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Abstract: Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols
(3a–3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and
the evaluation of their antifungal activity. In silico prediction of biological activity with computer
program PASS indicate that the compounds have a high novelty compared to the known antifungal
agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the
Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of
antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed
by 3n. Their MIC values for different fungi were 22.1–184.2 and 71.3–199.8 µM, respectively. Twelve
from fourteen tested compounds were more active than the reference drugs ketoconazole and
bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus
was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol
substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular
docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used
to predict the mechanism of antifungal activities. According to the docking results, the inhibition
of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We
also showed that most active compounds have a low cytotoxicity, which allows us to consider them
promising antifungal agents for the subsequent testing activity in in vivo assays.

Keywords: vinyl-1,2,4-triazole; chromenol; antifungal activity; C. albicans CYP51; PASS; molecu-
lar docking

1. Introduction

Azoles constitute a significant class of antifungal drugs frequently used to treat infec-
tions caused by many pathogenic fungi. Azole antifungals are pretty inexpensive, have
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similar chemical structures, and are effective against most fungal species. Azoles target a
crucial enzyme in the ergosterol biosynthesis pathway, CYP51, whose inhibition leads to a
reduced fungal growth [1,2]. Ketoconazole [3,4], itraconazole [3,5], bifonazole [3,6], ravu-
conazole [3,7], and voriconazole [3,8,9] (Figure 1) are examples of drugs from this class [3].
Since azoles are fungistatic instead of fungicidal, their prolonged use and abuse frequently
results in resistance, which is a severe clinical problem in antifungal therapy. The gradual
increase in systemic fungal infections over the last three decades has led to high morbidity
and mortality rates due to the unavailability of effective medications. The development of
resistant strains contributed markedly to this phenomenon. The most aggressive fungal
infections occur due to immune suppression associated with several illnesses, such as AIDS,
and several drugs which are applied for cancer chemotherapy, immunosuppressive therapy
for organ transplantation, and corticosteroid therapy in inflammatory diseases. More than
90% of reported fungal-associated deaths result from species belonging to three genera:
Cryptococcus, Candida, and Aspergillus [10]. Clinically, candidiasis and aspergillosis
represent 80% to 90% of systemic fungal infections in immunocompromised patients.
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Extensive use and long-term therapy with azoles resulted in fungal resistance [11,12].
Most of the drugs used in antifungal treatment, except azoles and polyenes, are character-
ized by low potency, a narrow spectrum of activity, and many severe side effects. These
precipitate an urgent need to develop novel effective antifungal azoles with a better clinical
efficacy and low risk of side effects. One way to overcome this rapid development of
drug resistance is to design new agents with chemical characteristics that are different
from those of existing agents. Especially the mechanism of action should be ultimately the
same, e.g., different binding sites or different targets are the best possibilities for avoiding
cross-resistance to existing therapeutics [13].

Triazole derivatives have attracted considerable interest in the scientific community
due to their vast range of biological activities. In addition to antifungal action [14–19],
they were shown to possess other antimicrobial effects such as antibacterial, including
anti-tuberculous activity [20–24], antiparasitic [25–27] and anti-HIV effects [28] as well
as anticholinesterase [29], antiangiogenic [30], anticancer [31,32], antidiabetic [33,34] and
anticonvulsant activities [35].

Another interesting structural core is the chromen ring. Chromen derivatives were
also reported to display a wide range of biological activities such as antioxidant [36,37],
anti-inflammatory [38,39], antimicrobial [40–45], anti-HIV [46,47] and others [48,49].

These findings focused particular interest on incorporating a triazole with a chromen
ring in one frame to obtain compounds with improved antifungal activity. According to the
current literature, more efficacious antibacterial compounds have been designed by joining
two or more biologically active heterocyclic nuclei in a single molecular framework [50–53].
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Taking all these into account, herein we report the design, synthesis, and evaluation
of the antifungal activity of fourteen new chromenol–triazole hybrids.

2. Results and Discussion
2.1. Chemistry

The synthesis of new vinyl-1,2,4-triazole derivatives A (Figure 1) as antimicrobial
agents was previously reported [54]. Recent attention has only been paid to the tandem
reactions of salicylic aldehydes or salicylic imines with α,β-unsaturated compounds [55].
We considered that an applicable route to the synthesis of 1H-1,2,4-triazole-functionalized
chromene B (Figure 2) would be possible through the coupling of substituted triazolyl
ethanones with salicylic aldehydes.
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Indeed, we performed the first synthesis of 1H-1,2,4-triazole-functionalized chromenols
via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes
(Figure 3).
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The reaction of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl)ethanones 1a–1f with salicylic
aldehydes 2a–2e in the presence of piperidine and acetic acid as catalyst-afforded crystalline
products 3a–3n with varying yields ranging from 25% up to 75%.

The structure of the obtained derivatives was supported by IR, 1H and 13C NMR
spectroscopic data and by elemental analysis (see Supplementary Materials).

The IR spectrum of products showed an absorption band for both 3a and 3b at
880 cm−1, for 3c at 877 cm−1, for 3d at 894 cm−1, for 3e at 896 cm−1, for all three 3f, 3g, 3h
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at 825 cm−1, for 3i at 874 cm−1, for 3j at 891 cm−1, for 3k at 875 cm−1, for 3l at 883 cm−1,
for 3m at 873 cm−1 and for 3n at 831 cm−1, characteristic of the cyclic vinyl C-H stretching
frequency. The absorption band for 3a at 1576 cm−1, for both 3c and 3b at 1573 cm−1, for 3d
at 1571 cm−1, for 3e at 1578 cm−1, for both 3f and 3h at 1584 cm−1, for 3g at 1560 cm−1, for
3i at 1509 cm−1, for both 3j and 3k at 1508 cm−1, for 3l at 1503 cm−1, for 3m at 1505 cm−1

and for 3n at 1502 cm−1, suggests the presence of a C–N bond. The absorption band for
both 3a and 3b at 1140 cm−1, for 3c at 1131cm−1, for 3d at 1104 cm−1, for 3e at 1111 cm−1,
for 3f at 1129 cm−1, for 3g at 1126 cm−1, for 3h at 1129 cm−1, for 3i at 1147 cm−1, for 3j
at 1113 cm−1, for 3k at 1125 cm−1, for 3l at 1131 cm−1, for 3m at 118 cm−1 and for 3n at
1130 cm−1, was assigned to a hemiketal group of compounds 3a–n.

The examination of the NMR spectra of the discussed compounds further confirmed
the formation of 1H-1,2,4-triazole functionalized chromenols by the intramolecular addition
of a hydroxy group to a ketonic carbonyl group. The peaks in the 13C NMR spectra at
118.4 ppm for 3a, 95.01 ppm for 3b, 95.9 ppm for 3c, 96.13 ppm for 3d, 97.9 ppm for 3e,
95.81 ppm for 3f, 95.74 ppm for 3g, 96.8 ppm for 3h, 95.9 ppm for 3i, 104.0 ppm for 3j,
103.8 ppm for 3k, 105.5 ppm for 3l and 104.2 ppm for both 3m and 3n are ascribed to the
carbon at the cyclic ether bound to the hemiketal hydroxyl, while the peak in the region
of 200 ppm, typical to the carbonyl 13C nucleus, was absent. A broad singlet at 8.86 ppm
for 3a, 8.85 ppm for 3b, 8.75 ppm for 3c, 8.95 ppm for 3d, 8.61 ppm for 3e, 9.05 ppm for 3f,
9.16 ppm for 3g, 9.43 ppm for 3h, 8.9 ppm for 3i, 8.1 ppm for 3j, 8.0 ppm for 3k, 8.68 ppm for
3l, 8.26 ppm for 3m and 8.27 ppm for 3n in the respective 1H NMR spectra was assigned to
a hydroxyl group. The chemical shifts of the protons in the triazole ring were environment-
dependent (8.04, 8.36 ppm for 3a; 8.04, 8.36 ppm for 3b; 8.09, 8.39 ppm for 3c; 8.04, 8.14–8.06,
8.40 ppm for 3d; 8.02, 8.32 ppm for 3e; 8.06, 8.48 ppm for 3f; 8.03–7.96, 8.48 ppm for 3g; 8.51,
8.55 ppm for 3h; 8.06–8.11, 8.50 ppm for 3i; 8.1, 8.21 ppm for 3j; 8.18, 8.69 ppm for 3k; 8.27,
8.72 ppm for 3l; 8.18, 8.7 ppm for 3m; 8.17, 8.7 ppm for 3n). The structures of compounds
were confirmed by recording their mass spectra. The molecular ion of 3a appeared at m/z
370.2/371.1 corresponding to the molecular formula C17H12BrN3O2, which is consistent
with the structure assigned to it. The characterization data of compounds 3a–n are given in
experimental part.

The structure of the compound 3h was characterized by a single-crystal X-ray diffrac-
tion method. The compound crystallizes in the centrosymmetric monoclinic space group
C2/c; therefore, it is a racemate. The unit cell parameters were: a = 24.207(2), b = 9.7963(7),
c = 14.9130(13) Å, β = 100.229(8)◦ and V = 3480.2(5) Å3. The structure of the molecule is
shown in Figure 3. The nitro group was nearly co-planar to the chromenol fragment and the
corresponding dihedral angle was 10.00◦, while triazole and 1,3-dichlorobenzene fragments
formed with the root mean square plane determined by the atoms of the chromenol frag-
ment dihedral angles of 50.79 and 89.81◦, respectively. The length of the double C3–C9 bond
in the chromenol fragment equals 1.318(5) Å, in the 1,2,4-triazole fragment all bonds were
delocalized as indicated by their length and the formally double N5–C6 and N7–C8 bonds
were longer than expected for double bonds, equal 1.315(5) and 1.312(4) Å, respectively, and
formally single bonds lengths were shorter than expected and equaled N4–N5 = 1.365(4),
N4–C8 = 1.337(4) and N7–C6 = 1.354(5) Å, while the bond length N4–C3 = 1.420(4) Å
corresponded to a single one. The molecule of 3h formed an infinite chain due to the
O27–H···N7 hydrogen bonds, along the c crystallographic axis (Figure 4b).
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2.2. PASS Prediction and Similarity Search in CDDI Database

A PASS prediction of antifungal activity was performed for the whole set of designed
molecules, from which fourteen were chosen for synthesis and biological testing. Anti-
fungal activity for all selected compounds was predicted with the probability to be active
Pa values ranging from 0.43 to 0.53 (Table 1). The mechanism of antifungal activity was
predicted as well. The prediction revealed that lanosterol 14 alpha demethylase inhibi-
tion was estimated with Pa between 0.16 and 0.35. The calculated Pa values for most
of the compounds were less than 0.5, indicating their relative novelty compared to the
structures of the compounds from the PASS training set [56,57]. Such results lead to
the conclusion that the studied compounds have some features different from those of
well-known antifungal agents, which may indicate their innovative potential. To check
this inference, we performed a chemical similarity search in the Cortellis Drug Discovery
Intelligence (CDDI) database [58], one of the most comprehensive sources of current infor-
mation about pharmacological agents. The CDDI contains data on more than 580 thousand
pharmaceutical agents, 90% of which includes a chemical structure. Using the similarity
search implemented in the CDDI, no close analogs of the compounds under study were
identified with the Tanimoto coefficient (TC) exceeding 70%. Earlier, Yvonne Martin and
co-authors [59] showed that even at the TC > 85%, there is only a 30% chance to find
compounds with the same biological activity. Thus, the similarity search results in the
CDDI database confirm that the designed compounds have a high novelty compared to
the known antifungal agents.
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Table 1. Predicted biological activity spectra for the studied molecules.

Compounds ID A1, Pa A2, Pa Compounds ID A1, Pa A2, Pa

3a 0.43 0.16 3i 0.50 0.29
3b 0.43 0.25 3j 0.45 0.19
3c 0.49 0.27 3k 0.47 0.20
3d 0.l5 0.29 3i 0.49 0.23
3e 0.l4 0.17 3m 0.50 0.28
3f 0.51 0.33 3n 0.49 0.18

A1—antifungal; A2—lanosterol 14 alpha demethylase inhibitor; Pa—probability to be active.

2.3. Biological Evaluation
Antifungal Activity

Compounds 3a–3n were evaluated by a microdilution method against a panel of
eight fungi using bifonazole and ketoconazole as reference drugs. All compounds showed
antifungal activity, and the results are presented in Table 2.
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Table 2. Antifungal activity of the tested compounds (µM).

Compounds A. fum. A.v. A.o. A.n. T.v. P.f. P.o. P.v.c.

3a
MIC 270 ± 1.0 540 ± 2.0 270 ± 1.0 270 ± 1.0 190 ± 5.0 270 ± 2.0 270 ± 1.0 270 ± 2.0
MFC 540 ± 1.0 810 ± 3.0 540 ± 1.0 540 ± 2.0 270 ± 1.0 540 ± 2.0 540 ± 1.0 540 ± 3.0

3b
MIC 600 ± 2.0 210 ± 1.0 150 ± 3.0 150 ± 5.0 113 ± 1.0 150 ± 2.0 76 ± 1.0 300 ± 1.0
MFC 1800 ± 40.0 300 ± 1.0 300 ± 3.0 300 ± 1.0 150 ± 1.0 600 ± 2.0 150 ± 2.0 600 ± 3.0

3c
MIC 612 ± 3.0 306 ± 1.0 150 ± 1.0 150 ± 2.0 150 ± 1.0 214 ± 2.0 76 ± 1.0 306 ± 1.0
MFC 1224 ± 4.0 612 ± 2.0 306 ± 1.0 306 ± 2.0 306 ± 1.0 306 ± 1.0 150 ± 3.0 612 ± 2.0

3d
MIC 560 ± 1.0 70 ± 1.0 70 ± 2.0 140 ± 1.0 102 ± 3.0 140 ± 1.0 35 ± 1.0 194 ± 1.0
MFC 1120 ± 30.0 140 ± 1.0 140 ± 1.0 280 ± 1.0 140 ± 1.0 280 ± 1.0 70 ± 2.0 280 ± 1.0

3e
MIC 654 ± 2.0 81.75 ± 1.0 81.75 ± 2.0 163 ± 1.0 163 ± 1.0 229 ± 3.0 81.75 ± 1.0 654 ± 3.0
MFC 1308 ± 30.0 163 ± 1.0 163 ± 1.0 327 ± 2.0 327 ± 1.0 327 ± 3.0 163 ± 1.0 1630 ± 30.0

3f
MIC 379.5 ± 1.0 759 ± 2.0 379.5 ± 1.0 379.5 ± 1.0 189.75 ± 2.0 759 ± 2.0 253 ± 1.0 379.5 ± 1.0
MFC 506 ± 2.0 1012 ± 30.0 506 ± 2.0 506 ± 1.0 253 ± 1.0 1012 ± 20.0 506 ± 1.0 506 ± 3.0

3g MIC 113.8 ± 2.0 113.8 ± 1.0 56.9 ± 1.0 113.8 ± 1.0 79.7 ± 2.0 113.8 ± 1.0 113.8 ± 2.0 159.4 ± 3.0
MFC 227.7 ± 1.0 227.7 ± 2.0 113.8 ± 1.0 227.7 ± 1.0 113.8 ± 1.0 227.7 ± 1.0 227.7 ± 2.0 227.7 ± 1.0

3h
MIC 246.7 ± 1.0 123.3 ± 1.0 123.3 ± 2.0 123.3 ± 1.0 123.3 ± 1.0 246.7 ± 1.0 246.7 ± 2.0 246.7 ± 1.0
MFC 493.5 ± 2.0 246.7 ± 1.0 246.7 ± 1.0 246.7 ± 2.0 246.7 ± 1.0 493.5 ± 2.0 493.5 ± 1.0 740.1 ± 2.0

3i
MIC 458.4 ± 1.0 458.4 ± 1.0 114.6 ± 1.0 229.2 ± 1.0 114.6 ± 1.0 229.2 ± 2.0 229.2 ± 1.0 229.2 ± 1.0
MFC 916.8 ± 3.0 687.6 ± 2.0 229.2 ± 1.0 458.4 ± 1.0 229.2 ± 1.0 458.4 ± 1.0 458.4 ± 2.0 458.4 ± 1.0

3j MIC 431.7 ± 1.0 431.7 ± 1.0 201.4 ± 1.0 143.9 ± 1.0 143.9 ± 2.0 431.7 ± 1.0 1151 ± 30.0 1151 ± 20.0
MFC 575.6 ± 1.0 575.6 ± 2.0 287.8 ± 1.0 287.8 ± 1.0 287.8 ± 1.0 575.6 ± 2.0 1439 ± 30.0 1439 ± 20.0

3k
MIC 33.1 ± 1.0 92.1 ± 1.0 184.2 ± 2.0 22.1 ± 1.0 92.1 ± 1.0 184.2 ± 1.0 184.2 ± 1.0 184.2 ± 1.0
MFC 46.0 ± 1.0 184.2 ± 2.0 368.5 ± 1.0 46.0 ± 1.0 184.2 ± 1.0 368.5 ± 1.0 368.5 ± 1.0 368.5 ± 2.0

3l
MIC 316.1 ± 1.0 316.1 ± 1.0 158 ± 1.0 316.1 ± 1.0 158 ± 1.0 632.2 ± 2.0 79 ± 1.0 632.2 ± 1.0
MFC 632.2 ± 2.0 632.2 ± 1.0 316.1 ± 1.0 632.2 ± 3.0 316.1 ± 1.0 1264.5 ± 30 158 ± 1.0 1264.5 ± 40

3m
MIC 229 ± 2.00 163.5 ± 1.0 163.5 ± 1.0 81.7 ± 1.0 115 ± 2.0 163.5 ± 1.0 163.5 ± 1.0 163.5 ± 1.0
MFC 327 ± 1.0 327 ± 1.0 327 ± 2.0 327 ± 1.0 163.5 ± 1.0 327 ± 2.0 327 ± 1.0 327 ± 2.0

3n
MIC 142.7 ± 1.0 199.8 ± 2.00 71.3 ± 2.0 71.3 ± 1.0 71.3 ± 2.0 142.7 ± 1.0 99.9 ± 2.0 142.7 ± 1.0
MFC 285.5 ± 1.0 285.5 ± 2.0 142.7 ± 1.0 142.7 ± 1.0 142.7 ± 2.0 285.5 ± 1.0 142.7 ± 1.0 285.5 ± 2.0

Ket/zole
MIC 380 ± 1.20.0 2850 ± 68.0 380 ± 1.20.0 380 ± 8.20.0 4750 ± 58.0 380 ± 1.6 3800 ± 58.0 380 ± 1.2
MFC 950 ± 2.3 3800 ± 84.0 950 ± 3.3 950 ± 6.3 5700 ± 86.0 950 ± 2.6 3800 ± 48.0 950 ± 2.3

Bif/zole
MIC 480 ± 2.2 480 ± 1.2 480 ± 2.8 480 ± 1.2 640 ± 2.8 640 ± 1.2 480 ± 2.0 480 ± 2.2
MFC 640 ± 3.4 640 ± 0.8 800 ± 1.8 640 ± 2.3 800 ± 3.8 800 ± 2.1 640 ± 1.6 640 ± 3.4

Experiments were performed in duplicate and repeated three times. Values are expressed as means ± SD. A.fum.—Aspergillus fumigatus, A.v.—Aspergillus versicolor, A.o.—Aspergillus ochraceus, A.n.—Aspergillus
niger, T.v.—Trichoderma viride, P.f.—Penicillium funiculosum, P.o.—Penicillium ochrochloron and P.v.c.—Penicillium verrucosum var. cyclopium.
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The order of antifungal activity can be presented as follows: 3k > 3n > 3g > 3m > 3d
> 3c > 3h > 3b > 3e > 3l > 3a > 3i > 3f > 3j. The best antifungal activity was achieved for
compound 3k with MIC ranging 22.1–184.2 µM and MFC at 46.0–368.5 µM. The lowest
antifungal activity was exhibited by compound 3j with MIC and MFC at 143.9–1151 µM
and 575.6–1439 µM, respectively.

As far as reference drugs are concerned, ketoconazole showed an antifungal potential
with MIC at 380–4750 µM and MFC at 950–5700 µM, whereas bifonazole showed MIC at
480–640 µM and MFC at 640–800 µM. Thus, all compounds were more effective antifungal
agents than ketoconazole, and almost all (twelve from fourteen) exhibited a higher activity
than bifonazole.

It is interesting to mention that the fungi showed a different sensitivity towards the
compounds tested. Thus, the order of activity of tested compounds against the most
sensitive fungi T. viride is 3k = 3n > 3b = 3g = 3m > 3c = 3d = 3e = 3h = 3i = 3l = 3j > 3a > 3f,
whereas the sensitivity of the most resistant fungi, A. fumigatus, can be presented as 3d = 3e
= 3k > 3g = 3h = 3m > 3b = 3n > 3c = 3l > 3j > 3a = 3i > 3f. Not only were there differences
in the sensitivity among species, but also in each fungus were observed. At the same time,
all species appeared to be sensitive to compound 3k and not sensitive to 3f and 3j.

Compound 3k showed perfect activity with MIC 22.1 µM against A. niger. It also
exhibited good activity with MIC 33.1 µM against A. fumigatus, and T. viride and A. versicolor
with MIC 92.1 µM. The same good activity was achieved against T. viride by compound 3n,
against A. versicolor by 3d and 3e, and against P. ochraceus by 3b, 3c, 3d, and 3l.

The study of the structure–activity relationship revealed that the presence of the 2-
(tert-butyl)-2H-chromen-2-ol substituent 3k on the 4th position of the triazole ring was
very beneficial for antifungal activity. The introduction on 2-(tert-butyl)-2H-chromen-2-ol
bromine at position six, resulted in a slightly less active compound 3n, while substitution
on position two of the 2-(tert-butyl)-2H-chromen-2-ol by 2,4-dichlorophenyl group (in
3g) decreased the antifungal activity more. In series of 2-H chromen-2-ol derivatives
with a tert-butyl substituent in position two of the chromen ring, the most beneficial
was the unsubstituted benzene (3k) derivative followed by derivatives with a substituted
benzene ring with electron withdrawal (EWG) substituents (Br, Cl, NO2), while the electron-
donating (EDG) substituent (Ph) (3j) was detrimental for antifungal activity of these
derivatives. In the case of the 2,4-dichlorophenyl substituent in position two of the chromen-
2-ol moiety, the favorable effect was observed for the derivative with bromine (3g) as a
substituent in the benzene ring. The order of activity can be presented as Br > NO2 > Ph >
Cl. There is no strong correlation of activity with the EWG/EDG character of substituents
in this case. From all mentioned above, it can be concluded that antifungal activity depends
not only on the triazole ring, but also on its substituents.

2.4. Docking Studies

All the synthesized compounds and the reference drug ketoconazole were docked to
lanosterol 14α-demethylase (known as well as cytochrome 51-CYP51) of C. albicans and
DNA topoisomerase IV (Table 3). Results revealed that the values of free binding energy
for DNA topoisomerase IV were higher than CYP51. Thus, the inhibition of this enzyme
may be the putative mode of action of the analyzed novel chromenol derivatives.

Docking results revealed that the most active compound, 3k, bound the CYP51 enzyme
of C. albicans in a way that allowed the interaction with the heme. In particular, the N atom
of the piperazine ring of the compound interacted strongly with the Fe of the heme group.
Moreover, hydrophobic interactions were detected with the residues Tyr118, Ile131, Tyr132,
Phe126, Tyr122, Leu121, Thr311, Leu376 and Met508. Hydrophobic interactions were also
observed between the methyl substituents and the heme group of the enzyme. The same
interactions were detected in the binding of compound 3n (Figure 5).
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Table 3. Molecular docking on antifungal targets.

N/N

Est. Binding Energy (kcal/mol)

I-H
Residues CYP51

of C. albicans Interactions with HEM601DNA Topoisomerase
IV 1S16 CYP51 5V5Z

3a −2.15 −8.74 1 Tyr132 Hydrophobic
3b - −8.52 1 Tyr132 Hydrophobic
3c −1.82 −8.97 1 Tyr135 Hydrophobic, aromatic
3d - −8.95 1 Tyr145 Hydrophobic, aromatic
3e −1.20 −8.66 1 Tyr132 Hydrophobic
3f - −8.62 1 Tyr145 Hydrophobic
3g −4.10 −9.12 2 Tyr145, Tyr132 Hydrophobic, aromatic
3h −3.62 −8.83 1 Tyr132 Hydrophobic, aromatic
3i −2.73 −8.84 1 Tyr132 Hydrophobic
3j −1.28 −8.25 1 Tyr132 Hydrophobic
3k - −9.56 - - Hydrophobic, Fe binding
3l - −8.37 1 Tyr132 Hydrophobic

3m −2.03 −9.02 1 Tyr145 Hydrophobic, aromatic
3n −2.56 −9.51 - - Hydrophobic, Fe binding

Ketoconazole - −8.23 1 Tyr64 Hydrophobic, aromatic
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Interaction with the heme group was also observed with the benzene ring of keto-
conazole, which formed a hydrophobic and aromatic interaction (Figure 6). However,
compounds 3k and 3n had stronger interactions than ketoconazole and formed more stable
complexes with the enzyme which is the likely reason for the better antifungal activity
than ketoconazole.
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2.5. In Silico Predictive Studies

Drug-likeness is an essential part of drug research and development that provides the
base for the molecules to be powerful drug candidates. Various rules, such as, e.g., Lipinski,
Ghose, Veber, Egan, and Muegge, were considered to measure the drug-likeness of the
tested compounds to find out whether they can be bioactive drug candidates according
to some critical criteria such as the molecular weight, LogP, number of hydrogen bond
acceptors and donors. The number of violations to the rules, along with bioavailability and
drug-likeness scores, are given in Table 4. The results revealed that none of the compounds
violated any rule, and their bioavailability score was around 0.55. All the tested molecules
were suggested to pass the blood–brain barrier (BBB) except for in compounds 3h and
3l. All compounds exhibited moderate to good drug-likeness scores, ranging from −0.63
to 0.29.

Moreover, the bioavailability radar of some of the compounds is displayed in Figure 7.
The most active compound, 3k, appeared to be the best in the in silico predictions, with a
drug-likeness score of 0.29 without any rule violation. However, compounds 3k and 3n
had stronger interactions than ketoconazole and formed more stable complexes with the
enzyme which are the likely reasons for the better antifungal activity than ketoconazole.
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Table 4. Drug-likeness predictions and physicochemical/pharmacokinetic/ADME properties of tested compounds.

No MW Number of
HBA a

Number of
HBD b

Log Po/w
(iLOGP) c Log S d TPSA e BBB

Permeant f

Lipinski, Ghose,
Veber, Egan, and

Muegge Violations

Bioavailability
Score

Drug-Likeness
Model Score

3a 369.01 4 1 2.78 Moderately soluble 60.17 Yes 0 0.55 −0.56
3b 325.06 4 1 2.67 Moderately soluble 60.17 Yes 0 0.55 −0.23
3c 325.75 4 1 2.51 Moderately soluble 60.17 Yes 0 0.55 −0.54
3d 360.19 4 1 2.77 Moderately soluble 60.17 Yes 0 0.55 −0.44
3e 305.33 4 1 2.53 Moderately soluble 60.17 Yes 0 0.55 −0.27
3f 394.64 4 1 3.04 Poorly soluble 60.17 Yes 0 0.55 −0.53
3g 439.09 4 1 3.15 Poorly soluble 60.17 Yes 0 0.55 −0.29
3h 405.19 6 1 2.38 Moderately soluble 105.99 No 0 0.55 −0.60
3i 436.29 4 1 3.46 Poorly soluble 60.17 Yes 1 0.55 −0.26
3j 347.41 4 1 3.08 Moderately soluble 60.17 Yes 0 0.55 0.29
3k 271.31 4 1 2.02 Soluble 60.17 Yes 0 0.55 0.29
3l 316.31 6 1 1.85 Soluble 105.99 No 0 0.55 0.29

3m 305.76 4 1 2.25 Moderately soluble 60.17 Yes 0 0.55 −0.63
3n 350.21 4 1 2.38 Moderately soluble 60.17 Yes 0 0.55 0.29
a number of hydrogen bond acceptors; b number of hydrogen bond donors; c lipophilicity; d water solubility (SILICOS-IT (S—soluble)); e topological polar surface area (Å2); f blood–brain barrier permeability.
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2.6. Cytotoxicity Studies

To ensure the safety margin for the tested compounds, cytotoxicity was tested in both
the cancerous breast cancer cell line MCF7/S0.5 and the non-cancerous cell renal epithelial
line HK-2.

Initial screening at a high concentration was performed in the MCF7/S0.5 cell line.
At a concentration of 100 µM, seven compounds (3c, d, j, k, l, m, and n) showed little
toxicity. When tested at a, still high, concentration of 50 µM, several other compounds
(3a and 3e) showed a higher survival compared to the 100 µM results (Figure 8a). Since
cultured cancer cell lines are more sensitive to xenobiotic treatment, the same experiments
were performed with the non-cancerous cell line HK-2 to further confirm the safety of the
compounds.’. As shown in Figure 8b, general survival values were much higher for cells
treated in the same way as in MCF7/S0.5 cells, as expected. These data indicate that nine
out of fourteen synthesized compounds can be considered potential candidates for furthe
drug development. When integrated with antifungal activity data, the most promising
compounds seemed to be 3c, 3d, 3k, 3m and 3n.
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3. Materials and Methods
3.1. Chemistry
3.1.1. General Information

The chemicals used were of reagent grade. Removal of all solvents was carried out
under reduced pressure. The 1H and 13C NMR spectra were recorded in d6-DMSO 2% so-
lutions on a “Bruker Avance III” (400.13 and 100.61 MHz) (Karlsruhe, Germany). Chemical
shifts δ are given in ppm referring to the signal center using the solvent peaks for reference:
d6-DMSO 2.50 ppm. IR spectra were recorded on a Spectrum 100 FT-IR spectrophotome-
ter (PerkinElmer) using the universal ATR sampling accessory Agilent 5975C VL MSD
(Waltham, MA, USA) with triple axis detector, performed using the method by Druta:
temperature 60–320 ◦C, run time: 32.333 min, flow 1.1062 mL/min, pressure 9.418 psi
and method steroid 250, temperature 180–250 ◦C, run time 29 min, flow 1.1062 mL/ min,
pressure 16.528 psi. All products were analyzed by CHN elemental analysis (Elementar
Vario EL analyzer) (Santa Clara, CA, USA). Melting points (uncorrected) were determined
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on a Boetius apparatus (Dresden, Germany). Thin-layer chromatography was carried out
on Merck aluminum TLC plates, silica gel 60 coated with fluorescent indicator F254.

3.1.2. Synthesis

For the preparation of tested compounds, the following method was used: One-
necked flask equipped with a Dean–Stark receiver and reflux condenser were charged with
triazolyl ketone (10 mmol), aldehyde (11 mmol), catalyst (1 mol%, mixture of acetic acid
and piperidine 1:1) and benzene (100 mL). The resulting mixture was heated in an oil bath
to maintain a gentle solvent reflux for 18 h. The reaction was monitored by TLC. After
cooling to room temperature, the reaction mixture was washed with water (2 × 50 mL) in a
separation funnel, dried with magnesium sulphate and distilled in vacuo.

6-Bromo-2-phenyl-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3a). Yield 65%, white
crystals (ethanol), mp 97–99 ◦C. IR (ν/cm−1): 3676, 3061, 2989, 2902, 1652, 1576, 1479, 1436,
1281, 1249, 1210, 1140, 1075, 967, 880, 760, 699, 673; 1H NMR (400 MHz, DMSO-d6): 8.85
(1H, s, broad), 8.36 (1H, s), 8.04 (1H, s), 7.75 (1H, d, J = 2.4 Hz), 7.52 (2H, dd, J = 7.7, 1.8 Hz),
7.43 (2H, d, J = 1.9 Hz), 7.32 (3H, dd, J = 5.0, 1.4 Hz), 6.93 (1H, d, J = 8.7 Hz); 13C NMR
(100 MHz, DMSO): 152.1, 149.8, 144.1, 140.9, 132.9, 131.9, 130.3, 129.4, 128.7, 126.4, 121.7,
118.4, 16.8, 113.3, 98.1. Anal. Calcd for C17H12BrN3O2 C 55.15; H 3.27; N 11.35.%. Found C
54.8; H 2.9; N 10.8%. MS: calcd for m/z 370.2, found 371.1.

6-Chloro-2-phenyl-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3b). Yield 43%, white
crystals (ethanol), mp 92–94 ◦C. IR (ν/cm−1): 3676, 3061, 2989, 2902, 1652, 1576, 1479, 1436,
1281, 1249, 1210, 1140, 1075, 967, 880, 760, 699, 673; 1H NMR (400 MHz, DMSO-d6): 8.86
(1H, s, broad), 8.36 (1H, s), 8.04 (1H, s), 7.75 (1H, d, J = 2.4 Hz), 7.53–7.51 (2H, m), 7.44 (2H,
d, J = 7.6 Hz), 7.33 (3H, td, J = 5.9, 3.0 Hz), 6.93 (1H, d, J = 8.7 Hz); 13C NMR (100 MHz,
DMSO): 152.08, 149.76, 144.06, 140.86, 132.96, 131.83, 130.28, 129.37, 128.66, 126.39, 121.19,
118.37, 116.72, 113.31, 98.01. Anal. Calcd for C17H12ClN3O2 C 62.68; H 3.71; N 12.90%.
Found C 62.1; H 3.53; N 12.45%. MS: calcd for m/z 324.75, found 327.0.

2-(2-Chlorophenyl)-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3c). Yield 71%, white
crystals (ethanol), mp 193–195 ◦C. IR (ν/cm−1): 3628, 3115, 2988, 2301, 1654, 1573, 1486,
1444, 1279, 1238, 1200, 1131, 1001, 877, 756, 691, 661; 1H NMR (400 MHz, DMSO-d6): 8.75
(1H, s, broad), 8.39 (1H, s), 8.09 (1H, dd, J1 = 7.9 Hz, J2 = 1.6 Hz), 7.95 (1H, s), 7.42–7.29
(6H, m), 7.08 (1H, td, J1 = 7.5 Hz, J2 = 0.9 Hz), 6.99 (1H, d, J = 8.1 Hz); 13C NMR (100 MHz,
DMSO-d6): 151.9, 150.9, 144.0, 137.7, 132.9, 131.2, 131.1, 130.7, 129.74, 129.7, 128.4, 127.0,
122.1, 118.9, 118.8, 116.3, 95.9. Anal. Calcd for C17H12ClN3O2 C 62.68; H 3.71; N 12.90%.
Found C 62.0; H 3.2; N 12.0.%. MS: calcd for m/z 325.75, found 327.0.

6-Chloro-2-(2-chlorophenyl)-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3d). Yield
53%, white crystals (ethanol), mp 167–171 ◦C. IR (ν/cm−1): 3630, 3126, 3035, 2309, 1651,
1571, 1482, 1441, 1285, 1244, 1211, 1134, 1104, 969, 894, 762, 695, 670; 1H NMR (400 MHz,
DMSO-d6): 8.95 (s, 1H, broad), 8.40 (1H, s), 8.14–8.06 (1H, m), 7.99 (1H, s), 7.63 (1H, d,
J = 2.6 Hz), 7.60–6.59 (5H, m), 7.03 (1H, d, J = 8.7 Hz); 13C NMR (100 MHz, DMSO-d6):
152.06, 149.59, 144.08, 137.41, 132.89, 131.37, 131.12, 130.80, 130.05, 129.72, 127.47, 127.12,
125.76, 120.69, 118.05, 117.58, 96.13. Anal. Calcd for C17H11Cl2N3O2 C 56.69; H 3.08; N
11.67%. Found C 56.1; H 2.7; N 11.1%. MS: calcd for m/z 360.19, found 361.1

2-(4-methylphenyl)-3-(1H-1,2,4-triazole1-yl)-2H-chromen-2-ol (3e). Yield 30%, white
crystals (ethanol), mp 87–90 ◦C. IR (ν/cm−1): 3658, 3160, 3086, 2989, 1655, 1578, 1487, 1456,
1284, 1241, 1219, 1146, 1111, 1039, 967, 896, 753, 693, 669; 1H NMR (400 MHz, DMSO-d6):
8.61 (1H, s, broad), 8.32 (1H, s), 8.02 (1H, s), 7.47 (1H, dd, J = 7.5, 1.5 Hz), 7.39 (2H, d,
J = 8.0 Hz), 7.38 (1H, s), 7.29 (1H, td, J = 7.8, 1.5 Hz), 7.13 (2H, d, J = 8.0 Hz), 7.04 (1H, td,
J = 7.4, 1.0 Hz), 6.92 (1H, d, J = 8.3 Hz), 2.26 (3H, s); 13C NMR (100 MHz, DMSO-d6): 151.9,
150.6, 143.9, 138.6, 138.5, 131.1, 130.7, 129.1, 128.3, 126.3, 122.0, 118.9, 117.9, 116.0, 97.9, 21.1.
Anal. Calcd for C18H15N3O2 C 70.81; H 4.95; N 13.76%. Found C 70.1; H 4.5; N 13.4%. MS:
calcd for m/z 305.33, found 307.1.

6-Chloro-2-(2,4-dichlorophenyl)-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3f). Yield
75%, white crystals (benzene), mp 193–195 ◦C. IR (ν/cm−1): 3113, 3082, 2989, 1660, 1584,
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1480, 1341, 1259, 1250, 1129, 1088, 999, 898, 825, 784, 677, 663; 1H NMR (400 MHz, DMSO-
d6): 9.05 (1H, s), 8.48 (1H, s), 8.06 (1H, d, J = 8.9 Hz), 7.99 (1H, s), 7.61 (1H, d, J = 2.7 Hz),
7.49 (2H, d, J = 6.5 Hz), 7.36 (2H, q, J = 4.7, 3.5 Hz), 7.03 (1H, d, J = 8.7 Hz); 13C NMR
(100 MHz, DMSO-d6): 152.23, 149.45, 144.41, 136.60, 135.09, 133.82, 131.25, 130.43, 130.30,
130.23, 127.53, 127.28, 125.88, 120.59, 118.16, 118.09, 95.81. Anal. Calcd for C17H10Cl3N3O2;
C 51.74; H 2.55; N 10.65%. Found C 50.9; H 1.9; N 10.1.%.

6-Bromo-2-(2,4-dichlorophenyl)-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3g). Yield
89%, white crystals (ethanol), mp 195–197 ◦C. IR (ν/cm−1): 3628, 3040, 2767, 2309, 1646,
1560, 1476, 1376, 1280, 1240, 1126, 1099, 994, 892, 825, 781, 731, 699; 1H NMR (400 MHz,
DMSO-d6): 9.16 (1H, s, broad), 8.48 (1H, s), 8.03–7.96 (1H, m), 7.93 (s, 1H), 7.66 (1H,
d, J = 2.6 Hz), 7.44 (3H, dt, J = 9.2, 2.6 Hz), 7.28 (1H, s), 6.93 (1H, d, J = 8.7 Hz); 13C
NMR (100 MHz, DMSO-d6): 151.96, 149.82, 144.42, 136.33, 135.26, 133.70, 133.30, 131.12,
130.47, 130.37, 130.04, 128.79, 127.27, 120.89, 118.59, 113.59, 95.74. Anal. Calcd for
C17H10BrCl2N3O2 C 46.50; H 2.30; N 9.57%. Found C 46.0; H 1.9; N 9.1.%.

2-(2,4-Dichlorophenyl)-6-nitro-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3h). Yield
25%, white crystals (ethanol), mp 193–195 ◦C. IR (ν/cm−1): 3660, 3114, 2989, 1660, 1584,
1481, 1340, 1259, 1251, 1129, 1088, 1000, 898, 825, 784, 677, 663; 1H NMR (DMSO-d6,
400 MHz): 9.43 (1H, s), 8.55 (1H, s), 8.51 (1H, s), 8.21 (1H, d, J = 7 Hz), 8.08 (1H, d, J = 9 Hz),
8.01 (1H, s), 7.59 (1H, s), 7.51 (1H, s), 7.51 (1H, d, J = 8 Hz), 7.22 (1H, d, J = 10 Hz); 13C NMR
(DMSO-d6, 100 MHz): 155.8, 152.4, 146.6, 142.3, 136.0, 135.4, 133.8, 131.3, 130.7, 130.5, 127.4,
126.3, 124.2, 119.3, 118.0, 117.2, 96.8. Anal. Calcd for C17H10Cl2N4O4; C, 50.39; H, 2.49; N,
13.83%. Found C, 50.1; H, 2.0; N, 13.5%.

2-(2,4-Dichlorophenyl)-6-phenyl-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3i). Yield
40%, white crystals (ethanol), mp 191–193 ◦C. IR (ν/cm−1): 3165, 3061, 2990, 1652, 1509,
1477, 1434, 1283, 1249, 1232, 1147, 1056, 987, 874, 760, 699, 672; 1H NMR (400 MHz, DMSO-
d6): 8.9 (1H, s, broad), 8.50 (1H, s), 8.11- 8.06 (1H, m), 7.9 (1H, s), 7.83 (1H, d, J = 2.2 Hz),
7.7 (1H, d, J = 7.3 Hz), 7.6 (2H, dd, J = 8.5, 2.3 Hz), 7.53–7.46 (3H, m), 7.4 (1H, s), 7.40–7.33
(m, 2H), 7.11 (1H, d, J = 8.5 Hz); 13C NMR (101 MHz, DMSO-d6): 152.1, 150.4, 144.3, 139.9,
136.9, 134.9, 134.5, 133.9, 131.3, 130.4, 129.7, 129.4, 129.1, 128.8, 127.6, 127.2, 126.8, 126.6,
119.4, 116.8, 95.9. Anal. Calcd for C23H15Cl2N3O2 C 63.32; H 3.47; N 9.63%. Found C 62.8;
H 2.9; N 9.1%.

2-tert-Butyl-6-phenyl-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3j). Yield 67%, white
crystals (benzene), mp 220 ◦C. IR (ν/cm−1): 3309, 2974, 1610, 1508, 1481, 1456, 1426, 1293,
1260, 1202, 1138, 1113, 1063,987, 891, 825, 764,692, 677; 1H NMR (DMSO-d6, 400 MHz): 8.72
(1H, s), 8.21 (1H, s), 8.1 (1H, s), 7.67 (2H, d, J = 2.3 Hz), 7.63 (2H, dd, J1 = 8.3 Hz, J2 = 1.3 Hz),
7.58 (1H, dd, J1 = 8.5 Hz, J2 = 2.3 Hz), 7.45 (2H, t, J = 8.0 Hz), 7.33 (1H, d, J = 7.4 Hz), 7.23
(1H,s), 7.02 (1H, d, J = 8.5 Hz), 0.84 (9H, s); 13C NMR (DMSO-d6, 100 MHz): 152.7, 151.9,
145.2, 139.9, 133.4, 130.3, 129.4, 129.2, 128.8, 127.4, 126.6, 126.2, 123.2, 119.3, 115.3, 104.0,
42.9, 24.7. Anal. Calcd for C21H21N3O2; C, 72.60; H, 6.09; N, 12.10.%. Found 71.8.3; H 5.8;
N 11.6.%. MS: calcd for m/z 347.41, found 347.1.

2-tert-Butyl-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3k). Yield 70%, white crystals
(ether), mp 150–151 ◦C. IR (ν/cm−1): 3068, 2977, 1631, 1508, 1485, 1459, 1411, 1284, 1233,
1156, 1125, 1062, 997, 875, 759, 749, 673, 653; 1H NMR (DMSO-d6, 400 MHz): 8.69 (1H,
s),8.18 (1H, s), 8.0 (1H, s, broad), 7.28 (1H, dd, J1 = 7,4Hz, J2 = 0.8Hz), 7.25 (1H, td, J = 7.8 Hz,
J = 1.4 Hz), 7.10 (1H, s), 6.9 (1H, td, J = 7.4 Hz, J = 0.8 Hz), 6.89 (1H, d, J = 8.2 Hz), 0.7 (9H, s);
13C NMR (DMSO-d6, 100 MHz): 152.9, 151.8, 145.1, 131.1, 129.8, 128.3, 121.4, 123.3, 118.7,
114.8, 103.8, 42.9, 24.6. Anal. Calcd for C15H17N3O2; C 66.41; H 6.32; N 15.49%. Found 67.3;
H 6.00; N 14.82.%. MS: calcd for m/z [C15H17N3O2]+ 271.31, found 214.0 [M-C(CH3)3].

2-tert-Butyl-6-nitro-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3l). Yield 40%, yellow
crystals (ethanol), mp 173–175◦C. IR (ν/cm−1): 3164, 2982, 1665, 1503, 1483, 1445, 1338,
1273, 1131, 1091, 1064, 971, 883, 751, 728, 663; 1H NMR (DMSO-d6, 400 MHz): 8.72 (1H, s),
8.68 (1H, s, broad), 8.27 (1H, d, J = 2.2 Hz), 8.20 (1H, s), 8.13 (1H, d, J1 = 9.0 Hz, J2 = 2.8 Hz),
7.30 (1H, s), 7.1 (1H, d, J = 9.0 Hz), 0.74 (9H, s); 13C NMR (DMSO-d6, 100 MHz): 158.3,
152.5, 145.2, 141.4, 131.5, 126.8, 123.9, 121.5, 119.2, 115.9, 105.5, 43.0, 24.5. Anal. Calcd for
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C15H16N4O2; C 56.96; H 5.10; N 15.18.%. Found C 55.3; H 4.8; N 14.82.%. MS: calcd for
m/z [C15H16N4O2]+ 316.31, found 259.0 [M-C(CH3)3].

2-tert-Butyl-6-chloro-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3m). Yield 56%, white
crystals (ethanol), mp 160–161◦C. IR (ν/cm−1): 3297, 3060, 2964, 1645, 1505, 1480, 1468, 1428,
1279, 1233, 1144, 1118, 1063, 971, 873, 799, 731, 677, 661; 1H NMR (DMSO-d6, 400 MHz):
8.7 (1H, s), 8.26 (1H, s, broad), 8.18 (1H, s), 7.38 (1H, d, J = 1,6 Hz); 7.26 (1H, dd, 1H,
J1 = 8.06 Hz, J2 = 2.6 Hz), 7.12 (1H, s), 6.93 (1H, d, J = 8.6 Hz), 0.73 (9H, s); 13C NMR
(DMSO-d6, 100 MHz): 151.8, 151.7, 145.1, 130.8, 130.5, 127.2, 124.9, 122.0, 120.4, 116.7, 104.2,
43.0, 24.5. Anal. Calcd for C15H16ClN3O2; C 58.92; H 5.27; N 13.74%. Found C 58.1; H 4.8;
N 13.1.%. MS: calcd for m/z 305.76, found 305.0.

6-Bromo-2-tert-butyl-3-(1H-1,2,4-triazole-1-yl)-2H-chromen-2-ol (3n). Yield 70%, white
crystals (ethanol), mp 182–183◦C. IR (ν/cm−1): 3357, 3063, 2978, 1659, 1502, 1480, 1430, 1284,
1235, 1130, 1055, 1000, 970, 831, 731, 661; 1H NMR (DMSO-d6, 400 MHz): 8.7 (1H, s), 8.27
(1H, s, broad), 8.17 (1H, s), 7.47 (1H, d, J = 2.0 Hz), 7.37 (1H, dd, 1H, J1 = 8.6 Hz, J2 = 2.4 Hz),
7.10 (1H, s), 6.86 (1H, d, J = 8.6 Hz), 0.73 (9H, s); 13C NMR (DMSO-d6, 100 MHz): 152.2,
151.8, 145.1, 133.4, 130.7, 130.0, 122.0, 121.0, 117.2, 112.4, 104.2, 43.0, 24.5. Anal. Calcd for
C15H16BrN3O2; C 51.44; H 4.60; N 12.00.Found C 50.9; H 4.1; N 11.8.%. MS: calcd for m/z
350.21, found 351.1.

3.2. Crystallographic Study

Diffraction measurements for single-crystal X-ray analysis of compound 3h were
carried out on an Xcalibur E diffractometer (Cambridge, Great Britain) equipped with
a CCD area detector and a graphite monochromator utilizing MoKα radiation at room
temperature. All calculations to solve and refine the structure were carried out with
the programs SHELXS-97 and SHELXL-2014 [60,61]. Non-hydrogen atoms were refined
anisotropically. Positions of H atoms were calculated geometrically and refined isotropi-
cally using a rigid-body model. The 1,3-dichlorobenzene moiety of the 3h molecule was
found to be disordered in the structure over two coplanar positions with probabilities of
their occupancy 0.591(3):0.409(3). The structure was refined using 3079 (R(int) = 0.0512)
independent reflections to R1 = 0.0630 and wR2 = 0.0727 for 1478 reflections with I > 2σ(I)
and GOF = 1.003. The maximum and minimum residual electron densities in the difference
synthesis were 0.196 and −0.277eÅ–3. Crystallographic data were deposited with The
Cambridge Crystallographic Data Centre, CCDC 2033740, and may be obtained free of
charge from The Cambridge Crystallographic Data Centre.

3.3. PASS Predictions and Similarity Assessment

The online version of the computer program PASS (Prediction of Activity Spectra for
Substances) [56,57] predicts about 4000 biological activities with an average accuracy of
about 95%. Thousands of researchers widely use it from over 100 countries to identify the
most promising directions of biological testing of the designed and synthesized compounds.
Structural formulae of compounds presented as MOL or SDF files are used as input data.
Predictions are presented as a list of probable activities with two probabilities that reflect
the chance of compounds belonging to active (Pa) and inactive (Pi) classes. A high Pa value
could be obtained for the compounds with close analogs in the PASS training set. If, for a
particular activity, the Pa value is less than 0.5, the compound does not have close analogs
with this activity in the PASS training set.

The Cortellis Drug Discovery Intelligence database [58] is one of the most comprehen-
sive informational sources continually curated and updated by the skilled team manually
annotated data about pharmaceutical research and development performed worldwide.
Currently, the CDDI includes more than 500 thousand chemical structures of pharmaceuti-
cal agents under different biological testing stages. Chemical similarity search in the CDDI
database allows identifying at different cutoff values (from 60 to 100%) the close analogs of
the structure used as a query if such analogs are found.
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3.4. Biological Evaluation: Antifungal Activity

The microdilution method was used to evaluate anti-fungal properties of the new
chromenol–triazole hybrids, following methods described in our earlier study [62]. Fungi,
namely, Aspergillus fumigatus (human isolate), Aspergillus ochraceus (ATCC 12066), As-
pergillus niger (ATCC 6275), Aspergillus versicolor (ATCC 11730), Trichoderma viride (IAM
5061), Penicillium funiculosum (ATCC 36839), Penicillium ochrochloron (ATCC 9112) and
Penicillium verrucosum var. cyclopium (food isolate), were used to investigate the anti-fungal
properties of the new chromenol–triazole hybrids. Anti-microbial results were reported as
minimum inhibitory (MIC) and minimum fungicidal (MFC) concentrations. Bifonazole and
ketoconazole were used as positive controls for anti-fungal evaluation. All experiments
were performed in duplicate and repeated three times.

3.5. Molecular Docking

The program AutoDock 4.2® software [63] was used for the docking stimulation.
The free energy of binding (∆G) of E. coli DNA GyrB, thymidylate kinase, E. coli MurA,
E. coli primase, E. coli MurB, DNA topoIV and CYP51 of C. albicans in a complex with
the inhibitors was generated using this molecular docking program. The X-ray crystal
structures data of all the enzymes used were obtained from the Protein Data Bank (PDB
1S16 and 5V5Z, respectively).

To prepare proteins, all water molecules were eliminated and polar hydrogens were
added, while for preparation of the inhibitors, charges were added and the rotatable
bonds determined. Grid maps were calculated utilizing the AutoGrid algorithm. Autogrid
Box was computed by the X-, Y- and Z-coordinates for each enzyme. Three-dimensional
structures of all compounds were constructed using ChemBio3D Ultra 12.0 software (Chem-
ical Structure Drawing Standard; PerkinElmer Informatics, Waltham, MA, USA). For the
present system, the Lamarckian genetic algorithm was applied for minimization, and the
following settings were used: initial population 300, 2,500,000 maximum energy ratings
and 27,000 as maximum generation. The pitch was 1.0 Å, while the quaternion and pivot
angle were set to 5.0 degrees. For each compound, 200 configurations were produced. The
results from the AutoDock calculations were grouped using an RMSD deviation value of
1.5 Å, while the lowest-energy configuration of the largest population group was chosen as
the most likely tethering configuration. The discovery studio 2017 R2 silent and Ligand-
Scout were used to display the results and process the configurations with the highest tie
rating [64]. Finally, the docking process methodology was first validated by redocking all
the co-crystalized original ligands in the active sites of all enzymes with deviation (RMSD)
values from 0.86 to 1.63 Å.

3.6. In Silico Predictive Studies

Drug-likeness is one of the qualitative ideas employed for predicting drug-like prop-
erty. It is designated as an intricate balance of diverse molecular and structural features
which plays a pivotal task in establishing whether the specific drug candidate is alike
the known drugs or not. The targeted molecules were appraised for predicting the drug-
likeness based on 5 separate filters namely Egan [65], Ghose [66], Muegge [67], Veber [68]
and Lipinski [69] rules, accompanying bioavailability and drug-likeness scores using the
Molsoft software and SwissADME program (http://swissadme.ch, accessed on 7 July 2021)
using the ChemAxon’s Marvin JS structure drawing tool.

3.7. Cytotoxicity Experiments

CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay (Promega Corpo-
ration, Madison, WI, USA) was performed to evaluate the in vitro effects of evaluated
compounds in two cell lines. Cancerous MCF7/S0.5 cells, developed to grow in a low-sera
environment, and non-cancerous HK-2 renal cells were used for these purposes. MCF7/S0.5
cells were cultivated as specified in our previous paper [70] and HK-2 cells were cultivated
in high-glucose Dulbecco’s Modified Eagle Medium (DMEM) complemented with 10%

http://swissadme.ch
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FBS and 2 mM L-glutamine. The assay is based in the reduction in a tetrazolium salt which
happens only in the mitochondria of viable cells. Experiments were performed according
to manufacturer indications as specified previously [66]. Briefly, cells were treated with
the test compounds at concentrations of 100 and 50 µM, negative control (SDS 10%) or
vehicle (DMSO 0.1%) for 48 h in 96-well plates. After incubation period, MTS reagent was
added to each well and incubated for further 3 h. Absorbance was measured at 490 nm
using a plate reader (Hidex Sense Beta Plus plate reader, Hidex Turku, Finland). Results
are expressed as the relative cell viability, considering vehicle to have 100% viability.

4. Conclusions

We performed, for the first time, the synthesis of 1H-1,2,4-triazole-functionalized
chromenols via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic
aldehydes and the evaluation of their antifungal activity. The antifungal activity evalu-
ation was performed by a microdilution assay using, as reference, drugs bifonazole and
ketoconazole. The best activity was achieved for compound 3k. The most sensitive fungal
compounds tested were T. viride, whereas A. fumigatus was the most resistant one. It should
be mentioned that almost all compounds, except for 3e, 3j and 3l, against P.v.c appeared to
be more potent than ketoconazole against all fungi tested, while many compounds were
even more active than bifonazole against all fungi tested. Compound 3k was found to be
32-fold more active than ketoconazole and 16 times more than bifonazole.

PASS predictions demonstrated that the compounds under study have a low structural
similarity with the antivirals included in the training set. This conclusion was confirmed
by the similarity search in the CDDI database: at the 70% similarity cutoff, no close analog
was identified among the 580,000 pharmacological substances. Thus, the synthesized
chromenol derivatives have a very high innovative potential in the pharmaceutical field.

According to molecular docking studies, it seems that the inhibition of 14α-demethylase
of C. albicans (CYP51) was involved in the mechanism of antifungal activity of compounds
tested. Biological experiments have shown that the compound 3k is not toxic to cells.
Finally, we can state that the derivative 3k can be the lead compound for further discovery
of more potent antifungal agents.

Supplementary Materials: The following are available online: The copies of 1H NMR and 13C NMR
spectra for all new synthesized compounds.
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