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Abstract: The creation of fluorescent micro- and macrostructures with the desired morphologies and
sizes is of considerable importance due to their intrinsic functions and performance. However, it is
still challenging to modulate the morphology of fluorescent organic materials and to obtain insight
into the factors governing the morphological evolution. We present a facile bottom-up approach to
constructing diverse micro- and macrostructures by connecting fluorescent spherical particles (SPs),
which are generated via the spherical assembly of photoisomerizable azobenzene-based propeller-
shaped chromophores, only with the help of commercially available polyethylene glycol (PEG)
derivatives. Without any extra additives, solvent evaporation created a slow morphological evolution
of the SPs from short linear chains (with a length of a few micrometers) to larger, interconnected
networks and sheet structures (ranging from tens to >100 µm) at the air–liquid interface. Their
morphologies and sizes were significantly dependent on the fraction and length of the PEG. Our
experimental results suggest that noncovalent interactions (such as hydrophobic forces and hydrogen
bonding) between the amphiphilic PEG chains and the relatively hydrophobic SPs were weak
in aqueous solutions, but play a crucial role in creating the morphologically diverse micro- and
macrostructures. Moreover, short-term irradiation with visible light caused fast morphological
crumpling and fluorescence switching of the obtained structures.

Keywords: azobenzene-based chromophore; fluorescent micro- and macrostructures; morphological
evolution; polyethylene glycol

1. Introduction

The construction of fluorescent nano-, micro-, and macrostructured materials consisting
of inorganic (metal and semiconducting nanoparticles (NPs)) and small organic building
blocks is of enormous research interest in optoelectronics, chemistry, biomedicine, and
materials science [1–9]. Their importance lies in the fact that artificially designed archi-
tectures with the desired morphologies and sizes may provide a variety of unexpected
electronic, optical, sensing, and catalytic functions that differ from those of their small
building blocks [10–17]. To produce inorganic NP-based nano- and microstructures with
desired dimensions [18–22], top-down and bottom-up strategies have been widely devel-
oped, for example, lithographic and patterning techniques [23–26], electrospinning [27,28],
the Langmuir–Blodgett technique [29,30], solvent evaporation-driven self-assembly [31–33],
and the polymer-mediated self-assembly of NP building blocks [34–41]. Most of the bottom-
up polymer-mediated NP assembly strategies require the laborious introduction of specific
functional groups on NP surfaces, the addition of certain salts, pH adjustment, etc. to
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induce effective interfacial interactions with the functionalized polymer templates [34–48].
Therefore, it is important to introduce a simple and facile method to produce the desired
dimensional materials.

By contrast, fluorescent organic materials (spherical, one-dimensional (1D), two-
dimensional (2D), and three-dimensional (3D)) have been primarily produced based on
(i) the rational design of small organic fluorophores and subsequent self-assembly through
noncovalent interactions, such as hydrogen bonding, π–π stacking, van der Waals forces,
and hydrophobic effects [12–17], and (ii) template-induced synthesis [49–51]. Thus, most
studies to date have focused on how small molecular structures and their self-assembly
conditions are linked to the target nano- and microstructured materials and their functions.

Han et al. recently demonstrated red fluorescent spherical particles (SPs) and 1D fi-
brous structures generated via the self-assembly of a new type of aggregation-induced
emission enhancement (AIEE [52–56])—active chromophores with different terminal func-
tional groups [57,58]. Nevertheless, it is still challenging to achieve the facile growth of
such fluorescent SP building blocks into diverse micro- and macrostructured materials (from
micrometer-sized chains and necklaces to macrometer-sized interconnected network struc-
tures) and to obtain insight into the determinants for governing the morphological evolution.

Polyethylene glycol (PEG), which contains a repeating unit of –(CH2CH2O)n–, pos-
sesses the following characteristics: (i) It dissolves in water, as well as in commonly used
organic solvents. (ii) The ethylene unit and oxygen in the PEG chain can occasionally show
amphiphilic characteristics that have hydrophobicity and hydrophilicity [59–63]. (iii) It
does not aggregate in a dilute aqueous solution [64,65]. (iv) It does not interfere with the
spherical assembly of AIEE-active propeller-shaped chromophores (Bu, Figure 1). (v) It has
wide-ranging chemical and biomedical applications [59–61,66–69]. In this study, we chose
commercially available polyethylene glycol (PEG) derivatives to link SPs for these five
reasons. Here, we describe a simple bottom-up approach to creating diverse micro- and
macrostructures via the solvent evaporation-induced assembly of Bu SP building blocks
with the help of PEG chains (Figure 1). As the PEG fraction and the PEG length increased,
the SPs connected faster and generated micrometer-sized linear and branched chains.
They then linked together to develop into macrometer-sized interconnected networks and
sheet structures, as the solvent evaporated further. In addition, we also investigated their
visible-light-triggered morphological crumpling.
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Figure 1. (a) Chemical structures. (b) Schematic representation of PEG-assisted morphological evolution of fluorescent
spherical particles (SPs) into diverse micro- and macrostructures via solvent evaporation. Without PEG chains, Bu SPs were
heaped up to form random mounds instead of interconnected networks and flat sheet structures.

2. Results and Discussion
2.1. Growth of Organic SP Building Blocks into Diverse Micro- and Macrostructures

Whereas flexible PEG does not aggregate in a dilute aqueous solution, photoisomer-
izable (C3-symmetric→asymmetric conformation changes) Bu has a strong tendency to
assemble into fluorescent SPs [58], and the resultant SPs are well dispersed in THF-H2O



Molecules 2021, 26, 4294 3 of 11

mixed solutions. Therefore, we hypothesized that if a linear PEG chain does not inter-
fere with the spherical assembly of Bu in a PEG:Bu binary mixed solution, the SPs and
water-soluble PEGs would move independently in dilute solutions. However, slow solvent
evaporation would improve the frequency of effective collision between SPs and PEG
chains. As a result, the relatively hydrophobic SPs would be connected by linear PEG with
amphiphilic characteristics through hydrophobic interactions [59–63] to evolve into larger,
interconnected structures (Figure 1).

To test our hypothesis, we first changed the mPEG1000 concentration (from 1 to
50 mg/L, in H2O) at a fixed Bu concentration (50 µM = 50 mg/L, in THF), followed
by varying the mixing ratio (v/v) of mPEG1000:Bu (mPEG1000 fraction = f mPEG1000, %)
and the molecular weight of PEG. According to our preliminary experimental results,
the spherical assembly of Bu was not hindered by the coexistence with PEG chains and
provided fluorescent SPs with diameters of ~50–500 nm. In addition, the PEG fraction had
an important role in connecting SPs. For instance, in the initial stage with a small fraction
of PEG (f mPEG1000 = 9%), individual SPs underwent random motion without conspicuous
flocculation. However, as the solvents evaporated, the SPs very slowly connected to
produce short linear chains containing ≤5 spheres (Figure 2b). Slightly longer chains and
partially branched chains, which are composed of approximately ≤20 SPs, were frequently
produced from a sample containing a PEG fraction of 50% (Figure 2c and Supplementary
Materials Figure S1). The inset scanning electron microscopy (SEM) image in Figure 2c
confirms that organic SPs forming such chains roughly retained their original spherical
shape and were nested inside pea-like frames, which were presumably composed of
PEG chains.
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Figure 2. SEM and TEM images of diverse micro- and macrostructures formed at various mixing
ratios (v/v) of mPEG1000:Bu (50 mg/L:50 mg/L) THF-H2O mixed solution. f mPEG1000 = (a) 0%,
(b) 9%, (c) 50%, and (d) 80%. Scale bar: 5 µm.

In contrast, at higher PEG fractions, such as 66%, 80%, and 86%, longer branched
chains were often observed together with interconnected networks formed by merging
many necklace-like structures that were mostly 2–10 µm in size (Figures 2d and 3). Notably,
the inset SEM image in Figure 2d shows the existence of thread-like streaks around the
network structures, suggesting that the interconnected structures were buttressed by the
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PEG shell. The inner SPs in the shells often turned into an oval or short rod shape, which
is likely due to the long-term interactions between soft SPs and long PEG chains at the
air–water interface.
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Figure 3. Snapshot optical microscopy (OM) images showing the morphological growth processes of mPEG1000:Bu mixed
systems at the air–liquid interface. f mPEG1000 = (a–d) 66% and (e–h) 86%. (a,e) Short chains. (b,f) Relatively long and
branched chains. The inset photograph in (c) is a TEM image of a necklace-like structure. (d) Interconnected structures
formed by merging many necklace-like structures (see Movie S3). (g,h) Dendrimer-like structures were connected to form a
giant interconnected structure. The black regions marked by the yellow arrows (h) correspond to densely packed SPs. The
whole process took about 80–90 min under our experimental conditions (22–23 ◦C and 50–55% humidity).

2.2. Control Experiments: Need of PEG Chains for Morphological Growth

We conducted controlled experiments to validate the need for PEG for the morpholog-
ical evolution into larger, more intricate microstructures. The importance of the presence of
PEG was clearly verified at the border where solvents evaporated. In the absence of PEG,
fast-moving SPs behaved independently and were heaped up to form random mounds on
a hydrophilic glass substrate (Movie S1 and Figure 2a). In sharp contrast, in the presence
of PEG, ready-made interconnected structures were stacked sideways to produce denser
structures (Movie S2).

2.3. In Situ Morphological Evolution Processes at Higher PEG Fractions

To visualize the morphological evolution process, we next carried out in situ OM
observations of mPEG1000:Bu binary mixed systems (f mPEG1000 = 66 and 86%) by gradually
evaporating the solvents. Upon incubation for ~20 min under our experimental conditions
(22–23 ◦C and 50–55% humidity, Figure 3a), the spheres started to slowly hook up to
virtually invisible things considered to be mPEG1000, resulting in short chains. As the
solvent evaporated further, the short chains linked together to form longer chains and
branched chains (Figure 3b). In the case of the mPEG1000:Bu binary mixed system with
f mPEG1000 = 66%, the long branched chains and round necklace-like structures were con-
nected to one another to construct giant interconnected structures larger than 100 µm
(Figure 3c,d). Importantly, once the SPs were hooked up to invisible PEG chains, the
resultant intricate structures did not separate but rather floated like a single group at the
air–water interface (Movie S3). These results support our earlier hypothesis that weak
noncovalent interactions between the relatively hydrophobic SPs and the amphiphilic PEG
chains play a crucial role in evolving into diverse micro- and macrostructures.

Moreover, when the mPEG1000 fraction increased up to 86% (Figure 3e–h) and the
molecular weight of the PEG increased to 2000 (Figure 4 and Figure S2), SPs connected faster
to form tortuous long chains and branched chains in the early stage, which, in turn, grew
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into dendrimer-like structures with many branches. As the solvent evaporated further, the
large dendrimers stuck together and gradually developed into a giant mesh-like structure
(Figure 5a, Figure S3). In the meantime, SPs became densely packed, as indicated by the
yellow arrows in Figure 3h. Further solvent evaporation caused the mesh-like networks
to be stacked horizontally on a hydrophilic glass substrate, occasionally producing a red
fluorescent sheet exceeding 100 µm in size (Figure 5b).
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Figure 5. (a) Mesh-like network (SEM) and (b) red fluorescent 2D sheet (fluorescence optical mi-
croscopy (FOM)) structures obtained from the PEG2000:Bu mixed system (f PEG2000 = 80%). The inset
photograph in (b) is a magnified SEM image of a sheet.

2.4. UV-Vis Absorption and IR Measurements

Figure 6 shows UV-vis absorption and Fourier-transform infrared (FT-IR) spectra. A
Bu dilute solution displays three characteristic absorption bands at 265, 380, and 506 nm
(Figure 6a), which are likely due to the short-axis Φ–Φ* transition [70], the π–π* transition of
the azobenzene unit, and the combined effect of an intramolecular proton-transfer reaction
(keto-hydrazone form) and the energetic proximity of the (π,π*) and (n,π*) states [71–77],
respectively. As the spherical assembly of Bu molecules and subsequent PEG-assisted
morphological evolution proceeded, the three absorption bands became broader and
red-shifted to >275, 396, and >515 nm, respectively.
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In addition, unlike a Bu SP sample in the absence of PEG, a quite broad band in the
range of 3600–3100 cm−1 and strong bands in the range of 2950–2800 cm−1 emerged in the
IR spectrum for fully dried interconnected structures (Figure 6b), which are attributable to
hydrogen-bonded O–H and sp3 C–H stretching vibrations mainly originating from PEG
chains, respectively. By comparison, the phenyl-hydrogen stretching mode at 3020 cm−1

and the aromatic C–C stretching vibrations at 1601, 1484, and 1469 cm−1, which originate
from Bu chromophores, considerably weakened. We interpreted these experimental results
as follows. As the PEG fraction increases, compared to the terminal –OH group, the number
of –(CH2CH2O)n– units increases enormously. Therefore, the hydrophobic ethylene units
are likely to be frequently exposed to the hydrophobic parts of Bu SPs through hydrophobic
interactions [59–63]. By contrast, the hydrophilic adjacent oxygen and –OH group seem to
be mainly directed toward water and form hydrogen bonds with water molecules. Such
noncovalent interactions between PEG chains and SPs are weak but not inescapable. That
is, an amphiphilic PEG chain (i) acts as an important linker connecting the individual SPs
in the early stage of solvent evaporation and (ii) subsequently helps the resulting shorter
chains evolve into larger, interconnected micro- and macrostructures.

2.5. Light-Sensitive Interconnected Structures

Irradiation of AIEE-active Bu with visible light leads to changes in the UV-vis absorp-
tion spectra almost identical to those of 365 nm light irradiation (Figure S4) [58]. Notably,
1H NMR data measured after exposure to sunlight indicate that C3-symmetric→asymmetric
conformation changes are caused by light in the region from ultraviolet to visible light
(Figure S4c). Hence, we expected that if the Bu SPs were indeed nested in a pea-like PEG
frame or shell with low melting points [78], the obtained diverse micro- and macrostruc-
tures would undergo discernible morphological deformation originating from light-induced
conformation changes of Bu chromophores.

To check our assumption, we exposed samples to visible light (405 and 436 nm). First,
compared to the laser confocal microscopy (LCM) image obtained by the first measurement
under light illumination (λex = 405 nm), the image obtained by the second measurement
revealed that the color of the chains became lighter, and the width of the chains became
about two or more times wider (Figure 7a,b). That is, it was almost impossible to observe
the intact interconnected network structures composed of PEG and SPs with LCM because
of the light-induced morphological deformation being too fast. This was in sharp contrast
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to the Bu SPs, which had a very slow light response, as clearly shown in the LCM image
in Figure S5.
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Figure 7. Visible-light-triggered morphological deformation of the samples obtained from the
mPEG1000:Bu mixed system (f mPEG1000 = 80%). LCM images obtained by the (a) first and
(b) second measurements under light illumination (λex = 405 nm). (c–e) SEM images showing
the light-induced crumpling processes of the interconnected structures under irradiation with light
at 436 nm (1–2 mW/cm2). Only crumpled PEG shells remained after sufficient light exposure (e).

Secondly, to lower the sphere-to-isotropic phase transition rate of SPs in the PEG
shells, we chose a low-intensity blue light source (~1–2 mW/cm2, 436 nm). The SEM image
taken after short-term irradiation with blue light revealed that the center of the particle
marked by a white arrow was dented, and its rounded edge still remained (Figure 7c,d).
Upon sufficient exposure to blue light for 30 min (Figure 7e), all the particles inside the
PEG shell fully melted, and the round shapes disappeared completely. Eventually, only the
wrinkled PEG shells remained on the glass surface.

Moreover, when exposed to green light (520–550 nm) attached to the fluorescence
optical microscopy (FOM), the interconnected network structures with AIEE characteristics
began to melt within one second, and their red fluorescence switched off within 3–5 s
(Movie S4 and Figure S6). The light response speed of the PEG:Bu binary mixed systems
was ~10 times faster than that without PEG. The fast light responses were due to two-
component assembly systems [79] consisting of both PEG derivatives with low melting
points and fluorescent SPs with a light-induced sphere-to-isotropic phase transition.

3. Conclusions

Fluorescent organic micro- and macrostructures were readily formed using the PEG-
assisted assembly of soft SPs building blocks at the air–liquid interface. Our experimental
results revealed that their morphologies and sizes can be readily modulated from linear
chains and branched chains (with a size of a few micrometers) to giant dendrimer-like
structures, interconnected networks, and sheets (ranging from tens to >100 µm in size)
via slow solvent evaporation. At an early stage, the amphiphilic PEG chain served as
an important linker connecting the fluorescent SPs and subsequently had the long-term
interactions with the SPs to create giant interconnected structures. Eventually, the PEG
shell supported the fluorescent micro- and macrostructures. In addition, fast visible-light-
triggered morphological crumpling and fluorescence intensity changes were successfully
substantiated through OM, FOM, LCM, SEM, and in situ OM observations. These finding
will be useful for mimicking stimuli-responsive biological systems found in nature.
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4. Materials and Methods
4.1. Materials

Tetrahydrofuran (THF, spectroscopic grade, Kanto Kagaku, Japan) was chosen as
a good solvent to dissolve the Bu molecule. Polyethylene glycol monomethyl ether
1000 (mPEG1000, average molecular weight (Mw) of 950–1050) and polyethylene gly-
col 2000 (PEG2000, Mw = 1900–2100) were purchased from Tokyo Chemical Industry
Co., Ltd. Bu, whose molecular weight (Mw = 1003) is almost identical to mPEG1000, was
prepared according to the literature [13b]. Ultrapure water (which was purified to reach a
minimum resistivity of 18.0 MΩ·cm (25 ◦C) using a µPure HIQ water purification system,
Romax, South Korea) was used for all experiments.

4.2. PEG-Mediated SP Assembly into Various Microstructures

mPEG1000 H2O solutions in the concentration range of 1–50 mg/L were added
dropwise, under mild shaking, into a Bu THF solution (50 µM = 50 mg/L), respectively. The
resulting turbid suspension did not precipitate for at least 2–3 days but was well maintained
until the PEG fraction (by volume) reached ~86% and over. After the suspension was aged
in a volumetric flask for about 20 min, ~100 µL of the mixed suspension was carefully
placed onto a clean glass or quartz substrate. To minimize unexpected side effects such as a
sudden fluctuation in the solvent evaporation and the resulting change in the aggregation
rate, all the experiments were conducted under the same experimental conditions (22–23 ◦C
and 50–55% humidity).

4.3. Characterization

Optical microscopy (OM), fluorescence optical microscopy (FOM, λex = 520–550 nm),
and laser confocal microscopy (LCM) images were taken using an Olympus BX53 micro-
scope and LEXT OLS4000 3D laser microscope (λex = 405 nm) after placing a few drops
of the PEG:Bu SP mixed suspension onto a clean glass or quartz substrate. The FE-SEM
(field-emission scanning electron microscopy: HITACHI SU8020 and TESKAN-MIRA3-
LM) samples were coated with an approximately 5–10 nm-thick platinum layer using a
Cressington 108 auto sputter coater, Ted Pella, Inc. The transmission electron microscopy
(TEM) was performed at 120 kV using a JEOL JEM-1400 Plus. UV-vis absorption and
fluorescence spectra were recorded using a Shimadzu UV-2600 UV-vis spectrophotometer
and a Horiba FluoroMax-4 spectrofluorometer, respectively. Fourier-transform infrared
(FT-IR) spectra were recorded on a PerkinElmer (spectrum 100) spectrometer. Samples
were exposed to light (Tokina Supercure-204S, generated by a combination of Toshiba color
filters) to investigate their light response.

Supplementary Materials: The following are available online. Figure S1: SEM image of the sample
obtained from the mPEG1000:Bu mixed system (fmPEG1000 = 50%), Figure S2: TEM and SEM images
showing various microstructures formed by connecting the SPs through PEG2000, Figure S3: SEM
images of mesh-like structures, Figure S4: 1H NMR, absorption, and fluorescence spectra, Figure S5:
LCM image of relatively photostable Bu spheres, Figure S6: Visible-light-triggered morphological
deformation and rapid fluorescence intensity response, Movie S1: A control experiment (mp4), Movie
S2: In the presence of PEG, ready-made interconnected structures were stacked sideways (mp4),
Movie S3: In situ OM observation of a giant interconnected necklace structure (mp4), Movie S4: Fast
light responses: In situ FOM of mesh-like structures observed during visible light irradiation for
5 s (mp4).
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