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Abstract: Prediction of molecular properties plays a critical role towards rational drug design. In 
this study, the Molecular Topographic Map (MTM) is proposed, which is a two-dimensional (2D) 
map that can be used to represent a molecule. An MTM is generated from the atomic features set of 
a molecule using generative topographic mapping and is then used as input data for analyzing 
structure-property/activity relationships. In the visualization and classification of 20 amino acids, 
differences of the amino acids can be visually confirmed from and revealed by hierarchical cluster-
ing with a similarity matrix of their MTMs. The prediction of molecular properties was performed 
on the basis of convolutional neural networks using MTMs as input data. The performance of the 
predictive models using MTM was found to be equal to or better than that using Morgan fingerprint 
or MACCS keys. Furthermore, data augmentation of MTMs using mixup has improved the predic-
tion performance. Since molecules converted to MTMs can be treated like 2D images, they can be 
easily used with existing neural networks for image recognition and related technologies. MTM can 
be effectively utilized to predict molecular properties of small molecules to aid drug discovery re-
search. 

Keywords: generative topographic mapping; convolutional neural network; property prediction; 
data augmentation 
 

1. Introduction 
Evaluation of molecular property has a pivotal role in process of drug discovery [1]. 

Although experimental methods such as in vitro and in vivo tests are both time and cost 
consuming, they have been widely used across the process [2]. The prediction of molecu-
lar properties on the bases of molecular structures is one of the most classical chemoinfor-
matics tasks and provides alternative approaches to profile molecules efficiently [3]. Lom-
bardo et al. demonstrated that prediction of absorption, distribution, metabolism, excre-
tion, and pharmacokinetics (ADME-PK) is an integral part of the current industrial drug 
discovery paradigm [4]. A variety of property predictive models based on machine learn-
ing (ML) approaches random forest [5], support vector machine [6], XGboost [7], 
LightGBM [8], and others [9,10] have been proposed. In the models, descriptors and/or 
fingerprints are used as molecular representation. The selection of molecular descriptors 
determines the quality of the predictive model [11]. Stahura et al. proposed an entropy-
based descriptor selection method in the prediction of aqueous solubility of organic mol-
ecules [12]. The predictive model constructed using selected descriptors showed con-
sistent high prediction accuracy in binary QSAR calculations. Awale et al. performed 
ADME property prediction by using matched molecular series analysis (MMSA) [13]. The 
prediction accuracy was comparable to a standard ML model. However, because MMSA 
predicts the property of a new compound based on relationship between experimental 
values of similar MMS pair, the source of the predictions can be exactly traced back. In 
recent years, deep learning (DL) methods have received a lot of attention as methods to 
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accomplish the classical chemoinformatics tasks due to their capacity to learn intricate 
relationships between structures and properties [14–19] and capability of feature selection 
[20]. In molecular property prediction, two major DL models, descriptor-based models 
and graph-based models, have been proposed [21–25]. In descriptor-based models, de-
scriptors and/or fingerprints are used as input to the models [22]. In graph-based models 
such as graph neural networks (GNNs), a molecular graph is used to represent a molecule 
by considering the atoms as vertices and the bonds as edges of a graph. The molecular 
graph is then used as input to the models [23–25]. Wang et al. proposed composite model 
combining molecular fingerprint and molecular graph [26]. The model is accurate and 
achieves the best results on some open benchmark datasets. In other approaches using the 
DL model, the current successful models in natural language modeling have been used to 
predict molecular property [27,28]. In the models, molecules are represented as strings by 
Simplified Molecular-Input Line-Entry system (SMILES) [29]. Wang et al. proposed 
SMILES-BERT [27], which uses the recent natural language modeling work BERT [30], to 
predict molecular property. To evaluate its predictive performance, they used three da-
tasets including LogP, PM2, and PCBA-686978 [27]. On the other hand, as inputs to deep 
learning, a simpler and more intuitive molecular representation is by two-dimensional 
(2D) molecular images which were combined with convolutional neural networks (CNNs) 
to predict molecular properties or activities [31–34]. Zhong et al. used a pre-trained Dense-
Net121 [35]—the state-of-the-art architecture of CNNs developed in 2016—for transfer 
learning to construct a predictive model of contaminant reactivity toward OH radicals 
[34]. By using molecular images as input, it is a great advantage to be able to use existing 
well-trained neural networks in the field of image recognition. Although molecular im-
ages are effective input data for CNNs, it is necessary to prepare multiple images from a 
single molecule because molecules can be represented by multiple types of images [33,34]. 
Here, we developed Molecular Topographic Map (MTM), which represents a molecule as 
a 2D matrix data (2D image). The MTM is generated from the atomic features set of a 
molecule using Generative Topographic Mapping (GTM) [36,37]. In this method, one 
MTM is generated from one molecular structure just like in molecular fingerprint gener-
ation. The performance of molecular property prediction based on MTM was equal to or 
better than that based on Morgan fingerprint (Morgan FP) [38–40] or MACCS keys [41]. 
Furthermore, data augmentation of MTMs using mixup [42] was found to be effective in 
improving the prediction performance. 

2. Results 
In the first section, a procedure for the generation of atomic features set from a mol-

ecule is described. The second section discussed the generation of MTM from the atomic 
features set. Additional methodological and computational details are provided in the 
Methods section. Subsequent sections report visualization and similarity matrix analysis 
of amino acids and property predictions using MTMs as input. 

2.1. Atomic Features Set 
The procedure of generating atomic features set, which is illustrated in Figure 1, is 

based on the algorithms of Morgan FP (circular fingerprint) [38–40] and neural graph fin-
gerprint [24]. Morgan FP is a method of encoding the structure of a molecule. In the pro-
cess of generating Morgan FP, the environment of each atom is stored into several circular 
layers up to a specific radius. Neural graph fingerprint is an extension of Morgan FP to 
operate directly on graphs (molecular structure) in neural networks. As illustrated in Fig-
ure 1a, to generate the atomic features set, molecular structure and radius R are needed as 
input data. Initial atomic features are represented by vector of 0 s and 1 s indicating the 
existence of a specific atomic feature. After the initialization, the vectors are set to each 
atom (Figure 1a,b). The atomic features used in the initial assignment to atoms are shown 
in Table 1. In subsequent steps, the atomic features of each atom are summed up with that 
of its neighbor atoms. This step is repeated R times, specified as the radius (Figure 1a,c). 
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As a result, the same number of atomic features as the number of atoms in a molecule can 
be obtained. The multiple atomic features obtained here is referred to as atomic features 
set. 

 
Figure 1. Generation of atomic features set. (a) Pseudocode of atomic features set. (b) A visual representation of the set of 
initial atomic features. (c) The construction of atomic features at radius R. 

Table 1. Forty-three atomic features. 

ID Description ID Description 
1 H 

Atom type as a one-hot vector  

25 S 

Hybridization of an atom 
as one-hot vector 

2 C 26 SP 
3 N 27 SP2 
4 O 28 SP3 
5 S 29 SP3D 
6 P 30 SP3D2 
7 F 31 0 

Number of hydrogens on 
an atom as one-hot vector 

8 Cl 32 1 
9 Br 33 2 
10 I 34 3 
11 0 

Degree of an atom as one-hot vector, 
which defined to be its number of di-

rectly-bonded neighbors. 

35 4 
12 1 36 -1 

Formal charge of an atom 
as one-hot vector 

13 2 37 0 
14 3 38 1 
15 4 39 Aromatic Is aromatic 
16 5 40 Ring Is in ring 
17 6 41 R 

Chirality of an atom as 
one-hot vector 18 0 

Total valence of an atom as one-hot vec-
tor 

42 S 
19 1 43 Non-chiral 
20 2       
21 3       
22 4       
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23 5       
24 6       

2.2. Molecular Topographic Map 
An MTM represents a molecule as a 2D matrix data. The data can be visualized as a 

heatmap like 2D image. In order to generate MTMs, a GTM model is constructed using 
the atomic features set obtained from multiple molecules for training (Figure 2, upper). 
Before the training, duplicated atomic features are removed from the atomic features set. 
GTM is a nonlinear latent variable model, which enables mapping of high dimensional 
data to a two-dimensional space. After the GTM construction, the multiple atomic features 
of a molecule are mapped onto 2D space using the GTM model. The 2D space is repre-
sented by points on a regular grid. The probability of the atomic features to be on the 
regular grid is calculated. The probabilities are obtained from the GTM model as “respon-
sibilities”. 

The MTM is generated by summing up the responsibilities obtained from the atomic 
features set of a molecule (Figure 2, middle). As an exemplary MTM, the MTM of imatinib 
is shown in Figure 2 (lower), which is represented by a regular grid of size 28 by 28 as a 
heatmap. High-value data points (red points) on the heatmap mean regions of high ag-
gregation of similar atomic features, whereas low-value data points (blue points) mean 
otherwise. Similar to molecular fingerprint generation, in this method, one MTM is gen-
erated from one molecular structure. 

 
Figure 2. The workflow of MTM generation. GTM model is constructed using the Atomic Features 
(AFs) set of molecules for training. The GTM model is used for generating MTM from the AFs set 
of a molecule. The MTM of imatinib is shown as an exemplary MTM. 

2.3. Molecular Topographic Maps of 20 Amino Acids 
Figure 3 shows MTMs of 20 amino acids, whereby each MTM is represented by a 

heatmap of size 28×28. Based on visual inspection, there are apparent differences between 
the MTMs, reflecting differences in the structures of amino acids. For example, MTMs of 
small-sized amino acids, such as Gly, Ala, Val, Cys, and Ser, have small regions of high-
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value data points, and Gly has the smallest of such region. There are very similar MTM 
pairs, such as Cys/Ser, Val/Thr, Asn/Gln, and Asp/Glu, and each pair of amino acids ex-
hibit similar structures. Amino acids with aromatic ring, such as Phe, Trp, and Tyr have 
regions with high-value data points on the upper-left area of the MTMs, while in His, a 
similar region is located on the upper-middle area of the MTM. The MTMs of Pro and His 
appear to be distinctly different from other MTMs. This could be attributed to the presence 
of pyrrolidine in Pro and imidazole in His. In order to quantitatively analyze the differ-
ences between MTMs of amino acids, a clustered similarity matrix of MTMs was con-
structed (Figure 4). The similarities of the pairs Cys/Ser, Val/Thr, Asn/Gln, and Asp/Glu 
were 0.96, 0.81, 0.82, and 0.81, respectively, while Pro and His have no similarity scores 
larger than 0.61 with respect to other amino acids. Phe, Trp, and Tyr belong to same clus-
ter. The small-sized amino acids, Gly, Ala, Cys, and Ser, with the exception of Val, were 
clustered into same group. Val has a branched chain, so it may belong to the same group 
as Thr and Ile. By clustering the MTMs, the 20 amino acids are divided into groups ac-
cording to their amino acid characteristics (aromatic, acidic, and small-sized side chain 
among other things). The consistency between the visual interpretation and the clustering 
of MTM suggests that MTM is a visually interpretive molecular representation. Visual 
interpretability is important to intuitively understand relationship between input and out-
put data. Thus, it is considered to be one of the major advantages of MTM compared to 
molecular fingerprints such as Morgan FP and MACCS keys. 

 
Figure 3. MTMs of 20 amino acids. 
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Figure 4. Clustered similarity matrix of MTMs of 20 amino acids. 

2.4. Property Prediction Using Molecular Topographic Map 
Molecular representations such as fingerprint and descriptors were used as input 

data to construct predictive models of molecular properties [5–12]. The present study at-
tempts to evaluate predictive models using MTM as input on four public datasets includ-
ing: (1) a dataset of water solubility for organic small molecules (ESOL), (2) a dataset of 
hydration free energy of small molecules in water (FreeSolv), (3) a dataset of octanol/water 
distribution coefficient (logD at pH = 7.4) (Lipophilicity), and (4) a dataset of Caco-2 cell 
permeability (caco2). The prediction performance is shown in Table 2. CNN is one of the 
architectures of deep neural network (DNN). In this study, convolutional DNN is referred 
to as CNN, while non-convolutional DNN is simply referred to as DNN. For MTM, CNN 
was used to build the predictive models. To confirm an effect of the CNN models, DNN 
models using flattened MTM as input were built. Furthermore, because generation of 
MTM is based on Morgan FP algorithm [38–40], DNN models using Morgan FP as input 
were built as baseline predictive models. For comparison with fingerprint, which is dif-
ferent from Morgan FP, DNN models using MACCS keys as input were built. MACCS 
Keys is a fingerprint that represents the existence of predefined substructures [41]. The 
four architectures of predictive models are illustrated in Figure 5. CNN model using MTM 
achieved the best performance on ESOL dataset with an MSE of 0.839, MAE of 0.621, and 
R2 of 0.858, respectively, while the performance of DNN model using flattened MTM 
(MSE of 0.897, MAE of 0.681, and R2 of 0.850) were slightly worse than the CNN model. 
The DNN model using Morgan FP was the worst model among the four. With the Free-
Solv dataset, DNN model using MACCS keys achieved the best performance (MSE of 
1.901, MAE of 0.810, and R2 of 0.902). With the Lipophilicity dataset, both DNN model 
using MACCS keys and CNN model using MTM offer comparable performances, but 
MSE (=0.692) and MAE (=0.610) of the CNN model using MTM was worse than MSE 
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(=0.685) and MAE (=0.605) of DNN model using MACCS keys. The CNN model using 
MTM gave the best predictions with the caco2 dataset (MSE of 0.179, MAE of 0.321, and 
R2 of 0.718). The CNN model using MTM reached overall high-performance levels and 
was compatible or superior to DNN models using MACCS keys, flattened MTM, or Mor-
gan FP. 

Table 2. Performance comparison of the four datasets for four models. 

Dataset No. 
Molecular  

Representation 
Model MSE MAE R2 

ESOL 1128 MACCS keys DNN 1.202 (±0.187) 0.789 (±0.048) 0.781 (±0.011) 
  Morgan FP DNN 1.592 (±0.108) 0.942 (±0.041) 0.705 (±0.018) 
  flattened MTM DNN 0.897 (±0.178) 0.681 (±0.056) 0.850 (±0.028) 
  MTM CNN 0.839 (±0.166) 0.621 (±0.059) 0.858 (±0.021) 

FreeSolv 642 MACCS keys DNN 1.901 (±0.834) 0.810 (±0.149) 0.902 (±0.035) 
  Morgan FP DNN 5.007 (±1.495) 1.402 (±0.120) 0.741 (±0.029) 
  flattened MTM DNN 7.114 (±2.293) 1.701 (±0.109) 0.696 (±0.082) 
  MTM CNN 4.864 (±0.180) 1.531 (±0.030) 0.727 (±0.070) 

Lipophilicity 4200 MACCS keys DNN 0.685 (±0.024) 0.605 (±0.019) 0.551 (±0.012) 
  Morgan FP DNN 0.705 (±0.049) 0.623 (±0.025) 0.539 (±0.005) 
  flattened MTM DNN 0.707 (±0.040) 0.626 (±0.016) 0.537 (±0.026) 
  MTM CNN 0.692 (±0.066) 0.610 (±0.029) 0.554 (±0.031) 

caco2 1272 MACCS keys DNN 0.196 (±0.040) 0.351 (±0.050) 0.711 (±0.021) 
  Morgan FP DNN 0.210 (±0.056) 0.337 (±0.048) 0.684 (±0.059) 
  flattened MTM DNN 0.196 (±0.012) 0.336 (±0.012) 0.655 (±0.051) 
  MTM CNN 0.179 (±0.021) 0.321 (±0.024) 0.718 (±0.024) 

Mean (±standard deviation) values are reported for multiple measures (MSE, MAE, R2). 

 
Figure 5. DNN and CNN architectures. (a) DNN model using MACCS keys. (b) DNN model using 
Morgan FP. (c) DNN model using flattened MTM. (d) CNN model using MTM. Dense_X is a fully-
connected layer. Dropout_X is a layer where randomly selected neurons are ignored during train-
ing. Flatten is a layer that converts a matrix into a single array. Conv2D_X is a convolution layer. 
MaxPooling2D_X is a pooling layer. X denotes identification number of a layer. 

The CNN model using MTM had similar or better performance than DNN model 
using MACCS keys. However, in FreeSolv dataset, DNN model using MACCS keys per-
formed significantly better than the other models. To confirm the details of prediction 
errors, the histograms of the absolute errors (prediction errors) are plotted in Figure 6. In 
DNN model using MACCS keys, the number of compounds with absolute error greater 
than 6 was 0, 1, and 0 for Run 1, Run2, and Run 3, respectively (Figure 6a). On the other 
hand, CNN model using MTM, the number of compounds with absolute error greater 
than 6 was 1, 3, and 3 for Run 1, Run2, and Run 3, respectively (Figure 6d). DNN model 
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using Morgan FP and DNN model using flattened MTM showed a similar distribution to 
CNN model using MTM (Figure 6b,c). The compounds with high absolute error may have 
a negative impact on prediction performance. MTMs were generated from GTM model 
built using training data of each property dataset. Thus, in FreeSolv dataset, which is the 
smallest of the four datasets, the models using MTM may not have been able to produce 
the high performance, because there is not enough training data to build the GTM. The 
CNN model using MTM did not perform as well as MACCS keys in FreeSolv dataset, but 
the results shown in Table 2 suggest that CNN models worked well in processing the 
MTM and molecular structural information was embedded in the MTM to the same extent 
as Morgan FP or MACCS keys. 

 
Figure 6. Absolute error distribution of predictive models against FreeSolv dataset. (a) DNN model 
using MACCS keys. (b) DNN model using Morgan FP. (c) DNN model using flattened MTM. (d) 
CNN model using MTM. Run1, Run2, and Run3 show the absolute error distribution of each of the 
three independent runs. 

2.5. Examples of Relationship between MTM and Its Predicted Molecular Property 
Here, examples of lipophilicity prediction based on CNN model using MTM in the 

previous section are shown in Figure 7. Predicted logD (at pH 7.4) of CHEMBL1256487 
and CHEMBL1257457 are 1.024 and 2.160, respectively. There are high-value data points 
on lower-left area of MTM of CHEMBL1256487, whereas high-value data points of MTM 
of CHEMBL1257457 exist on upper-left area (Figure 7a). Cyclopropyl group of 
CHEMBL1256487 may contribute to the lower-left area of its MTM, whereas benzyl group 
of CHEMBL1257457 may contribute to the upper-left area of its MTM. The upper-left area 
of MTM of CHEMBL1257457 seems to contribute mainly to increase predicted logD (at 
pH 7.4) value. The next example requires a slightly more complicated interpretation (Fig-
ure 7b). Predicted logD (at pH 7.4) of CHEMBL1783285 and CHEMBL1783275 are 2.619 
and 3.327, respectively. Comparing the two MTMs, high-value data points and middle-
value data points exist on upper-right and lower-left area of MTM of CHEMBL1783285, 
respectively, whereas high-value data points exist on upper-left area of MTM of 
CHEMBL1783275. The upper-left area of the MTM of CHEMBL1783275 seems to contrib-
ute to an increase in predicted logD (at pH 7.4) value as in first example, although the 
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contribution of other areas is not clear from the two MTMs. As shown in Figure 7, unlike 
molecular fingerprint such as Morgan FP and MACCS keys, MTM is characterized by its 
ability to visually interpret the relationship between input (MTM) and output (predicted 
value). 

 
Figure 7. Relationship between MTM and its predicted molecular property (a) CHEMBL1256487 
and CHEMBL 1257457. (b) CHEMBL1783285 and CHEMBL 1783275. Exp. logD means Experimental 
logD (at pH 7.4) and Pred. logD means Predicted logD (at pH 7.4). The compound identification 
numbers are ChEMBL [43] identification numbers. 

2.6. Data Augmentation of Molecular Topographic Map Using MIXUP 
Image data augmentation is the most well-known type of data augmentation tech-

nique that can be used to expand the size of a dataset by generating transformed versions 
of images, and improve the performance of predictive models [44]. Here, we used mixup, 
which is the latest data augmentation technique that linearly interpolates input images 
and their corresponding labels of random sample pairs. Mixup has demonstrated great 
effectiveness in image classification [42]. Figure 8 shows, as an exemplary example, data 
augmentation between two molecules using mixup. The MTMs of CHEMBL1934414 and 
CHEMBL1916276 with their corresponding labels are shown in Figure 8a. Given two im-
ages and their labels, a virtual example is generated as expressed in equation 1, where λ 
is a mixing coefficient between the two images, and its value ranges from 0 to 1. Figure 8b 
shows the MTMs and their corresponding labels when the values of λ are 0.75, 0.5, and 
0.25, respectively. Three virtually generated MTMs which are linearly interpolated be-
tween MTMs of CHEMBL1934414 and CHEMBL1916276 could be used as training data. 
The effect of data augmentation using mixup on CNN models using MTM are shown in 
Table 3. Here, λ were values in the range of 0 to 1 and were sampled from the Beta distri-
bution, which is parameterized by the α parameter that controls the shape of the distribu-
tion. With the ESOL dataset, no significant effect of data augmentation was observed, alt-
hough MSE (=0.785) and R2 (=0.863) were the best values when the amount of data is dou-
bled and α is 2.0. On the other hand, with other datasets, significant effects of data aug-
mentation were observed. With the FreeSolv dataset, MSE (=3.469), MAE (=1.331), and R2 
(=0.788) were strikingly improved by increasing the amount of data ten times. Likewise, 
with the Lipophilicity dataset, the performance improved as the amount of data increased. 
Where the amount of data is increased ten times and α is 2.0, MSE (=0.607), MAE (=0.576), 
and R2 (=0.597) were the best values. With the caco2 dataset, MSE (=0.151), MAE (=0.285), 
and R2 (=0.736) were improved by increasing the amount of data ten times. Overall, an α 
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of 2.0 was slightly better than an α of 0.2. The results indicate data augmentation using 
mixup significantly improve the prediction performance of CNN models using MTM, 
with the exception of ESOL dataset. 

 
Figure 8. Data augmentation using mixup. λ is the mixing coefficient for both images (MTMs) and their labels (logD (at 
PH 7.4)). (a) Chemical structures and MTMs of CHEMBL1934414 and CHEMBL1916276, respectively. The compound 
identification numbers are ChEMBL [43] identification numbers. (b) Mixed MTMs and their labels with mixing coefficient 
λ (0.75, 0.50, and 0.25). 

Table 3. Effect of mixup on performance of the four datasets using CNN model using MTM. 

Dataset No. α MSE MAE R2 
ESOL 1128 - 0.839 (±0.166) 0.621 (±0.059) 0.858 (±0.021) 

 1128 × 2 0.2 0.833 (±0.125) 0.643 (±0.067) 0.848 (±0.020) 
 1128 × 2 2.0 0.785 (±0.086) 0.649 (±0.034) 0.863 (±0.017) 
 1128 ×10 0.2 0.890 (±0.153) 0.662 (±0.069) 0.839 (±0.018) 
 1128 × 10 2.0 0.851 (±0.149) 0.674 (±0.049) 0.851 (±0.033) 

FreeSolv 642 - 4.864 (±0.18) 1.531 (±0.030) 0.727 (±0.070) 
 642 × 2 0.2 4.215 (±0.396) 1.414 (±0.035) 0.755 (±0.065) 
 642 × 2 2.0 4.274 (±0.467) 1.469 (±0.089) 0.746 (±0.102) 
 642 × 10 0.2 3.642 (±0.414) 1.331 (±0.161) 0.770 (±0.091) 
 642 × 10 2.0 3.469 (±0.400) 1.332 (±0.061) 0.788 (±0.081) 

Lipophilicity 4200 - 0.692 (±0.066) 0.610 (±0.029) 0.554 (±0.031) 
 4200 × 2 0.2 0.642 (±0.050) 0.588 (±0.025) 0.576 (±0.025) 
 4200 × 2 2.0 0.627 (±0.075) 0.588 (±0.035) 0.586 (±0.033) 
 4200 × 10 0.2 0.646 (±0.076) 0.595 (±0.032) 0.572 (±0.037) 
 4200 × 10 2.0 0.607 (±0.054) 0.576 (±0.021) 0.597 (±0.027) 

caco2 1272 - 0.179 (±0.021) 0.321 (±0.024) 0.718 (±0.024) 
 1271 × 2 0.2 0.161 (±0.005) 0.303 (±0.007) 0.722 (±0.023) 
 1272 × 2 2.0 0.189 (±0.032) 0.324 (±0.022) 0.696 (±0.020) 
 1272 × 10 0.2 0.151 (±0.011) 0.288 (±0.011) 0.736 (±0.017) 
 1272 × 10 2.0 0.151 (±0.009) 0.285 (±0.007) 0.732 (±0.010) 

Mean (±standard deviation) values are reported for multiple measures (MSE, MAE, R2). 

3. Discussion 
The MTM concept was introduced to represent a molecule as an image embedded 

molecular structure information. In Morgan FP, the bit position of circular substructures 
around each atom in the fingerprint are determined by hash function [38–40]. Thus, there 
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is no relationship between adjacent bits. On the other hand, because MTM is generated 
based on GTM, adjacent data points on MTM are meant to be similar data points. Hence, 
the MTM representation is akin to a topographical map, which allows intuitive under-
standing of the molecular structure and interpret relationship between MTM and its pre-
dicted property value. 

In terms of performance of molecular property prediction, CNN models using MTM 
showed better or comparable prediction performance to DNN models using Morgan FP 
or MACCS keys. However, in FreeSolv dataset, predictive models using MTM did not 
perform as well as MACCS keys. MTMs are generated from GTM model built using train-
ing data of each property dataset. Since FreeSolv dataset is the smallest among the four 
datasets, there may have been not enough training data to build the GTM model. One of 
the ways to solve this problem is to construct a generic GTM model using compound data 
such as ChEMBL [43], instead of using training data for each property dataset. In addition, 
in order to further improve the prediction accuracy, it may be necessary to consider the 
size of the radius for generating atomic features set and the matrix size of the MTM. In 
this study, no comparison has been made on the calculation time among Morgan FP, 
MACCS keys, or MTM generation. The generation of MTM requires more computational 
time than that of Morgan FP or MACCS keys because MTM generation requires GTM 
construction using training data of each property dataset which is a time consuming task. 
This issue can be solved by constructing generic GTM model in advance. 

Furthermore, data augmentation using mixup could improve the prediction perfor-
mance of CNN models using MTM. One of the advantages of MTM is that it can easily 
use data augmentation techniques developed in the field of image recognition. In Section 
2.5, the relationship between the MTM and its predicted values was interpreted visually, 
but it may be possible to interpret the relationship by applying explanation methods such 
as Grad-CAM [45], which is used in the field of image recognition. Grad-CAM provides a 
coarse localization map highlighting the important regions in the image for predicting a 
target concept. Therefore, Grad-CAM is expected to be able to identify regions on the 
MTM that are important for predicting molecular property. To extract chemical infor-
mation from the important regions of MTM, the relationship between the important re-
gions on the MTM and atoms in the molecular structure needs to be clarified. The rela-
tionship is considered to be calculated from atomic features and its responsibility as illus-
trated in Figure 2. In the future work I intend to develop a method to extract chemical 
information from the important regions on MTM for predicting molecular property. In 
this study, although simple and basic CNN architecture was used, the prediction perfor-
mance of CNN using MTM is expected to be improved by using transfer learning via 
multiple pretrained networks, such as AlexNet, VGG19, RsNet101, GooLeNet, and Incep-
tion-V3 [46]. I believe that MTM embedded molecular structure information can serve as 
a valuable method of molecular representation for drug discovery. Furthermore, the pre-
dictive model using MTM can become a practical tool in drug discovery through combi-
nation with state-of-the-art image recognition technologies using deep learning. 

4. Materials and Methods 
4.1. Generation of Atomic Features Set 

Atomic features set were generated according to the procedure illustrated in Figure 
1, which was based on Morgan FP [38–40] and neural graph fingerprints [24]. The Morgan 
FP is a way of encoding the structure of a molecule which is implemented in RDKit [40] 
as an analogue of extended connectivity fingerprints (ECFP) [39]. In several ligand-based 
virtual screening studies, ECFP4 showed good performance among different types of 2D 
fingerprints [47,48]. The number “4” in ECFP4 refers to the diameter of the atom environ-
ments. On the other hand, Morgan FP takes radius as parameter. Thus, Morgan FP with 
radius 2 is equivalent to ECFP4. In the generation of the atomic features set, radius R is 
set to 2. The atomic features used in the initial assignment to atoms are shown in Table 1. 
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The atomic features consist of atom type, degree, total valence, hybridization, number of 
hydrogens, formal charge, aromaticity, atoms in rings, and chirality, whose length is 43. 
All the atomic features were calculated using RDKit [40]. 

4.2. Generation of Molecular Topographic Map 
MTM was generated according to the procedure illustrated in Figure 2. GTM models 

were constructed with runGTM function of ugtm [49], which is a python package that 
implements GTM [36,37]. In the training of GTM models using the runGTM function, the 
following parameters were used: k = 28, m = 2, where k is the sqrt of the number of GTM 
nodes, m is the sqrt of the number of radial basis function centers, and other parameters 
were set to default. For generating MTMs of amino acids, the GTM model was constructed 
using 4200 molecules in Lipophilicity dataset as training data obtained from MoleculeNet 
[50]. In molecular property prediction, GTM model was constructed using training dataset 
split (80%) from a property dataset. After the construction of the GTM model, the respon-
sibilities of the atomic features were calculated using the transform function of ugtm [49], 
and MTM is generated by summing up the responsibilities. 

4.3. Similarity Matrix Using Molecular Topographic Maps 
The similarity was calculated by 1/(1 + d), where d was the Euclidean distance be-

tween MTM pairs for constructing similarity matrix. Both rows and columns of the simi-
larity matrix were clustered using the clustermap function implemented in seaborn [51], 
where the metric parameter was set to “correlation”. 

4.4. Molecular Property Prediction 
4.4.1. Property Datasets 

To compare property prediction performance of MTM-based, Morgan FP-based, and 
MACCS keys-based models, three datasets, including ESOL, FreeSolv, and Lipophilicity, 
were obtained from MoleculeNet [50] and caco2 was obtained from literature [52]. ESOL 
is a dataset of water solubility for organic small molecules, and is composed of 1128 mol-
ecules. FreeSolv is a dataset of hydration free energy of small molecules in water, and it 
contains 642 molecules. Lipophilicity is a dataset of octanol/water distribution coefficient 
(logD at pH = 7.4) containing 4200 molecules. caco2 is a dataset of Caco-2 cell permeability 
containing 1272 molecules. The four datasets were used for the regression tasks. 

4.4.2. Molecular Representation 
Morgan FP was calculated with a radius of 2 and a length of 1024 bits using RDKit 

[40] for all molecules. MACCS keys consists of 167-bit-long fingerprint was calculated us-
ing RDKit [40]. MTMs of molecules in ESOL dataset were calculated using a GTM model 
constructed using a training dataset split (80%) from ESOL dataset. In the same way, 
MTMs of molecules in the FreeSolv, Lipophilicity, and caco2 dataset were calculated. 

4.4.3. Calculation Protocol 
Three DNN and one CNN models were built to predict molecular property from 

chemical structures (Figure 5). These models were implemented with Tensorflow [53] and 
Keras [54]. In order to evaluate the DNN models, three independent runs based on differ-
ent random seeds of data split into training, validation, and test sets at the ratio of 8:1:1, 
were performed against each property dataset (ESOL, FreeSolv, Lipophilicity, and caco2). 
For each independent run, hyperparameters of the models were optimized using optuna, 
which is an automatic hyperparameter optimization software framework [55]. In the DNN 
models illustrated in Figure 5a–c, the following hyperparameters were optimized to min-
imize mean squared error of the validation set: number of units of “Dense_1” (256, 512, 
768, 1024), dropout rates of “Dropout_1” (0 to 0.9 every 0.1), number of units of “Dense_2” 
(256, 512, 768, 1024), and dropout rates of “Dropout_2” (0 to 0.9 every 0.1). The following 
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hyperparameters were fixed: activation functions (ReLU) of ”Dense_1” and “Dense_2”, 
batch size (16), epochs (100), and optimizer (Adam). In the CNN model illustrated in Fig-
ure 5d, the following hyperparameters were optimized to minimize mean squared error 
of the validation set: number of filters of “Conv2D_1” (16 to 96 every 16), number of filters 
of “Conv2D_2” (16 to 96 every 16), number of units of “Dense_1” (256, 512, 768, 1024), and 
dropout rates of “Dropout” (0 to 0.9 every 0.1). The following hyperparameters were 
fixed: kernel size of “Conv2D_1” and “Conv2D_2” ((5,5)), pooling window size of “Max-
Pooling2D_1” and “MaxPooling2D_1” ((2,2)), activation functions (ReLU) of 
“Conv2D_1”, “Conv2D_2”, and “Dense_1”, batch size (16), epochs (100), and optimizer 
(Adam). Finally, These models were constructed using the optimized parameters, and 
evaluated by average performance against test sets over three runs. Different measures 
were used to evaluate the performance including mean squared error (MSE), mean abso-
lute error (MAE), and square of correlation coefficient (R2). 

4.4.4. Data Augmentation Using Mixup 
Mixup is one of the data augmentation techniques being used to generate new train-

ing examples by linearly interpolating input images and the corresponding labels [42]. 
Given randomly selected two images and their corresponding labels: 𝑥 , 𝑦 , 𝑥 , 𝑦  (x 
is an image and y is its one-hot encoding label), a synthetic training example 𝑥, 𝑦 is gen-
erated as: 𝑥 = 𝜆𝑥 + 1 − 𝜆 𝑥𝑦 = 𝜆𝑦 + 1 − 𝜆 𝑦  (1)

where λ~Beta(α, α) for each pair of examples, with an α hyperparameter. 
In this study, y is a real number that represents molecular property instead of one-

hot encoding label. 
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