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Abstract: Magnolol (MAG), a biphenolic neolignan, has various biological activities including
antitumor effects. In this study, 15 MAG derivatives were semi-synthesized and evaluated for their
in vitro anticancer activities. From these derivatives, compound 6a exhibited the best cytotoxic
activity against four human cancer cell lines, with IC50 values ranging from 20.43 to 28.27 µM.
Wound-healing and transwell assays showed that compound 6a significantly inhibited the migration
and invasion of MDA-MB-231 cells. In addition, Western blotting experiments, performed using
various concentrations of 6a, demonstrated that it downregulates the expression of HIF-1α, MMP-2,
and MMP-9 in a concentration-dependent manner. Overall, these results suggest that substituting
a benzyl group having F atoms substituted at the C2 position on MAG is a viable strategy for the
structural optimization of MAG derivatives as anticancer agents.

Keywords: magnolol; semi-synthesis; cytotoxicity; migration; invasion

1. Introduction

Triple-negative breast cancer (TNBC) is defined by a lack of expression of the estrogen
receptor, epidermal growth factor receptor-2, and progesterone receptor-2. TNBC shows a
higher rate of distant recurrence and metastasis, as well as a poorer prognosis, than other
breast cancer subtypes [1,2]. Moreover, TNBC lacks standardized treatment guidelines
and effective drugs [3]. For these reasons, anti-TNBC agents with high efficiency and low
toxicity are needed. In contrast to chemotherapy, natural products have many advan-
tages, such as low toxicity and side effects, multiple targets, and reversal of cancer-drug
resistance [4,5].

Natural products play an important role in the research and development of new
drugs [6,7]. Natural products can have many advantages over chemotherapy, such
as low toxicity, low side effects, multiple targets, and reversal of resistance to cancer
drugs. Magnolol (MAG, 5,5′-diallyl-2,2′-dihydroxybiphenyl), a lignan isolated mainly from
Magnolia officinalis, Rehder & E.H. Wilson (“Hou Po” in Chinese) [8], exhibits a huge range
of biological activities such as anti-inflammatory [9], neuroprotective [10], antibacterial [11],
antioxidant [12], and antitumor [13] effects. In addition, many recent studies have shown
that MAG can inhibit the proliferation, migration, metastasis, and angiogenesis of various
cancer cell lines [14–17], suggesting that MAG has potential as a lead compound for the
discovery of anticancer agents.

Previous studies have shown that a series of MAG derivatives showed better cytotoxic
activity than MAG itself [18–22]. These results indicated that free phenolic hydroxyl
groups and hydrophobic side chains are the necessary active groups for magnolol to exert
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antitumor effects. However, in a previous study we showed that monosubstitution of
a benzyl group with Cl atoms at the phenolic hydroxyl group of honokiol significantly
improved the cytotoxic activity of honokiol against cancer cells [23]. In this study, we
modified the phenolic hydroxyl of MAG to obtain a series of novel MAG derivatives and
examined the cytotoxic activity of these derivatives against four human cancer cell lines, as
well as their inhibition of the migration and invasion of MDA-MB-231 cells.

2. Results and Discussion
2.1. Synthesis and Characterization of the Derivatives

A series of 15 MAG derivatives were designed and synthesized using MAG as the
starting material (Scheme 1.). Methyl, ethyl, benzyl, 2-fluorobenzyl, 3-fluorobenzyl, 4-
fluorobenzyl, 2-chlorobenzyl, 3-chlorobenzyl, and 4-chlorobenzyl were substituted on
the phenol groups of MAG via the Williamson reaction to obtain monosubstituted prod-
ucts 1a–9a and disubstituted derivatives 1b–6b. The chemical structures of the MAG
derivatives were characterized using 1H-NMR, 13C-NMR, ESI-MS, and HR-ESI-MS. (see
Supplementary Materials).
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Scheme 1. Synthetic routes for magnolol derivatives.

2.2. In Vitro Cytotoxic Activity

All synthesized derivatives were evaluated for their in vitro cytotoxic activity against
four human cancer cell lines using the MTT assay with Taxol as a positive control. The
inhibited cell growth to 50% of the control (IC50) was determined for the compounds, and
the results are summarized in Table 1. Compounds 1a–9a all exhibited cytotoxic activity
against one or more types of cancer cell lines. Compounds 3a, 4a, 5a, and 6a had better
cytotoxic activity against all four human cancer cell lines than compounds 2a or 7a–9a,
with IC50 values ranging from 20.43 to 30.21 µM. Compound 6a showed the best cytotoxic
activity against the human TNBC MDA-MB-231 cell line with an IC50 value of 20.43 µM,
which indicates 6a was approximately 2.5 times stronger than magnolol.
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Table 1. Cytotoxic activity of magnolol derivatives (IC50, µM, 72 h).

Compound IC50 Values (µM)

MDA-MB-231 a MCF-7 b CNE-2Z c SMMC-7721 d

1a >50 e 34.7 ± 0.87 f 45.87 ± 0.51 >50
1b >50 >50 >50 >50
2a >50 29.76 ± 1.06 47 ± 1.29 44.49 ± 4.41
2b >50 >50 >50 >50
3a 22.85 ± 2.15 26.32 ± 2.39 25.85 ± 4.47 30.21 ± 3.06
3b >50 >50 >50 >50
4a 26.95 ± 1.04 26.77 ± 2.12 27.2 ± 2.31 28.08 ± 3.64
4b >50 >50 >50 >50
5a 24.51 ± 0.62 23.61 ± 1.03 27.81 ± 2.74 27.94 ± 1.08
5b >50 >50 >50 >50
6a 20.43 ± 2.17 28.27 ± 2.89 22.35 ± 2.55 23.07 ± 1.95
6b >50 >50 36.47 ± 4.20 >50
7a >50 32.83 ± 0.28 45.06 ± 2.69 34.35 ± 4.00
8a 48.93 ± 4.49 30.90 ± 0.47 46.64 ± 0.69 32.97 ± 5.39
9a >50 30.65 ± 0.98 36.95 ± 0.56 32.30 ± 1.59

MAG 54.70 ± 0.95 46.37 ± 1.75 57.52 ± 3.22 58.24 ± 4.78
Taxol 0.69 ± 0.06 0.43 ± 0.04 1.71 ± 0.19 0.22 ± 0.03

a: MDA-MB-231: human breast cancer cells; b: MCF-7: human breast cancer cells; c: CNE-2Z: human nasopharyn-
geal carcinoma cells; d: SMMC-7721: human breast cancer cells; e: No inhibitory activity at 50 µM; f: The half
maximal inhibitory concentration ± standard deviation (SD).

The preliminary structure–activity relationship (SAR) study suggested that O-alkylation
of the 2-OH or 2′-OH group of MAG improved cytotoxic activity against MCF-7, CNE-2Z,
and SMMC-7721 cells, while both 2-OH and 2′-OH alkylated derivatives were inactive
at 50 µM. Therefore, the hydroxyl group of MAG may be one of the active groups for
cytotoxic activity. Moreover, the substituents on the benzyl ring had a significant influence
on the cytotoxic activity of the derivatives for MDA-MB-231 cells. The activities of the
F-substituted derivatives (4a, 5a, and 6a) were stronger than those of the Cl-substituted
derivatives. Compound 3a, which does not bear any substitution on the benzene ring,
showed good cytotoxic activity against MDA-MB-231 cells.

2.3. Preliminary Screening of the Inhibitory Effect on MDA-MB-231 Cell Migration

Tumor cell migration is an important event in the invasion and metastatic cascade of
cancer [24]. In the preliminary screening, wound-healing assays indicated that compounds
5a, 6a, and 9a exhibited significant inhibitory effects on MDA-MB-231 cell migration at a
concentration of 10 mm (Figure 1). As shown in Figure 2, transwell assays indicated that
compounds 2a–6a, 8a, and 9a also showed potent inhibitory activities on the migration
of MDA-MB-231 cells compared with MAG. Preliminary screening results showed that
compound 6a had the best anti-migration activity of the MAG derivatives. Therefore,
compound 6a was selected for further experiments.

2.4. Anti-Proliferative Activity of Compound 6a in MDA-MB-231 Cells

To understand the anticancer activity of 6a, MDA-MB-231 cells were treated with
increasing concentrations of the compound (0, 10, 20, 30, 40, and 50 µM) for 24, 48, and 72 h,
and cell proliferation was measured using an MTT assay. As shown in Figure 3, 6a showed
significant antiproliferative activity on MDA-MB-231 cells in a time and concentration-
dependent manner. When the concentration of 6a was increased to 50 µM, cell proliferation
was almost completely inhibited. Therefore, 5, 10, and 20 µM 6a were used in subsequent
experiments.
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Figure 1. Preliminary screening of the effects of the MAG derivatives on the migration of MDA-MB-231 cells by a wound-
healing assay. (A) MDA-MB-231 cells were seeded in a 6-well plate at a density of 6 × 105 cells per well and exposed to
the MAG derivatives (10 µM) for 24 h. (B) Quantification analysis presented as the mean ± standard deviation. * p < 0.05
(n = 3).

2.5. Suppressed Migration and Invasion of MDA-MB-231 Cells by Compound 6a

Tumor invasion and metastasis are the causes of poor prognosis and survival in
patients with breast cancer [25,26]. Therefore, controlling invasion and metastasis is an
important therapeutic strategy for TNBC [27]. We examined the effects of compound 6a
on human MDA-MB-231 TNBC cells. The migration and invasion of MDA-MB-231 cells
decreased as the concentration of 6a increased, indicating that 6a significantly suppressed
the migration and invasion of the cells in a concentration-dependent manner (Figure 4A,B).

Hypoxia is a common feature in many solid tumors that promotes cancer invasion,
metastasis, epithelial-mesenchymal transition, and angiogenesis via hypoxia inducible
factor-1α (HIF-1α) [28–31]. This key hypoxic regulator is highly expressed in breast
cancer and facilitates tumor migration and invasion through matrix metalloproteinases
(MMPs) [32]. Western blotting showed that treatment with 6a significantly downregulated
HIF-1α and its downstream proteins MMP-2 and MMP-9 (Figure 4C). These results indi-
cated that 6a suppressed the migration and invasion of MDA-MB-231 cells regulated by
HIF-1α.

In our previous work, we found that the benzyl group substituted with two Cl atoms
at phenolic hydroxyl group of honokiol, the isomer of MAG, can significantly improve
the anti-proliferative activity [23]. In this study, we found that the 2-OH or 2′-OH of
MAG replaced by Cl-substituted benzyl group can also improve the anti-proliferative
activity (30 µM vs. 46 µM against MCF-7). Moreover, several studies have shown that
selective introduction of fluorine elements into a therapeutic or diagnostic small molecule
candidate can improve a number of pharmacokinetic and physicochemical properties
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such as metabolic stability and membrane permeation [33–35]. Herein, the synthesis of
MAG derivatives with F-substituted benzyl group further confirmed that with greater
performance in anti-proliferative, anti-migratory and anti-invasive experiments than the
Cl-substituted derivatives; and the anti-proliferative activity of products with the phenolic
hydroxyl group replaced by benzyl group substituted with two F atoms will be expected.
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Figure 4. Effects of compound 6a on the migration and invasion of human triple-negative MDA-MB-231 breast cells by
transwell assays. (A) MDA-MB-231 cells were seeded into a transwell chamber and exposed to 6a (0, 5, 10, and 20 µM) for
24 h to evaluate the migration activity; MDA-MB-231 cells were also seeded into a Matrigel-coated transwell chamber and
exposed to 6a (0, 5, 10, and 20 µM) for 36 h to evaluate the invasion activity (original magnification 200×). (B) Quantification
analysis presented as the mean ± standard deviation. ** p < 0.01, * p < 0.05 vs. control (n = 3). (C) Western blotting analyses
of HIF-1α, MMP-2, and MMP-9 protein levels in MDA-MB-231 cells treated with various concentrations (0, 10, 20, and
40 µM) of 6a for 24 h. β-Actin was used as an internal control.

3. Materials and Methods
3.1. General Information

All reagents were commercially available and used without further purification. MAG
was purchased from Xinmingtai Chemical Co., Ltd. (Wuhan, China). All reactions were
monitored by thin-layer chromatography on silica gel F254 (Qindao Haiyang Chemical
Co., Qindao, China). The products were purified by column chromatography (300–400
mesh silica gel, Qindao Haiyang Chemical Co., Qindao, China). All NMR spectra were
recorded on a Bruker Avance II 600 MHz instrument (Bruker, Billerica, MA, USA) using
CDCl3 or DMSO-d6 as the solvent with TMS as the internal standard. Chemical shifts (δ)
were reported in parts per million (ppm) and the coupling constants (J) were given in Hertz.
High-resolution electrospray ionization mass spectrometry (HR-ESI-MS) spectra were
recorded on a Thermo Scientific LTQ Orbitrap XL mass spectrometer (Bruker, Bremerhaven,
Germany) with electrospray ionization. Taxol was purchased from Shanghai yuanye Bio-
Technology Co., Ltd. (Shanghai, China, batch numbers: H15F10X80839). Anti-HIF-1α
antibodies were purchased from Abcam (Cambridge, UK, batch numbers: GR244245-51).
Anti-MMP-9 and MMP-2 antibodies were purchased from Proteintech Group (Chicago, IL,
USA, batch numbers of MMP-9: 00074416; batch numbers of MMP-2: 00066968).
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3.2. General Procedure for the Preparation of 1a–9a and 1b–6b

MAG (80 mg, 0.3 mM) was dissolved in N,N-dimethylformamide (DMF, 3 mL).
Sodium carbonate solution (10%, 2 mL) and the desired halohydrocarbon (0.75 mM) were
added and the mixture was stirred for 6 h in an oil bath at 65 ◦C. The reaction was quenched
with water and the crude product extracted with ethyl acetate (EtOAc) three times. The
combined extracts were dried over Na2SO4 and concentrated under reduced pressure.
The residue was purified using silica gel (300–400 mesh) column chromatography with a
petroleum ether:EtOAc (50:1 to 30:1) eluent to afford compounds 1a–9a and 1b–6b.

5,5′-Diallyl-2-methoxy-1,1′-biphenyl-2′-ol (1a). Yield: 48.1%, yellow oil, 1H-NMR (CD3OD,
500 MHz) δ 7.13 (1H, dd, J = 7.0, 1.9 Hz, H-4), 7.00 (1H, d, J = 1.9 Hz, H-3), 6.97 (1H, dd,
J = 6.9, 2.0 Hz, H-4′), 6.96 (1H, d, J = 6.9 Hz, H-6), 6.90 (1H, d, J = 1.9 Hz, H-3′), 6.78 (1H, d,
J = 6.9 Hz, H-6′), 5.96 (2H, m, H-8, H-8′), 5.07 (2H, m, H-9), 5.02 (2H, m, H-9′), 3.74 (3H, s,
H-10), 3.34 (2H, d, J = 5.6 Hz), 3.30 (2H, d, J = 5.3 Hz); 13C NMR (CD3OD, 125 MHz) δ 155.3
(C-2), 152.4 (C-2′), 138.1 (C-8′), 137.9 (C-8), 132.0 (C-5′), 131.4 (C-5), 131.1 (C-6′), 130.8 (C-6),
128.2 (C-4′), 128.1 (C-4), 127.8 (C-1), 126.1 (C-1′), 115.4 (C-3′), 114.2 (C-9′), 114.0 (C-9), 111.2
(C-3), 54.9 (C-10), 39.0 (C-7, C-7′); ESIMS: m/z 281.17 [M + H]+.

5,5′-Diallyl-2,2′-dimethoxy-1,1′-biphenyl (1b). Yield: 20.9%, yellow oil, 1H-NMR (CD3OD,
500 MHz) δ 7.10 (2H, dd, J = 7.1, 2.0 Hz, H-4, H-4′), 6.92 (2H, d, J = 1.1 Hz, H-6, H-6′), 6.91
(2H, d, J = 3.9 Hz, H-3, H-3′), 5.96 (2H, m, H-8, H-8′), 5.03 (4H, m, H-9, H-9′), 3.69 (6H, s,
H-10, H-10′), 3.32 (4H, d, J = 5.6 Hz, H-7, H-7′); 13C NMR (CD3OD, 125 MHz): δ 155.5 (C-2,
C-2′), 137.9 (C-8, C-8′), 131.6 (C-5, C-5′), 131.1 (C-6, C-6′), 128.1 (C-4, C-4′), 128.0 (C-1, C-1′),
114.2 (C-9, C-9′), 110.9 (C-3, C-3′), 54.8 (C-10, C-10′), 38.9 (C-7, C-7′); ESIMS: m/z 295.18
[M + H]+.

5,5′-Diallyl-2-ethoxy-1,1′-biphenyl-2′-ol (2a). Yield: 73.6%, yellow oil, 1H-NMR (DMSO-
d6, 500 MHz): δ 8.86 (1H, s, –OH), 7.07 (1H, d, J = 2.4 Hz, H-6), 7.05 (1H, d, J = 2.3 Hz, H-6′),
6.95 (1H, d, J = 8.4 Hz, H-3), 6.95 (1H, dd, J = 2.3, 2.3 Hz, H-4), 6.90 (1H, dd, J = 2.4, 2.3 Hz,
H-4′), 6.79 (1H, d, J = 8.1 Hz, H-3′), 5.94 (2H, m, H-8, H-8′), 5.05 (4H, m, H-9, H-9′), 3.96
(2H, q, J = 7.0 Hz, H-10), 3.30 (4H, d, J = 6.8 Hz, H-7, H-7′), 1.17 (3H, t, J = 6.9 Hz, H-11);
13C NMR (DMSO-d6, 125 MHz): δ 154.3 (C-2), 152.8 (C-2′), 138.3 (C-8′), 138.1 (C-8), 131.4
(C-5′), 131.3 (C-5), 131.0 (C-6′), 129.2 (C-6), 128.0 (C-4′), 127.9 (C-1, C-4), 125.4 (C-1′), 115.4
(C-9, C-9′), 115.2 (C-3′), 112.8 (C-3), 63.6 (C-10), 38.7 (C-7, C-7′), 14.7 (C-11); ESIMS: m/z
317.15 [M + Na]+.

5,5′-Diallyl-2,2′-diethoxy-1,1′-biphenyl (2b). Yield: 6.8%, yellow oil, 1H-NMR (DMSO-d6,
500 MHz): δ 7.07 (2H, dd, J = 8.3, 2.0 Hz, H-4, H-4′), 6.94 (2H, d, J = 8.3 Hz, H-3, H-3′), 6.94
(2H, s, H-6, H-6′), 5.95 (2H, m, H-8, H-8′), 5.05 (4H, m, H-9, H-9′), 3.95 (4H, q, J = 7.0 Hz,
H-10, H-10′), 3.31 (4H, d, J = 6.8 Hz, H-7, H-7′), 1.17 (6H, t, J = 6.9 Hz, H-11, H-11′); 13C
NMR (DMSO-d6, 125 MHz): δ 154.3 (C-2, C-2′), 138.1 (C-8, C-8′), 131.2 (C-5, C-5′), 130.9
(C-6, C-6′), 128.1 (C-4, C-4′), 127.6 (C-1, C-1′), 115.4 (C-9, C-9′), 112.2 (C-3, C-3′), 63.3 (C-10,
C-10′), 38.6 (C-7, C-7′), 14.7 (C-11, C-11′); ESIMS: m/z 345.18 [M + Na]+.

5,5′-Diallyl-2-benzyloxy-1,1′-biphenyl-2′-ol (3a). Yield: 68.8%, pale yellow oil, 1H-NMR
(DMSO-d6, 500 MHz): δ 9.04 (1H, s, –OH), 7.31 (5H, m, Ar-H), 7.08 (1H, m, H-3), 7.02 (2H,
m, H-6, H-6′), 6.94 (2H, dd, J = 5.7, 2.3 Hz, H-4, H-4′), 6.83 (1H, m, H-3′), 5.93 (2H, m, H-8,
H-8′), 5.09 (2H, d, J = 17.1 Hz, H-9), 5.03 (2H, s, H-10), 5.00 (2H, d, J = 11.0 Hz, H-9′), 3.32
(2H, d, J = 6.8 Hz, H-7), 3.26 (2H, d, J = 6.7 Hz, H-7′); 13C NMR (DMSO-d6, 125 MHz): δ
154.0 (C-2′), 152.9 (C-2), 138.2 (C-8′), 138.0 (C-8), 137.5 (C-11), 131.4 (C-5′), 131.3 (C-5, C-6′),
129.2 (C-6), 128.1 (C-4, C-13, C-15, C-4′), 127.9 (C-1), 127.4 (C-14), 127.0 (C-12, C-16, C-1′),
115.5 (C-9′), 115.3 (C-3′), 115.2 (C-9), 112.9 (C-3), 69.4 (C-10), 38.7 (C-7, C-7′); HRESIMS:
calcd. for C25H24O2Na+ [M + Na]+ 379.1669, found 379.1673.

5,5′-Diallyl-2,2′-bis (benzyloxy)-1,1′-biphenyl (3b). Yield: 6.74%, rhombic white crystal;
1H-NMR (DMSO-d6, 500 MHz): δ 7.25 (10H, m, Ar-H), 7.10 (2H, dd, J = 8.3, 2.2 Hz, H-4,
H-4′), 7.06 (2H, s, H-6, H-6′), 7.05 (2H, d, J = 8.4 Hz, H-3, H-3′), 5.96 (2H, m, H-8, H-8′), 5.04
(4H, m, H-9, H-9′), 5.01 (4H, s, H-10, H-10′), 3.32 (4H, d, J = 6.8 Hz, H-7, H-7′); 13C NMR
(DMSO-d6, 125 MHz): δ 154.0 (C-2, C-2′), 138.0 (C-11, C-11′), 137.4 (C-8, C-8′), 131.4 (C-5,
C-5′), 131.3 (C-6, C-6′), 128.3 (C-4, C-4′), 128.2 (C-13, C-15, C-13′, C-15′), 127.5 (C-14, C-14′),
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127.4 (C-1, C-1′), 126.9 (C-12, C-16, C-12′, C-16′), 115.5 (C-9, C-9′), 112.8 (C-3, C-3′), 69.4
(C-10, C-10′), 38.7 (C-7, C-7′); HRESIMS: calcd. for C32H30O2Na+ [M + H]+ 447.2283, found
447.2280.

5,5′-Diallyl-2-((2-fluorobenzyl)oxy)-1,1′-biphenyl-2′-ol (4a). Yield: 62.3%, pale yellow oils;
1H-NMR (DMSO-d6, 500 MHz): δ 9.03 (1H, s, –OH), 7.39 (1H, m, H-13), 7.34 (1H, m, H-14),
7.18 (1H, m, H-4′), 7.14 (1H, m, H-3), 7.08 (1H, m, H-15), 7.07 (1H, m, H-6), 7.03 (1H, m,
H-6′), 6.92 (2H, m, H-4, H-16), 6.81 (1H, m, H-3′), 5.92 (2H, m, H-8, H-8′), 5.09 (2H, m, H-9),
5.08 (2H, s, H-10), 5.03 (2H, m, H-9′), 3.33 (2H, d, J = 6.8 Hz, H-7), 3.24 (2H, d, J = 6.7 Hz,
H-7′); 13C NMR (DMSO-d6, 125 MHz): δ 158.8 (d, 1JCF = 243.7 Hz, C-12), 153.8 (C-2′), 152.9
(C-2), 138.2 (C-8′, C-8), 138.0 (C-5′), 131.6 (C-5), 131.5 (C-6′), 131.3 (C-6), 129.7 (d, 3JCF = 4.1
Hz, C-14), 129.6 (C-4′), 129.2 (C-4), 128.1 (d, 3JCF = 4.9 Hz, C-16), 128.0 (d, 2JCF = 12.2 Hz,
C-11), 125.0 (C-1), 124.4 (C-1′), 124.3 (d, 4JCF = 3.2 Hz, C-15), 115.5 (C-3′), 115.4 (C-9′), 115.2
(C-9), 115.1 (d, 2JCF = 20.8 Hz, C-13), 112.9 (C-3), 63.6 (d, 3JCF = 4.0 Hz, C-10), 38.7 (C-7,
C-7′); HRESIMS: calcd. for C25H23FO2Na+ [M + Na]+ 397.1574, found 397.1574.

5,5′-Diallyl-2,2′-bis ((2-fluorobenzyl)oxy)-1,1′-biphenyl (4b). Yield: 5.6%, pale yellow oils;
1H-NMR (DMSO-d6, 500 MHz): δ 7.33 (2H, m, H-14, H-14′), 7.25 (2H, m, H-13, H-13′),
7.17 (2H, m, H-16, H-16′), 7.09 (2H, m, H-15, H-15′), 7.08 (4H, m, H-3, H-4, H-3′, H-4′),
7.05 (2H, s, H-6, H-6′), 5.90 (2H, m, H-8, H-8′), 5.03 (4H, m, H-9, H-9′), 5.03 (4H, s, H-10,
H-10′), 3.30 (4H, d, J = 6.7 Hz, H-7, H-7′); 13C NMR (DMSO-d6, 125 MHz): δ 158.8 (d,
1JCF = 244.0 Hz, C-12, C-12′), 153.7 (C-2, C-2′), 137.9 (C-8, C-8′), 131.6 (C-5, C-6, C-5′, C-6′),
129.8 (d, 3JCF = 8.2 Hz, C-16, C-16′), 129.6 (d, 3JCF = 4.1 Hz, C-14, C-14′), 128.4 (C-4, C-4′),
127.2 (C-1, C-1′), 124.2 (d, 4JCF = 3.5 Hz, C-15, C-15′), 124.1 (d, 2JCF = 15.1 Hz, C-11, C-11′),
115.5 (C-9, C-9′), 115.2 (d, 2JCF = 20.8 Hz, C-13, C-13′), 112.8 (C-3, C-3′), 63.7 (d, 3JCF = 4.0
Hz, C-10, C-10′), 38.6 (C-7, C-7′); HRESIMS: calcd. for C32H28F2O2Na+ [M + Na]+ 505.1950,
found 505.1951.

5,5′-Diallyl-2-((3-fluorobenzyl)oxy)-1,1′-biphenyl-2′-ol (5a). Yield: 65.9%, pale yellow oils;
1H-NMR (DMSO-d6, 500 MHz): δ 9.08 (1H, s, –OH), 7.34 (1H, m, H-15), 7.14 (2H, m, H-6,
H-6′), 7.07 (2H, m, H-4, H-16), 7.01 (2H, m, H-3, H-14), 6.95 (2H, m, H-3′, H-4′), 6.84 (1H,
dd, J = 8.1, 3.4 Hz, H-12), 5.94 (2H, m, H-8, H-8′), 5.09 (2H, m, H-9), 5.06 (2H, s, H-10),
5.04 (2H, m, H-9′), 3.33 (2H, d, J = 6.8 Hz, H-7), 3.27 (2H, d, J = 6.7 Hz, H-7′); 13C NMR
(DMSO-d6, 125 MHz): δ 161.2 (d, 1JCF = 241.6 Hz, C-13), 153.8 (C-2′), 153.0 (C-2), 140.5 (d,
3JCF = 7.5 Hz, C-11), 138.2 (C-8′), 138.0 (C-8), 131.5 (C-5′), 131.4 (C-5), 131.2 (C-6′), 130.1 (d,
3JCF = 8.2 Hz, C-15), 129.3 (C-6), 128.2 (C-4′), 128.1 (C-4), 128.0 (C-1), 125.2 (C-1′), 122.8 (d,
4JCF = 2.7 Hz, C-16), 115.5 (C-3′), 115.3 (C-9′), 115.2 (C-9), 114.2 (d, 2JCF = 20.8 Hz, C-14),
113.6 (d, 2JCF = 21.8 Hz, C-12), 112.8 (C-3), 68.5 (C-10), 38.7 (C-7, C-7′); HRESIMS: calcd. for
C25H23FO2Na+ [M + Na]+ 397.1574, found 397.1575.

5,5′-Diallyl-2,2′-bis ((3-fluorobenzyl)oxy)-1,1′-biphenyl (5b). Yield: 2.8%, pale yellow oils;
1H-NMR (DMSO-d6, 500 MHz): δ 7.30 (2H, m, H-15, H-15′), 7.12 (2H, dd, J = 8.35, 2.25 Hz,
H-4, H-4′), 7.07 (2H, s, H-6, H-6′), 7.06 (6H, m, Ar-H), 7.00 (2H, d, J = 10.1 Hz, H-3, H-3′),
5.94 (2H, m, H-8, H-8′), 5.03 (4H, m, H-9, H-9′), 5.03 (4H, s, H-10, H-10′), 3.32 (4H, d, J = 6.7
Hz, H-7, H-7′); 13C NMR (DMSO-d6, 125 MHz): δ 161.1 (d, 1JCF = 241.9 Hz, C-13, C-13′),
153.7 (C-2, C-2′), 140.4 (d, 3JCF = 7.4 Hz, C-11, C-11′), 137.9 (C-8, C-8′), 131.6 (C-5, C-5′),
131.4 (C-6, C-6′), 130.2 (d, 3JCF = 8.1 Hz, C-15, C-15′), 128.4 (C-4, C-4′), 127.5 (C-1, C-1′),
122.7 (d, 4JCF = 2.5 Hz, C-16, C-16′), 115.6 (C-9, C-9′), 114.2 (d, 2JCF = 20.8 Hz, C-14, C-14′),
113.5 (d, 2JCF = 21.9 Hz, C-12, C-12′), 112.8 (C-3, C-3′), 68.5 (C-10, C-10′), 38.6 (C-7, C-7′);
HRESIMS: calcd. for C32H28F2O2Na+ [M + Na]+ 505.1950, found 505.1953.

5,5′-Diallyl-2-((4-fluorobenzyl)oxy)-1,1′-biphenyl-2′-ol (6a). Yield: 34.7%, pale yellow oils;
1H-NMR (DMSO-d6, 500 MHz): δ 9.04 (1H, s, –OH), 7.37 (2H, dd, J = 8.3, 5.6 Hz, H-12,
H-16), 7.12 (2H, m, H-13, H-15), 7.09 (1H, dd, J = 8.4, 2.3 Hz, H-4), 7.02 (2H, d, J = 8.4 Hz,
H-3, H-3′), 6.94 (2H, m, H-6, H-6′), 6.83 (1H, m, H-4′), 5.93 (2H, m, H-8, H-8′), 5.05 (4H, m,
H-9, H-9′), 5.01 (2H, s, H-10), 3.32 (2H, d, J = 6.8 Hz, H-7), 3.26 (2H, d, J = 6.8 Hz, H-7′);
13C NMR (DMSO-d6, 125 MHz): δ 160.5 (d, 1JCF = 241.7 Hz, C-14), 153.9 (C-2′), 152.9 (C-2),
138.2 (C-8′), 138.0 (C-8), 133.7 (d, 4JCF = 2.9 Hz, C-11), 131.5 (C-5′), 131.4 (C-5), 131.2 (C-6′),
129.3 (C-6), 129.2 (d, 3JCF = 8.1 Hz, C-12, C-16), 128.2 (C-4′), 128.1 (C-4), 127.9 (C-1), 125.3
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(C-1′), 115.5 (C-3′), 115.3 (C-9′), 115.2 (C-9), 115.0 (d, 2JCF = 21.2 Hz, C-13, C-15), 113.0
(C-3), 68.8 (C-10), 38.7 (C-7, C-7′); HRESIMS: calcd. for C25H23FO2Na+ [M + Na]+ 397.1574,
found 397.1575.

5,5′-Diallyl-2,2′-bis ((4-fluorobenzyl)oxy)-1,1′-biphenyl (6b). Yield: 4.7%, rhombic white
crystal; 1H-NMR (DMSO-d6, 500 MHz): δ 7.26 (4H, m, Ar-H), 7.07 (4H, m, Ar-H), 7.06
(2H, m, H-4, H-4′), 7.04 (2H, m, H-3, H-3′), 7.03 (2H, s, H-6, H-6′), 5.93 (2H, m, H-8, H-8′),
5.04 (4H, m, H-9, H-9′), 5.00 (4H, s, H-10, H-10′), 3.31 (4H, d, J = 6.8 Hz, H-7, H-7′); 13C
NMR (DMSO-d6, 125 MHz): δ 160.5 (d, 1JCF = 241.7 Hz, C-14, C-14′), 153.8 (C-2, C-2′), 138.0
(C-8, C-8′), 133.6 (d, 4JCF = 2.9 Hz, C-11, C-11′), 131.5 (C-5, C-5′), 131.4 (C-6, C-6′), 129.1 (d,
3JCF = 8.1 Hz, C-12, C-16, C-12′, C-16′), 128.3 (C-4, C-4′), 127.5 (C-1, C-1′), 115.5 (C-9, C-9′),
115.0 (d, 2JCF = 21.2 Hz, C-13, C-15, C-13′, C-15′), 112.9 (C-3, C-3′), 68.7 (C-10, C-10′), 38.6
(C-7, C-7′); HRESIMS: calcd. for C32H28F2O2Na+ [M + Na]+ 505.1950, found 505.1952.

5,5′-Diallyl-2-((2-chlorobenzyl)oxy)-1,1′-biphenyl-2′-ol (7a). Yield: 42.6%, pale yellow oils;
1H-NMR (DMSO-d6, 500 MHz): δ 9.05 (1H, s, –OH), 7.44 (2H, m, H-6, H-6′), 7.31 (1H, m,
H-13), 7.26 (1H, m, H-14), 7.10 (1H, dd, J = 8.3, 2.3 Hz, H-4), 7.03 (2H, m, H-15, H-16), 6.94
(2H, m, H-3, H-4′), 6.81 (1H, d, J = 8.1 Hz, H-3′), 5.92 (2H, m, H-8, H-8′), 5.08 (2H, s, H-10),
5.03 (4H, m, H-9, H-9′), 3.33 (2H, d, J = 6.9 Hz, H-7), 3.25 (2H, d, J = 6.7 Hz, H-7′); 13C NMR
(DMSO-d6, 125 MHz): δ 153.7 (C-2′), 152.9 (C-2), 138.2 (C-8′), 138.0 (C-8), 134.8 (C-11), 131.7
(C-5′), 131.5 (C-5, C-6′), 131.3 (C-6), 129.3 (C-12), 129.2 (C-4′), 129.0 (C-13, C-14), 128.2 (C-4),
128.1 (C-16), 128.0 (C-1), 127.1 (C-1′), 125.0 (C-15), 115.5 (C-9′), 115.3 (C-3′), 115.2 (C-9),
112.9 (C-3), 66.9 (C-10), 38.7 (C-7, C-7′); HRESIMS: calcd. for C25H23ClO2Na+ [M + Na]+

413.1279, found 413.1280.
5,5′-Diallyl-2-((3-chlorobenzyl)oxy)-1,1′-biphenyl-2′-ol (8a). Yield: 37.7%, pale yellow oils;

1H-NMR (DMSO-d6, 500 MHz): δ 9.07 (1H, s, –OH), 7.38 (1H, s, H-12), 7.32 (3H, m, H-14,
H-6, H-6′), 7.09 (1H, dd, J = 8.3, 2.3 Hz, H-4), 7.02 (2H, m, H-15, H-16), 6.95 (2H, m, H-3,
H-4′), 6.84 (1H, d, J = 8.2 Hz, H-3′), 5.94 (2H, m, H-8, H-8′), 5.05 (2H, s, H-10), 5.04 (4H, m,
H-9, H-9′), 3.33 (2H, d, J = 6.8 Hz, H-7), 3.28 (2H, d, J = 6.8 Hz, H-7′); 13C NMR (DMSO-d6,
125 MHz): δ 153.7 (C-2′), 152.9 (C-2), 140.2 (C-11), 138.2 (C-8′), 138.0 (C-8), 133.0 (C-13),
131.6 (C-5′), 131.4 (C-5), 131.2 (C-6′), 130.0 (C-6), 129.3 (C-15), 128.3 (C-14), 128.1 (C-4′),
128.0 (C-4), 127.3 (C-1), 126.7 (C-1′), 125.4 (C-12), 125.2 (C-16), 115.5 (C-9′), 115.4 (C-3′),
115.2 (C-9), 113.2 (C-3), 68.5 (C-10), 38.7 (C-7, C-7′); HRESIMS: calcd. for C25H23ClO2Na+

[M + Na]+ 413.1279, found 413.1281.
5,5′-Diallyl-2-((4-chlorobenzyl)oxy)-1,1′-biphenyl-2′-ol (9a). Yield: 37.7%, pale yellow oils;

1H-NMR (DMSO-d6, 500 MHz): δ 9.04 (1H, s, –OH), 7.35 (4H, m, H-6, H-13, H-15, H-6′),
7.08 (1H, dd, J = 8.5, 2.3 Hz, H-4), 7.01 (2H, m, H-12, H-16), 6.93 (2H, m, H-3, H-4′), 6.82 (1H,
d, J = 8.1 Hz, H-3′), 5.93 (2H, m, H-8, H-8′), 5.08 (2H, m, H-9), 5.03 (2H, s, H-10), 4.99 (2H, m,
H-9′), 3.32 (2H, d, J = 6.8 Hz, H-7), 3.27 (2H, d, J = 6.8 Hz, H-7′); 13C NMR (DMSO-d6, 125
MHz): δ 153.8 (C-2′), 152.9 (C-2), 138.3 (C-8′), 138.0 (C-8), 136.6 (C-11), 132.0 (C-5′), 131.5
(C-14), 131.4 (C-5), 131.2 (C-6′), 129.3 (C-6), 128.9 (C-12, C-16), 128.2 (C-4′), 128.1 (C-4, C-13,
C-15), 127.9 (C-1), 125.2 (C-1′), 115.5 (C-9′), 115.3 (C-3′), 115.2 (C-9), 112.9 (C-3), 68.7 (C-10),
38.7 (C-7, C-7′); HRESIMS: calcd. for C25H23ClO2Na+ [M + Na]+ 413.1279, found 413.1280.

3.3. MTT Assay

Human breast cancer (MDA-MB-231 and MCF-7), nasopharyngeal carcinoma (CNE-
2Z), and hepatocellular carcinoma (SMMC-7721) cell lines were cultured in RPMI-1640
medium or DMEM that were supplemented with 10% fetal bovine serum and 1% penicillin-
streptomycin in a 5% CO2 incubator at 37 ◦C. All cells were seeded in 96-well plates at
a density of 5000 cells per well and treated with various concentrations (0, 6.25, 12.5, 25,
and 50 µM) of the derivatives for 72 h. Taxol was used as a positive control. Cytotoxic
activity was evaluated using standard MTT assay procedures as previously described. (All
samples were lyophilized prior to MTT assay because of solvent contaminants peaks in the
NMR spectra)
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3.4. Wound-Healing Assay

MDA-MB-231 cells were seeded in 6-well plates at a density of 6 × 105 cells per
well. The monolayered cells were wounded by scratching with 100 µL pipette tips, then
washed with phosphate-buffered saline (PBS). The PBS was then replaced with serum-
free RPMI-1640 containing the compound of interest. The images were taken at 0 h and
24 h after incubation for 24 h at 37 ◦C. The wound assay values were obtained from
three randomly selected fields. Similar patterns of inhibition were observed in three
independent experiments.

3.5. Cell Migration Assay

Cell migration assays were performed using a 24-well plate with 8.0 µm pore mem-
brane inserts (Corning, NY, USA) without Matrigel. MDA-MB-231 cells were added to
the upper chambers at a concentration of 2.5 × 105 cells per well and incubated for 24 h
after treatment with various concentrations (0, 5, 10, and 20 µM) of 6a. The lower chambers
were filled with conditioned media. After 24 h, the cells that had migrated were stained
with 0.1% crystal violet and photographed under a light microscope at 200×magnification.
Taxol was used as a positive control.

3.6. Cell Invasion Assay

Cell invasion assays were performed using a 24-well plate with 8.0 µm pore membrane
inserts that were coated with 50 µL of Matrigel (BD, Franklin Lakes, NJ, USA) and incubated
at 37 ◦C for 1.0 h. MDA-MB-231 cells (3 × 105 cells per well) were added to the upper
chambers and incubated with various concentrations (0, 5, 10, and 20 µM) of 6a for 36 h.
The rest of the process was the same as that described in the Section 2.5.

3.7. Western Blotting

MDA-MB-231 cells were cultured in 6-well plates at a density of 3 × 105 cells per well.
After adherence, the cells were treated with various concentrations (0, 10, 20, and 40 µM)
of 6a and incubated for 24 h. The cells were harvested, washed with PBS, and proteins
were extracted and quantified. The proteins were separated by SDS-PAGE and PVDF
membranes. The PVDF membrane was blocked with 5% skim milk and incubated with
primary antibodies (HIF-1α, MMP-2, and MMP-9) at 4 ◦C overnight. After washing with
tris-buffered saline/tween 20 buffer, the membranes were incubated with the correspond-
ing secondary antibodies at room temperature for 2.0 h. Protein bands were visualized
using a chemiluminescence kit and detected using a gel imaging system (Bio-Rad, Hercules,
CA, USA). Anti-β-actin was used as an internal control.

3.8. Statiscal Analysis

Statistical analysis was performed with two samples using SPSS 16.0 software (Armonk,
NY, USA), and * p < 0.05 or ** p < 0.01 were considered statistically significant differences.

4. Conclusions

In summary, a series of magnolol derivatives 1a–9a and 1b–6b were semisynthesized
by Williamson reaction and evaluated for their in vitro antiproliferative activity by MTT
assay on four different human cancer cell lines (MDA-MB-231, MCF-7, CNE-2Z, and
SMMC-7721). The results showed that most of the magnolol derivatives exhibited better
in vitro antiproliferative activity than the precursor magnolol. Among them, compound 6a
had the best cytotoxic activity against MDA-MB-231 cells with an IC50 value of 20.43 µM.
Preliminary SAR indicated that O-alkylation of magnolol at 2-OH or 2′-OH could enhance
the cytotoxic activity with the benzyl with F-substituted has better activity. In addition, the
results of wound-healing and transwell assays showed that 6a could also inhibit the mi-
gration of MDA-MB-231 cells very well. A more detailed mechanistic study demonstrated
that 6a inhibited the migration and invasion of MDA-MB-231 cells by downregulating
HIF-1α, MMP-2, and MMP-9 protein levels. Our findings will give some basis to the
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development of magnolol derivatives as potential anti-cancer candidates for the treatment
of human cancer.

Supplementary Materials: The following are available online, 1H NMR spectrum, 13C NMR spec-
trum and HR-ESI-MS spectrum of Compounds.
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