factor
α (TNF-α) [14]. In this study, we demonstrate that Fed can inhibit the progression of pul-
monary inflammation and fibrosis by inhibiting both JAK2/STAT3 and TGF-β1 signaling.
In vitro study shows that Fed inhibits TGF-β1- and IL-6-induced hyperactivity of epithelial
cells and FMT and reduces inflammatory factor expression of epithelial cells. Further study
confirms its in vitro antifibrotic effect, manifesting as the decrease of fibroblast migration
and activation and downregulation of TGF-β1/Smad and non-Smad signaling. In vivo
studies reveal the same result. These findings together demonstrate the antifibrotic effects
of Fed and might have direct translational implications.

2. Results
2.1. Fedratinib Inhibited Mesenchymal Marker Expression in Epithelial Cells and
Fibroblast-to-Myofibroblast Transition by Suppressing JAK2/STAT3 Signaling

We first established an AEC injury model by stimulating MLE12 with TGF-β1. TGF-β1
significantly enhanced JAK2 and STAT3 phosphorylation levels but downregulated by
Fed in a dose-dependent manner (Figure 1A). TGF-β1 stimulation also promoted MLE12
to increasingly express mesenchymal markers, N-cadherin and vimentin, and decreasing
the epithelial marker, E-cadherin, while Fed attenuated these changes (Figure 1C). Since
IL-6 is a crucial inflammatory factor initiating JAK2/STAT3 signaling and playing an
important role in epithelial senescence [15] and wound repair [16], we also stimulated
MLE12 with IL-6 and investigated the efficacy of Fed. IL-6 also increased JAK2 and
STAT3 phosphorylation and mesenchymal marker expression, while these phenotypes
were reversed by Fed administration (Figure 1B,D). Similar results were observed in lung
fibroblasts. We established an FMT model by stimulating NIH-3T3 with TGF-β1 or IL-6.
The phosphorylation levels of JAK2 and STAT3 were significantly increased in both models
and were suppressed by Fed, not surprisingly (Figure 2A,B). Stimulation of NIH-3T3 with
TGF-β1 or IL-6 increased the expression of both myofibroblast marker, α smooth muscle
actin (α-SMA), and mesenchymal markers, N-cadherin and vimentin, while Fed reversed
these changes in a dose-dependent manner (Figure 2C,D). These data together reveal
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that Fed is capable of inhibiting mesenchymal marker expression in epithelial cells and
fibroblast-to-myofibroblast transition through inhibiting JAK2/STAT3 signaling.

Figure 1. Fedratinib inhibits mesenchymal marker expression in epithelial cells through inhibiting JAK2/STAT3 signaling.
(A,B) Ratios of JAK2/p-JAK2 and STAT3/p-STAT3 were determined by Western blotting in MLE12 cells stimulated for
24 h with TGF-β1 (5 ng/mL) or IL-6 (50 ng/mL) at different concentrations of fedratinib. (C,D) MLE12 cells were treated
with TGF-β1 or IL-6 and Fed (0.5, 1 and 2 µM) for 24 h. Protein expression levels of E-cadherin, vimentin and N-cadherin
were assessed by Western blot. GAPDH was used as a loading control in grayscale analysis. Data are presented as the
means ± SD (n = 5). Comparisons between groups were achieved using one-way analysis of variance (ANOVA). * p < 0.05,
** p < 0.01.

Figure 2. Fedratinib inhibits fibroblast-to-myofibroblast transitions by inhibiting the JAK2 and STAT3 signaling pathways.
(A,B) JAK2/p-JAK2 and STAT3/p-STAT3 protein expression in NIH-3T3 cells. (C,D) NIH-3T3 cells were treated with
TGF-β1 or IL-6 and Fed (0.5, 1 and 2 µM) for 24 h. Protein expression levels of E-cadherin, vimentin and N-cadherin
were assessed by Western blot. β-tubulin was used as a loading control in grayscale analysis. Data are presented as the
means ± SD (n = 5). Comparisons between groups were achieved using one-way analysis of variance (ANOVA). * p < 0.05,
** p < 0.01, *** p < 0.001.

2.2. Fed Regulated the Production of Inflammatory Cytokines in Lung Epithelial Cells

Injured epithelial cells produce numerous cytokines and promote fibrogenesis. Thus,
we further analyzed the effect of Fed on cytokine production in alveolar epithelial cells.
Bleomycin (BLM) is a glycopeptide antibiotic that exhibits potent anticancer activities [17]
and is recognized to induce epithelial cell injury after exposing to lung [18]. Thus, we
stimulated MLE12 cells with BLM to construct an epithelial cell injury model and harvested
24 h after Fed incubation. The qPCR results showed that Fed administration significantly
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decreased the expression of profibrotic cytokines, TGF-β1, TNF-α, IL-1β and IL-6, while
it elevated the expression of antifibrotic factors IL-10 and IL-13 (Figure 3A–F). We also
harvested the cell supernatant to measure the secretion levels of these cytokines by ELISA,
and results showed that profibrotic cytokines IL-6, TNF-α and TGF-β1 and IL-1β were
decreased by Fed treatment, while the antifibrotic factors IL-10 and IL-13 were elevated
(Figure 3G–L). Notably, although the mRNA levels of IL-10 and IL-13 were increased after
BLM stimulation, the secretion levels were decreased. These results indicate that Fed can
regulate the cytokine production of lung epithelial cells. Since profibrotic mediators such
as IL-6 and TGF-β1 will in turn enhance the epithelial cell injury, Fed might prevent such a
vicious circle.

Figure 3. Fedratinib regulated the production of inflammatory cytokines in lung epithelial cells. (A–F) MLE12 cells were
treated with BLM (5 U) and Fed (0.5, 1 and 2 µM) for 24 h. TGF-β1, TNF-α, IL-1β, IL-6, IL-13 and IL-10 were analyzed by
real-time PCR in MLE12 cells. (G–L) MLE12 cells were treated with BLM (5 U) and Fed (0.5, 1 and 2 µM) for 24 h. The
expression of inflammatory factors including TGF-β1, TNF-α, IL-1β, IL-6, IL-13 and IL-10 in cell supernatant was detected
using an ELISA kit. Data are presented as the means ± SD (n = 5). Comparisons between groups were achieved using
one-way analysis of variance (ANOVA). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

2.3. Fed Suppresses TGF-β1-Induced Myofibroblasts Proliferation, Migration, Activation and
Apoptosis Resistance

To detect whether Fed has an influence on the proliferation of TGF-β1-induced fi-
broblasts, NIH-3T3 cells were treated with or without TGF-β1 (5 ng/mL) and different
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doses of Fed for 24 h. We found that the IC50 value of Fed in the NIH-3T3 cells was 11 µM
(Figure 4A). We further evaluated the in vitro antifibrosis effect of Fed using a classical
TGF-β1-induced model. NIH-3T3 cells stimulated with TGF-β1 showed an accelerated mi-
gration, but this was inhibited by Fed in a dose-dependent manner, and the level of fibrosis
in the high-dose group (2 µM) was almost equal to that of the control group (Figure 4B,C).
We then tested the effect of Fed on TGF-β1-induced myofibroblast hyperactivation. Results
showed that Fed decreased both the protein and mRNA level of key profibrotic factors,
collagen I (Col1) and fibronectin (Fn), that had been enhanced by TGF-β1, indicating its
potential effects in reducing ECM deposition (Figure 4D–F). Further study also revealed
that Fed could suppress TGF-β1-induced Smad and non-Smad activation, manifesting
as the downregulation of p-Smad3, p-Akt, p-Erk, p-P38 and p-JNK levels (Figure 4G,H).
This result is not surprising since JAK2/STAT3 has crosstalk with TGF-β1 signaling, in-
dicating that Fed displays antifibrotic effects through targeting multiple kinase signaling.
Finally, myofibroblasts undergo an apoptosis-resistance phenotype and contribute to fi-
brotic foci formation and ECM deposition. We also studied the effect of Fed on apoptosis.
TGF-β1-induced NIH-3T3 exerted an apoptosis-resistance phenotype as the expression
of anti-apoptotic protein Bcl-2 showed an increase and pro-apoptotic Bax and cleaved
caspase-3 showed a decrease (Figure 5A,B). This result was confirmed by the flow cytome-
try assay. TGF-β1 stimulation reduced the percentage of apoptotic cells to 12.58%, while
Fed administration remarkably increased the percentage to 21.2% (Figure 5C). These data
together demonstrate that, remarkably, Fed can suppress TGF-β1-induced myofibroblasts
migration, activation and apoptosis resistance by inhibiting not only JAK2/STAT3 signaling
but also TGF-β1/Smad and non-Smad.

Figure 4. Fedratinib suppresses TGF-β1-induced myofibroblast proliferation, migration and activation. (A) MTT assays of
NIH-3T3 cells. Cells were exposed to the indicated doses of Fed (0 to 10 µM) for 24 h, IC50 = 11 µM. (B,C) A wound healing
assay was used to assess the effect of Fed on fibroblast migration. The wound closure was photographed at 0, 12, 24 and 48
h post-scratching. Experiments were performed in triplicate. (D,E) NIH-3T3 cells were treated with TGF-β1 (5 ng/mL) and
Fed (0.5, 1 and 2 µM) for 24 h. The protein levels of Col1 and Fn were analyzed by Western blot. (F) The mRNA levels of
Col1 and Fn were analyzed by real-time PCR. (G,H) The phosphorylation levels of Smad3, P38, JNK, Erk and Akt were
analyzed by Western blot in NIH-3T3. β-tubulin and GAPDH were used as loading control in grayscale analysis. Data
are presented as the means ± SD (n = 5). Comparisons between groups were achieved using one-way analysis of variance
(ANOVA). * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 5. Fedratinib suppresses TGF-β1-induced myofibroblast apoptosis resistance. (A,B) NIH-3T3 cells were treated with
TGF-β1 (5 ng/mL) and Fed (0.5, 1 and 2 µM) for 24 h. The protein levels of caspase-3, Bcl-2 and Bax were analyzed by
Western blot. GAPDH was used as a loading control in grayscale analysis. (C) NIH-3T3 cells were treated with TGF-β1
(5 ng/mL) and Fed (2 µM) for 24 h. The percentage of apoptosis was determined by flow cytometry. Data are presented
as the means ± SD (n = 5). Comparisons between groups were achieved using one-way analysis of variance (ANOVA).
* p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. Influence of Fed on Bleomycin-Induced Lung Fibrosis and Inflammation

To investigate the influence of Fed on pulmonary fibrosis, we challenged C57BL/6
mice with BLM. Previous studies have suggested that bleomycin-induced oxidative stress
and inflammatory response contribute to the development of pulmonary fibrosis [19,20].
Although inadequacies still exist, BLM-induced pulmonary fibrosis has been described
as “the best-characterized animal model available for preclinical testing” of IPF. Differ-
ent doses of Fed were gavaged from day 7 to day 14 after surgery, and nintedanib was
used as a positive control (Figure 6A). As shown in Figure 6, BLM treatment resulted in
distinct fibrosis foci formation and alveolar structure destruction, while H&E staining
and quantification of fibrotic lung sections illustrated that Fed attenuated fibrogenesis in
a dose-dependent manner (Fed 100 mg/kg vs. BLM, p = 0.0006, Figure 6F,H). Collagen
content was significantly decreased in mice treated with Fed. The high-dose group had
a remarkably less collagen content compared with the BLM group (Fed 100 mg/kg vs.
BLM, p = 0.0013, Figure 6I) and was better than Masson staining, revealing a similar trend
(Figure 6G). We also measured the alteration of pulmonary functions in mice. The forced
vital capacity (FVC) and dynamic compliance (CyDn) were shown to be decreased after
BLM challenge, while inspiratory resistance (Ri) and expiratory resistance (Re) were in-
creased. Fed treatment significantly reversed these changes (Figure 6B–E). These results
demonstrate the therapeutic effects of Fed on BLM-induced pulmonary fibrosis.
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Figure 6. Influence of fedratinib on bleomycin-induced lung fibrosis. (A) Dosing regimen in BLM-induced pulmonary
fibrosis model. (B) Forced vital capacity (FVC). (C) Dynamic compliance (Cdyn). (D) Expiratory resistance (Re). (E)
Inspiratory resistance (Ri). (F) Lung tissue sections were stained with hematoxylin and eosin staining (H&E). (G) Lung tissue
sections were stained with Masson trichrome staining. (H) Statistics of lung fibrosis area among groups. (I) Hydroxyproline
(HYP) contents of lung tissues in mice. Scale bar = 50 µm. Data are presented as the means ± SD (n = 8). Comparisons
between groups were achieved using one-way analysis of variance (ANOVA). * p < 0.05, ** p < 0.01, *** p < 0.001.

Persistence of inflammatory responses accelerates fibrosis progression. Therefore, we
challenged mice with BLM to evaluate the anti-inflammation effects of Fed. H&E staining
showed that the number of inflammatory cells in the Fed-treated group was remarkably
decreased compared to that in the BLM-only group (Figure 7A). The inflammatory cell
counts revealed a similar trend, and the Fed high-dose group had a significantly lower
number of macrophages (~70% lesser), lymphocytes (~84% lesser) and neutrophils (~86%
lesser) (Figure 7B–D). We also measured the cytokine secretion using an ELISA assay. As
shown in Figure 6, in the bronchoalveolar lavage fluid (BALF), the profibrotic factors
TGF-β1, TNF-α, IL-1β and IL-6 were significantly decreased, while antifibrotic factors
IL-10 and IL-13 were elevated (Figure 7E–J). Similar trends of mRNA levels were observed
in homogenized lung tissue (Figure 7K–P). These data suggest that Fed can alleviate
BLM-induced pulmonary inflammation.
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Figure 7. Influence of fedratinib on bleomycin-induced lung inflammation. (A) H&E staining of inflammatory cells in the
BALF. Representative visual fields of H&E staining from NaCl group, BLM group, Nin group and Fed 25, 50, 100 mg/kg
group, respectively. Cells were mainly macrophages, neutrophils and lymphocytes. Original magnification, ×200. (B–D)
Macrophages, neutrophils and lymphocytes from BALF in each group were counted on day 14. (E–J) The expression of
inflammatory factors including TGF-β1, TNF-α, IL-1β, IL-6, IL-13 and IL-10 in BALF were detected using an ELISA kit.
(K–P) mRNA expression of TGF-β1, TNF-α, IL-1β, IL-6, IL-13 and IL-10 in the lung tissues was analyzed by real-time PCR.
Data are presented as the means ± SD (n = 8). Comparisons between groups were achieved using one-way analysis of
variance (ANOVA). * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.5. Fed Alleviates Myofibroblast Activation in Bleomycin-Induced Mice by Inhibiting Both
JAK2/STAT3 and TGF-β1 Signaling

To examine whether Fed attenuates the fibrotic phenotype by decreasing myofibroblast
accumulation and activation, we first performed the immunofluorescence on lung sections
and labeled myofibroblasts with their marker, α-SMA, mesenchymal cells with their marker,
vimentin. As shown in Figure 8, the Fed-treated group displayed a decreased myofibroblast
accumulation compared with that in the BLM group. Since PDGFRα + fibroblasts also
contribute to collagen deposition in the bleomycin-induced pulmonary fibrosis model [21],
we also performed double staining of PDGFRα and vimentin, and results showed that
Fed treatment decreased the PDGFRα + fibroblasts compared with that in the BLM group.
We further analyzed the mRNA and protein levels of myofibroblast activation markers,
α-SMA, Col1 and Fn, and the results consistently showed that Fed significantly decreased
BLM-induced overexpression of these factors (Figure 8C–E). Finally, we examined the
immunohistochemistry of these factors, and the results confirmed our findings above
(Figure 8F). These findings suggest that Fed protects against fibrogenesis in vivo by inhibit-
ing myofibroblast accumulation and activation.

Figure 8. Fedratinib alleviates myofibroblast activation in bleomycin-induced mice through inhibiting
both JAK2/STAT3 and TGF-β1 signaling. (A) Immunofluorescence staining of α-SMA and vimentin
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in the lung tissues. (B) Immunofluorescence staining of PDGFRα and vimentin in the lung tissues.
(C,D) Protein levels of α-SMA,Col1 and Fn in the lung tissues. (E) mRNA expression of α-SMA,
Col1 and Fn in the lung tissues. (F) Immunohistochemical staining of α-SMA, Col1 and Fn in the
lung tissues. Scale bar = 50 µM. Data are presented as the means ± SD (n = 8). Comparisons
between groups were achieved using one-way analysis of variance (ANOVA). * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

We further analyzed whether this effect is associated with the suppression of JAK2/STAT3
or TGF-β1/Smad and non-Smad signaling. We first accessed the JAK2/STAT3 activation in
lung tissues 14 days after BLM treatment, and the results revealed a significantly decreased
phosphorylation level of JAK2 (Fed 100 mg/kg vs. BLM, ~54% lower) and STAT3 (Fed
100 mg/kg vs. BLM, ~78% lower) in the Fed-treated group (Figure 9A,B). This is not a
surprise since Fed is a JAK2-selective inhibitor. Meanwhile, we analyzed whether Fed
also suppress TGF-β1/Smad and non-Smad signaling in vivo. Phosphorylation levels of
Smad3, Akt, Erk, JNK and P38 were lower in the Fed-treated group (Figure 9C,D). These
results together suggest that Fed displays antifibrotic effects by inhibiting myofibroblast
accumulation and activation, and this fact is associated with the suppression of both
JAK2/STAT3 and TGF-β1/Smad and non-Smad signaling.

Figure 9. Fedratinib alleviates myofibroblast activation in bleomycin-induced mice by inhibiting both JAK2/STAT3 and
TGF-β1 signaling. (A) Western blot analysis of the protein levels of JAK2 and STAT3 in lung tissues. (B) Densitometric
analysis of P-JAK2 and P-STAT3 in the immunoblots, using tubulin as the internal reference. (C,D) Western blot analysis
of the protein levels of Smad3, P38, JNK, Erk, Akt and TGF-β1 in lung tissues. Data are presented as the means ± SD
(n = 8). Comparisons between groups were achieved using one-way analysis of variance (ANOVA). * p < 0.05, ** p < 0.01,
*** p < 0.001.
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3. Discussion

In this study, we demonstrated the anti-pulmonary-fibrosis and anti-inflammatory
effects of Fed through suppressing both JAK2/STAT3 and TGF-β1 signaling. JAK/STAT
hyperactivation has been reported to promote fibrosis progression by inducing senes-
cence [22], stimulating NK cell cytotoxicity [23] and impeding autophagic flux [24]. JAK2
is a novel regulator of TGF-β1, and JAK2/STAT3 signaling is widely considered to be
necessary in TGF-β1-induced abnormal wound healing of epithelial cells and fibroblast-
to-myofibroblast transition. Here, we found that Fed inhibited IL-6- or TGF-β1-induced
abnormal wound healing of epithelial cells and fibroblast-to-myofibroblast transition, re-
duced TGF-β1-induced myofibroblast activation and accumulation and, finally, alleviated
bleomycin-induced mice pulmonary fibrosis and inflammation. These data suggest a role
for Fed in treating fibrotic diseases (Figure 10).

Figure 10. Mechanisms of the anti-pulmonary-fibrosis effect of fedratinib. Fedratinib improves bleomycin-induced
pulmonary fibrosis in mice by inhibiting aberrant mesenchymal marker expression of AECs, fibroblast-to-myofibroblast
transition, inflammation and apoptosis by targeting the JAK2 receptor and TGF-β1 downstream Smad3 and MAPK
signaling pathways.

The JAK2/STAT3 signaling pathway has a prominent role in mediating many of the
effects of IL-6 on cell proliferation, invasion and chronic inflammation [25,26]. Elevated
levels of serum IL-6 are seen in patients with fibrosis diseases [27,28], and targeting IL-
6/STAT3 signaling is beneficial for fibrotic disease [29,30] treatment. We found that IL-
6-induced JAK2/STAT3 activation contributed to mesenchymal marker expression in
epithelial cells and myofibroblast transition in fibroblasts, which is in line with the previous
results [11,31]. It is not a surprise that Fed exerts such effects since it is a selective JAK2
tyrosine kinase inhibitor. Notably, IL-6-induced activation of STAT3 can further mediate the
production of cytokines such as IL-6, TGF-β1 and IL-1β [32], thus forming a vicious circle
to promote fibrogenesis. Fed regulates the secretion of these cytokines, thus transforming
the vicious circle to a virtuous one and preventing the epithelial cells from further injury.
Our findings are in line with a previous study that Fed inhibits LPS-induced inflammatory
cytokine IL-6, IL-1β and TNF-α secretion in macrophages [33], together suggesting the
anti-inflammation effect of Fed.

Activation of TGF-β1 has been shown to play a central role in regulating tissue
fibrosis. TGF-β1-induced myofibroblast activation and apoptosis-resistance phenotype
contributes to ECM deposition and fibrosis foci formation [34]. Here, we found that Fed
suppressed TGF-β1-induced myofibroblast migration, activation and apoptosis resistance
by decreasing the phosphorylation levels of Smad3, Akt, Erk, JNK and P38. It is still unclear
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whether Fed displays such effects by interfering with the crosstalk between JAK2/STAT3
and TGF-β1 signaling or by directly targeting the upstream of TGF-β1 signaling. TGF-β1
may activate STAT3 indirectly by inducing IL-6 or other cytokines [35]. Thus, inhibition
of JAK2 by Fed will consequently decrease the activation of TGF-β1 signaling. However,
although Fed is a selective tyrosine kinase inhibitor of JAK2, it binds to the ATP binding
sites of JAK2 [14], which share a similar structural model with most of the kinase receptors.
This makes it possible for Fed to exert inhibitory effects on other kinase receptors. Recent
evidence also indicates that in fibroblasts from IPF patients, TGF-β1 activates STAT3 via a
Smad2/3-dependent mechanism and independent of JAK2 [11]. This fact also indicates
the possibility that the inhibitory effect of Fed on TGF-β1 signaling might be independent
of JAK2.

Fibrotic diseases often begin with an insult to the epithelium and initiate chronic
inflammation [36]. In response to the injury, released chemokines promote the infiltration
of immune cells and release profibrotic cytokines [37]. These cytokines then activate
fibroblasts to become myofibroblasts that in turn secrete collagen and other ECM proteins
that stiffen the lung. Blocking JAK2/STAT3 signaling has been demonstrated to reduce
both inflammation and fibrosis in murine model [12,33]. Here, we found that Fed reduced
bleomycin-induced inflammatory response, decreased infiltration of immune cells and
downregulated the secretion of profibrotic cytokines such as TGF-β1, TNF-α, IL-1β and
IL-6. Meanwhile, Fed alleviated bleomycin-induced mice pulmonary fibrosis, manifesting
as a decrease in extracellular matrix deposition, reduction in hydroxyproline biosynthesis
and restoration in lung functions. Decreased chemokine secretion prevents the epithelium
from further injury, thus alleviating myofibroblast activation which together confirms the
antifibrosis effect of Fed.

Although we only examined the effect of Fed in a murine model, we believe it to be
also beneficial in treating patients with pulmonary fibrosis. Since Fed has already been
approved for treating myelofibrosis, its safety is well promised [38,39]. Meanwhile, the
significant antimyelofibrosis effects [40] also indicate the potential effect of Fed in treating
fibrosis in other types of organs. Our study indicates a potential clinical value of Fed for
pulmonary fibrosis treatment.

4. Materials and Methods
4.1. Antibodies and Reagents

Fed was purchased from TargetMol, and the purity of Fed was 99%. For each cell
experiment, Fed was freshly prepared by dissolving in DMSO (DAMAO CHEMICAL).
Bleomycin (BLM) was acquired from Nippon Kayaku (Tokyo, Japan). TRIzol reagent
was from Ambion Life Technology. DEPC-treated H2O and SYBR Green Real-time PCR
Master Mix were from Life Technologies. M-MLV reverse transcriptase was purchased
from Promega, and PCR Buffer without MgCl2 and MgCl2 stock solution were acquired
from Roche. In addition, recombinant ribonuclease inhibitor, dATP, dTTP, dCTP and dGTP
were acquired from Takara. RIPA lysis buffer (middle) and the BCA kit were purchased
from Beyotime Biotechnology. The primary antibodies described in the study include
the following: anti-E-cadherin, anti-vimentin, anti-N-cadherin, anti-fibronectin and anti-
collagen I (Affinity Biosciences, OH, USA) and GAPDH, Smad3, p-Smad3, Erk, p-Erk,
JNK, p-JNK, P38, p-P38, p-Akt and Akt antibody (Cell Signaling Technology, Boston,
MA, USA); α-SMA, p-STAT3, STAT3, p-JAK2, JAK2, Bax, Bcl-2, cleaved caspase-3 and
caspase-3 antibody were from Santa Cruz Biotechnology (Shanghai, China) and Protein-
Tech (Shanghai, China), respectively. PDGFRα antibody was from Bioss (Beijing, China).
The secondary antibodies, antirabbit IgG (H + L) and antimouse IgG (H + L), were from
Applygen (Beijing, China). ELISA kits were purchased from Jianglaibio (Shanghai, China).
The apoptosis kit was purchased from Solarbio (Beijing, China).



Molecules 2021, 26, 4491 13 of 18

4.2. Cell Culture

Mouse fibroblast cells (NIH3T3, purchased from ATCC) were grown in DMEM (Key-
GEN Biotech, Nanjing, China) supplemented with 10% fetal bovine serum (FBS, ExCell
Bio, Shanghai, China). MLE-12 cells maintained in DMEM/F-12 (Gibco, Beijing, China)
with 10% FBS. Cells were maintained at 37 ◦C with 5% CO2 in a humidified atmosphere.

4.3. Animals

C57BL/6 mice at 7–8 weeks were obtained from Vital River Laboratory Animal Tech-
nology Co., Ltd. (Beijing, China). Mice were housed in a room at a temperature of 22 to 26
◦C and a humidity between 40% and 70%, with a 12 h light/dark cycle. Mice were free
to eat and drink. All animal care and experimental procedures complied with guidelines
approved by the Institutional Animal Care and Use Committee (IACUC) of Nankai Uni-
versity (permit no. SYXK 2014-0003). Animal studies are reported in compliance with the
ARRIVE guidelines [41,42].

4.4. Bleomycin Administration

The model was constructed according to the classic pulmonary fibrosis model of
mice [43]. First, the mice were anesthetized by intraperitoneal injection and weighed. Then
the mouse belt was fixed to the operating table, the neck of the mouse was disinfected
with 75% alcohol, a wound of about 1 cm was cut with a scalpel and the muscle tissue
was carefully stripped to expose its trachea clearly. At a dose of 2 U/kg, we used a sterile
insulin syringe (with about 10 units of air column) to suck the corresponding volume of the
prepared BLM solution and slowly and parallelly injected the BLM into the mouse trachea
from the cartilage ring. We put the mouse body into an upright position immediately and
beat the back of the mouse several times (in order to distribute the BLM evenly in the
lung tissue). The 60 mice were divided into six groups, with 10 mice per group randomly:
control group, BLM group, positive control group (BLM + nintedanib, 100 mg/kg), low-
dose Fed (BLM + Fed 25 mg/kg), medium-dose Fed (BLM + Fed, 50 mg/kg) and high-dose
Fed (BLM + Fed, 100 mg/kg). Starting from 7 days after BLM injury, Fed was given daily
by intragastric administration for 1 week. The positive control was nintedanib. The control
group and the model group were given the same volume of control substance (5% CMC-
Na) using the same administration regimen and route. On the 14th day after bleomycin
administration, mice were sacrificed to evaluate pulmonary fibrosis and other indicators.

4.5. Pulmonary Function Testing

The mice were anesthetized by intraperitoneal injection of 10% chloral hydrate accord-
ing to the body weight of the mice, and the trachea was fixed and exposed, then a Y-type
tracheal cannula (2.5 mm inner diameter) was inserted for intubation. After the surgery, the
mice were placed in a supine position with their whole body inside the plethysmographic
chamber to analyze pulmonary function using the AniRes 2005 system (Beijing Biolab,
Beijing, China). One branch of the Y-type tracheal cannula was connected to a venthole
on the chamber wall, and the venthole was connected to a ventilator from the outside
of the chamber by polyethylene tubing. Natural air entered the animal’s body through
a ventilator, 80 breaths per minute. Another branch of the intubation was connected to
the pressure detection channel of the AniRes 2005. The peak respiratory pressure was
maintained at 10 to 16 cm of water. By detecting the pressure associated with ventilation,
the cavity was replaced by an AniRes 2005 automatic system. The display pulmonary
function parameters such as forced vital capacity (FVC), dynamic compliance (Cdyn),
inspiratory resistance (Ri), and expiratory resistance (Re) were then calculated.

4.6. Hydroxyproline Measurement

The three largest lobes of the right lung of the mouse were placed in a 5 mL ampoule,
dried in the oven, hydrolyzed with hydrochloric acid, adjusted to pH 6.5−8.0 with sodium
hydroxide and volume was fixed to 10 mL with 1× PBS [44]. Each tube was comprised
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of 350 µL H2O, 50 µL sample, and 200 µL Chloramine-T. The samples were vortexed and
incubated at room temperature for 20 min. Then, 200 µL of perchloric acid was added,
and the samples were vortexed and incubated at room temperature for 5 min. P-DMAB
(200 µL) was added, and the samples were vortexed and incubated at 60 ◦C in a water bath
for 20 min. The samples were cooled, 200 µL of each sample was transferred to 96-well
plates in triplicate, and the absorbance was measured at 577 nm.

4.7. Histological Examination

The left lung of the mice was fixed in formalin for 48 h, then dehydrated, embedded
and sectioned. Then, lung sections (4 µm) were prepared and stained with hematoxylin–
eosin (H&E) and Masson’s trichrome. Quantification of pulmonary fibrosis was performed
as described previously [45]. In brief, images were photographed with an upright trans-
mission fluorescence microscope (Olympus) and analyzed by Image-Pro Plus Version 6.0
(Media Cybernetics, Inc, American). The software selection tool can select the entire lung
tissue area and automatically calculate the total pixels, Pw, of the region. It can then use the
same method to calculate the total pixels, Pf, of the fibrosis region (fibrosis ratio = fibrosis
area total pixel, Pf/total lung total pixel, Pw).

4.8. Cell Viability Analysis

Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT). NIH-3T3 cells were seeded in 96-well plates and exposed to Fed (0 to10
µM) for 24 h. Then, 10 µL of MTT (5 mg/mL, China) was added to the NIH-3T3 cells for 4
h, and 120 µL DMSO was loaded into per well. The absorbance value was determined at
570 nm.

4.9. Wound Healing Assay

According to reference [46], NIH3T3 cells were spread in 6-well plates. After 24 h,
serum starvation was performed. The wounds were treated with a 200 µL sterile spear
head and marked on the back of the culture dish. Then NIH3T3 cells were cultured with
Fed (0.5, 1, 2 µM) and TGF-β1 (5 ng/mL). The scratch was observed at 0, 12, 24 and 48 h
using an inverted optical microscope.

4.10. Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from NIH3T3 cells, MLE12 cells and tissues using TRIzol
reagent, and RNA was isolated [47]. We obtained cDNA from total RNA by reverse
transcription, qRT-PCR was performed using SYBR GreenER qPCR SuperMix Universal
(Invitrogen) according to the manufacturer’s protocols. The relative quantification of gene
expression was measured relative to the endogenous reference gene (mouse: GAPDH)
using the comparative CT method. The primers optimized for real-time PCR assays are
listed in Table 1.

Table 1. Primers sequences for real-time PCR.

Gene Forward Primer Sequence (5′–3′) Reverse Primer Sequence (3′–5′)

Mouse GAPDH AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA
Mouse α-SMA GTCCCAGACATCAGGGAGTAA GTCCCAGACATCAGGGAGTAA

Mouse Fibronectin TCGGATACTTCAGCGTCAGGA TCGGATACTTCAGCGTCAGGA
Mouse Collagen I ATGTGGACCCCTCCTGATAGT ATGTGGACCCCTCCTGATAGT

Mouse IL-10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG
Mouse IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC

Mouse IL-1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT
Mouse TNF-α CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG
Mouse IL-13 CCTGGCTCTTGCTTGCCTT GGTCTTGTGTGATGTTGCTCA

Mouse TGF-β1 CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG
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4.11. Western Blotting Analysis

Proteins were extracted from cells or lung tissue according to standard protocols,
as described earlier [48]. All of the protein was extracted from lung tissue homogenates
or cells using radio-immunoprecipitation assay (RIPA) lysis buffer containing phenyl-
methylsulfonyl fluoride (PMSF) and sodium fluoride (NaF). After electrophoresis and
membrane transfer, the immunoblots were probed with the following primary antibod-
ies: GAPDH, tubulin, α-SMA, collagen I, fibronectin, E-cadherin, vimentin, N-cadherin,
p-Smad3, Smad3, p-Erk, Erk, p-Akt, Akt, p-P38 MAPK, p38 MAPK, p-JNK, JNK, p-STAT3,
STAT3, p-JAK2, JAK2, Bax, Bcl-2, cleaved caspase-3 and caspase-3. The secondary antibod-
ies were goat antirabbit or goat antimouse horseradish-peroxidase-conjugated antibodies.
Enhanced chemiluminescence reagent was used for detection, and blots were scanned
using AlphaView SA software.

4.12. Immunofluorescence Staining

The paraffin-embedded lung tissue was sectioned, dried and dewaxed. The slices
were put into the antigenic repair solution (0.01 M citrate buffer) and boiled for 2 min.
After this, cells were permeabilized with 0.2% Triton X-100 (Fluorochem, Hadfield, UK)
for 30 min and blocked with 5% BSA in phosphate-buffered saline (TBS-T) for 60 min in
a humidified chamber. Lung sections were incubated with α-SMA (1:200 dilution) and
vimentin mixed antibody (1:200 dilution), PDGFRα (1:200 dilution) and vimentin mixed
antibody (1:200 dilution), respectively, and incubated overnight at 4 ◦C. After washing
with 1× PBS-T, lung slices were incubated with TRITC-conjugated or FITC-conjugated
secondary antibody. Lung slices were counterstained with DAPI (Beyotime Biotechnology,
Nanjing, China). Phase contrast and fluorescent microscopy was performed using an
Olympus IX81 inverted research microscope.

4.13. Immunohistochemistry Staining

The paraffin-embedded lung tissue was sectioned, dried and dewaxed. The slices
were put into the antigenic repair solution and boiled for 2 min. After washing with PBS,
the primary antibody was incubated at 4 ◦C overnight with an immunohistochemical
colorimetric kit. The primary antibodies were as follows: mouse anti-α-SMA antibody
(1:100 dilution), rabbit anticollagen I antibody (1:100 dilution) and rabbit antifibronectin
(1:100 dilution). After washing three times with PBS, tissue sections were incubated with a
DAB Immunohistochemistry Color Development Kit. The lung tissue sections were stained
with hematoxylin, and the histological changes and target gene expression of mouse lung
tissues were observed under a light microscope.

4.14. Bronchoalveolar Lavage

Mice were anesthetized and immobilized with 10% chloral hydrate, their tracheas
were separated and lavaged through a blunt needle attached to a syringe that served as a
tracheotube in the airway. Next, 1 mL of bronchoalveolar lavage fluid (BALF) was collected
and rinsed three times with PBS. The collected BALF was centrifuged at 3000 r/min× g for
10 min. After centrifugation, the supernatant was cryopreserved at −80 ◦C for cytokine
analysis. Cell precipitation was lysed with red blood cell lysate, resuspend for 10 min, and
then centrifuged at 3000 r/min× g for 10 min. Then the lower cells were resuspend with
200 µL 1× PBS. Total cell count was performed using a Countstar automatic cell counting
instrument. Macrophages, neutrophils and lymphocytes were counted under an optical
microscope, and a 50 µL suspension was smeared and stained with H&E staining.

4.15. ELISA Detection

MLE12 cells were treated with BLM (5 U) and Fed (0.5, 1 and 2 µM) for 24 h and the
cell supernatant was centrifuged at 1000 r× g for 20 min for ELISA detection. The mice
alveolar lavage fluid was tested using ELISA. The concentration of inflammatory factors
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including IL-1β, TGF-β1, IL-10, IL-6, TNF-α and IL-13 were detected using ELISA kits
(Jianglaibio, Shanghai, China) following the manufacturer’s protocol.

4.16. Apoptosis Analysis

The percentage of apoptotic cells was measured by flow cytometry. The cells in the
control group, the TGF-β1 stimulation group, and the TGF-β1 (5 ng/mL) + Fed (2 µM)
stimulation group were digested with trypsin, and PBS was clear. The cells were resuspend
and counted with binding buffer. The apoptotic cells were double stained with FITC and
PI and measured by flow cytometry within 1 h.

4.17. Data and Statistical Analysis

All statistical analyses were performed using GraphPad prism 7.0 software as the
means ± SD (GraphPad Software, Inc., La Jolla, CA, USA). The comparisons were done
by one-way analysis of variance (ANOVA) followed by the Tukey–Kramer test to identify
significant differences between groups. p < 0.05 was considered to be statistically significant.
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