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Abstract: Pharmacokinetic (PK) studies improve the design of dosing regimens in preclinical and
clinical settings. In complex diseases like cancer, single-agent approaches are often insufficient
for an effective treatment, and drug combination therapies can be implemented. In this work,
in silico PK models were developed based on in vitro assays results, with the goal of predicting
the in vivo performance of drug combinations in the context of cancer therapy. Combinations of
reference drugs for cancer treatment, gemcitabine and 5-fluorouracil (5-FU), and repurposed drugs
itraconazole, verapamil or tacrine, were evaluated in vitro. Then, two-compartment PK models were
developed based on the previous in vitro studies and on the PK profile reported in the literature
for human patients. Considering the quantification parameter area under the dose-response-time
curve (AUCeffect) for the combinations effect, itraconazole was the most effective in combination
with either reference anticancer drugs. In addition, cell growth inhibition was itraconazole-dose
dependent and an increase in effect was predicted if itraconazole administration was continued (24-h
dosing interval). This work demonstrates that in silico methods and AUCeffect are powerful tools to
study relationships between tissue drug concentration and the percentage of cell growth inhibition
over time.

Keywords: in vitro-in silico approach; pharmacokinetics; drug repurposing; drug combination; cell
growth inhibition

1. Introduction

The process of research and development (R&D) of new drugs is very time consuming
and expensive. New drugs approval takes on average seven to nine years and the cost of
introducing a new drug can range from 600 million to 1 billion euros [1,2]. Pharmacokinetic
(PK) models describe the absorption, distribution, metabolism, and the elimination of
molecules (drugs, compounds under development, etc.) in an organism, thus providing
useful information to foster efficient and informative drug development. These models
not only improve decision making throughout clinical drug development, but also en-
able the design and optimization of dosing regimens, increasing the chances of the drug
to reach its target with the desired concentration and drug plasma concentration to be
maintained within the therapeutic window [3–5]. The study of PK involves both theoreti-
cal and experimental approaches. Theoretical approaches aim at the development of PK
models to predict drug disposition, which includes drugs distribution and elimination
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after its administration. These models can be divided into three categories, empirically,
physiologically, and compartmentally based PK models [6]. The most used PK model is
the compartmentally based, which represents a very simple and useful tool in PK. In this
model type, tissues are grouped into compartments, depending on their blood flow and
drug binding (tissues with similar blood flow and drug tissue binding are grouped in the
same compartment) [3–5,7–9].

STELLA® (ISEE Systems Inc., Lebanon, PA, USA) is a simulation software application
that enables the study of systems through its graphical representation. The program uses
Compartments, Flows, Converters, and Connectors as building blocks. “Compartments”
accumulate whatever flows into them, net of whatever flows out of them, with “Flows”
filling and draining accumulations. The Converter serves a utilitarian role in the software.
It holds values for constants, defines external inputs to the model and calculates algebraic
relationships. In general, it converts inputs into outputs. Connectors, as its name suggests,
connect model elements. Moreover, the use of built-in time functions in converters, such as
AND, OR, IF . . . THEN . . . ELSE or PULSE, allows a set of rules to be established, which
are used by the program to control flow through the model, enabling the construction
of more complex models. When the model is complete, the user has only to establish a
simulation time period and a time increment (h). Each value calculation can be made using
either Euler’s, 2nd, 3rd, or 4th order Runge-Kutta methods, being Euler’s the simplest
version of the Runge-Kutta method. These are integration methods that estimate a new
value (yi+1) through the extrapolation of an old value (yi) following Equation (1). In Euler’s
method, ϕ is the slope in xi (first derivate in xi). In the Runge-Kutta method, instead of
one single derivation, one or more representative slopes (depending on the order of the
method) are determined during an interval, h, to estimate the new value. This equation
can be applied step by step and trace out the trajectory of the solution (Figure 1) [10–13].

yi+1 = yi +ϕh (1)

GastroPlus™ (Simulations Plus, Inc., Lancaster, CA, USA) is an advanced technol-
ogy computational program used in drug R&D. Contrary to STELLA®, GastroPlus™ is
specifically designed for PK studies, particularly physiologically based pharmacokinetics
(PBPK) and physiologically based biopharmaceutics modeling (PBBM). Additionally, its
incorporated absorption model, ACAT (Advanced Compartmental Absorption and Transit
model), allows the simulation of intravenous, gastrointestinal, ocular, nasal, and pulmonary
absorption of molecules. This enables the user to obtain a detailed absorption profile of
the molecules in study, since it considers several physiological variables. GastroPlus™
simulations rely on the numerical integration of differential equations that coordinate a set
of well-characterized physical events that occur and are interconnected as a result of di-
verse physicochemical and biologic phenomena. Furthermore, GastroPlus™ has additional
modules, including ADMET Predictor™ module for the prediction of physicochemical and
pharmacokinetic parameters of compounds, and other modules for deeper insight into the
pharmacokinetics of a drug, such as PKPlus™ and PBPKPlus™. Despite its sophistication,
GastroPlus™ is relatively easy for someone with a background in ADME to learn and use
because it incorporates an intuitive and modern graphical user interface that enables a
rapid and smooth transition from setting up inputs to evaluating results [14].

The lack of satisfactory results with single-agent therapy in patients led to the intro-
duction of drug combination therapies in health care. The use of drugs with different
mechanisms of action enables multiple targeting, either within the same cell or in multiple
cell subpopulations, or the targeting of multiple diseases simultaneously, providing more
effective treatment. This strategy’s possible favorable outcome includes the enhancement
of the efficacy of the therapeutic effect, reducing the dosage, but increasing or maintaining
the efficacy, minimizing or avoiding possible toxicity, and reducing or slowing down the
development of drug resistance. Due to these therapeutic benefits, drug combinations have
been widely used and became the leading choice for treating complicated and complex
diseases, such as cancer and infectious diseases, including AIDS [15–17].
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Figure 1. Schematic representation of a model built in STELLA® modeling program. In this model,
mass flows from compartment 1 to compartment 2 and from compartment 2 to compartment 1. Flow
rates 1 and 2 are determined by convertor 1 and 2 respectively.

Several in silico tools have been developed for theoretical drug combination studies.
Some research areas are more focused on predicting whether the combined effect may
be synergistic, additive or antagonistic, while others are more interested in predicting
drug-drug interactions. For this, several PK modeling programs, such as Simcyp® (Certara
UK Limited, Sheffield, UK) or GastroPlus™, now have specific modules to predict drug-
drug interaction, using previous knowledge on main metabolizing enzymes of each drug
in study [18–20]. Although a wide variety of in silico tools is already available for drug
combination studies, new approaches can be proposed, and drug combination effect
coupled with drug disposition simulation is an example of a gap in the existing resources.

Cancer treatment by chemotherapy is one of the most used methodologies in cancer
therapy, either as primary treatment or as an adjuvant to other treatment modalities,
such as surgery, radiotherapy or immunotherapy. This approach involves the use of low-
molecular-weight drugs to destroy or reduce the proliferation of cancer cells [21]. This
work evaluated the activity of two traditional anticancer drugs (ACDs), gemcitabine and
5-fluorouracil (5-FU), and the effect of the combination of these ACDs with repurposed
drugs itraconazole, verapamil and tacrine, based on and extending previous research
carried out by our group [22].

The goal of the present study was to evaluate, model and predict the performance
of anticancer drugs and drug combinations in humans, through in vitro and in silico
approaches. In short, the drug combinations effect was evaluated through in vitro method-
ologies and the results were then modeled and analyzed in silico in more detail. Inhibition
of cell growth was assessed with the MTT cell viability assay in healthy and cancer human
prostate cell lines (PNT2 and PC-3, respectively), and in NSCLC human cell line A549.
Six different drug combinations were tested, where one of the drugs is a clinically used
anticancer drug (ACD) (gemcitabine or 5-fluorouracil) and the other is a repurposed drug
(RD) with promising qualities for cancer treatment (itraconazole, verapamil and tacrine). At
this stage in our research, the main goal was to understand if ACDs’ activity is enhanced in
the presence of one of the RD in these cell lines. Then, the aim of the in silico approach was
the development of two-compartment PK models that mimic the drug combination effect
previously assessed in vitro and to couple it to drug’s human PK. In sum, using multiples
approaches, this work provides a better general comprehension of drug combinations’
performance in the context of cancer therapy, allowing the assessment of the PK behavior
in the human body over time, and the evaluation of varying doses and its influence.

2. Materials and Methods
2.1. Chemicals

Gemcitabine, 5-FU, itraconazole, tacrine, and verapamil were obtained from Sigma-
Aldrich®/Merck© (2021 Merck KGaA, Darmstadt, Germany) and dissolved in sterile
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dimethyl sulfoxide (DMSO) at 100, 50, 17, 10 and 10 µM, respectively, as stock solutions.
The drugs were stored at −20 ◦C and diluted with culture medium prior to use.

2.2. Cell Culture

The normal human prostate epithelium cell line PNT-2, human prostate adenocar-
cinoma cell line PC-3 and human lung carcinoma cell line A549 were obtained from the
American Type Culture Collection and maintained in RPMI-1640 medium with 2 mM L-
glutamine (Gibco™, Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with
10% heat-inactivated fetal bovine serum (FBS) (Gibco™) at 37 ◦C in a 5% CO2 atmosphere.

All the cell culture procedures were carried out under sterile conditions in biological
safety cabinets, using sterile reagents and materials. Cells were routinely kept exponentially
growing and were sub-cultured by trypsinization twice a week. Cell viability of the cell
cultures was routinely evaluated using the trypan blue exclusion assay. All experiments
were carried out with exponentially growing cells having over 90% of cell viability.

2.3. Evaluation of Cell Growth Inhibition with the MTT Assay
2.3.1. Dose-Response Curve Determination for ACDs and ACD-RD Combinations

The optimal cell concentration determined was 4 × 104 cells/mL (for all the cells
lines) and was then used in the MTT assays. The cells were incubated for 72 h with dif-
ferent concentrations of ACD or ACD-RD combination. Cells were allowed to adhere
to the plate for 24 h and then 100 µL/well of drug solution were added. The multiple
serial dilutions tested of each drug solution were prepared in culture medium (RPMI-1640
medium + 10% FBS). The concentrations tested ranged from 0.01 to 50 µM for gemcitabine
and from 0.05 to 100 µM for 5-FU. When evaluating drug combinations, 50 µL/well of
different concentrations of the ACD (gemcitabine or 5-FU) were added to the cells along
with 50 µL/well of a fixed concentration of RD. The same ranges of concentrations for
gemcitabine and 5-FU were tested and the chosen concentration of each RD was based
on the maximum plasma concentration (Cmax) found in the literature. Since gemcitabine
is a prodrug, which is phosphorylated into an active drug inside the cells, we assume
this conversion is complete, and something similar for 5-FU as well. As such, verapamil,
itraconazole and tacrine solutions were prepared and used in this assay with the concentra-
tions of 1, 8.5 and 0.24 µM, respectively [23–26]. A DMSO control was also included in the
experiments (maximum concentration used, 0.2%, was previously considered non-toxic
to the cells). After 72-h incubation, the media was removed by aspiration, 100 µL/well
of MTT solution (0.5 mg/mL in media) was added to each well and cells were incubated
for another 3 h. The MTT solution was then removed by aspiration, cells were washed
with 100 µL/well of PBS and 100 µL/well of DMSO were added to dissolve the formazan
crystals. Absorbance was read in a spectrometer (Varioskan™ LUX multimode microplate
reader) at 540 nm. Results were treated in Microsoft Excel and GraphPad Prism 6. The
dose-response curves for each treatment were then plotted in appropriate graphs, differ-
ences between treatments were compared and the IC50 value, indicating the concentration
resulting in inhibition of 50% of the maximal cell growth, was determined. The percentage
of cell growth inhibition resulting from each drug was calculated as: [(OD 540 control
cells—OD 540 treated cells)/OD 540 control cells] × 100. These assays were repeated in at
least three independent experiments.

2.3.2. Further Studies with Itraconazole in Combination with Gemcitabine or 5-FU

The results from the previous assay demonstrated itraconazole had the greatest ability
to enhance ACDs’ activity. To study how the drug combination response is affected by
itraconazole concentration, additional studies were performed. For these, only the human
lung carcinoma cell line A549 was used for simplification purposes. Two studies were
then performed:

1. Range of itraconazole concentrations + fixed concentration of ACD (Gem or 5-FU);
itraconazole’s concentrations ranged from 0.07 to 4.25 µM, since the concentration
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used in the previous experiments was 8.5 µM (note dilution factor of 2 in the well).
The concentration chosen for Gem and 5-FU was the one that showed the lowest
effect in the previous experiments: 0.01 and 1 µM, respectively. The ACDs were also
tested alone for control purposes;

2. Range of ACD (Gem or 5-FU) concentrations + fixed concentration of itraconazole
(three different concentrations were tested). Different concentrations of ACD (Gem or
5-FU) were added to the wells, as well as a fixed concentration of itraconazole. The
multiple serial dilutions tested for ACD ranged from 0.005 to 10 µM for Gem (since in
the previous experiments the resulting dose-response curve did not have the ideal
shape), and the range was maintained for 5-FU. The concentrations for itraconazole
were 2, 4 and 6 µM (concentrations within the range that showed an effect when
administered with a very low concentration of ACD). Itraconazole was also tested
alone for control purposes.

As previously mentioned, following the 72-h cellular treatment, MTT assay was
performed. These assays were repeated in at least three independent experiments each.

2.4. Model Development

From data available in the literature and the results of the experimental work, phar-
macokinetic models were built in the simulation software STELLA® 10.0.3 (ISEE Systems
Inc., Lebanon, PA, USA). The structure of the model, as well as all the equations, variables
and constants used for this purpose, are described in detail in the following sections.

2.4.1. WinNonlin: PK Analysis

Compartmentally based PK STELLA® models require the input of PK parameters of
each drug, such as the volume of distribution in central and tissue compartment (Vd1 and
Vd2, respectively), clearance (CL) and transfer rate constants from central compartment
to tissue compartment and from tissue compartment to central compartment (k12 and k21,
respectively). Ideally, all parameters would belong to the same source: human plasma
concentration versus time data (Cp-time data) belonging to the same ethnicity, gender, and
age. Due to lack of data available in the literature concerning this issue, the only mandatory
conditions were that collected data for this study was from human patients and that all the
PK data for each drug belonged to the same literature source.

Phoenix WinNonlin (Certara UK Limited, Sheffield, UK) is a pharmacokinetic/ phar-
macodynamic (PK/PD) modeling software that, through the analysis of the Cp-time data
of a certain drug, can generate its PK parameters.

For gemcitabine, the Cp-time data collected were from NSCLC Chinese patients [27].
Briefly, gemcitabine was intravenously infused for 120 min at a rate of 15.7 mg·min−1

and plasma samples were collected until 210 min after infusion start. In relation to 5-FU,
Cp-time data collected belonged to English cancer patients [28]. 5-FU was administered
over 1 min, by intravenous bolus injection, at a dose of 900 mg. Plasma samples were
collected for 90 min. For itraconazole, the data is relative to healthy subjects from The
Netherlands, who received 100 mg administered intravenously, over 1 h, and plasma
samples were collected for 96 h [29].

2.4.2. Model Structure

Several models were built depending on the case study, since each drug has a specific
route of administration and particular properties. The model structure differs according
to the variables, constants and some equations corresponding to each case. Moreover, the
drugs in each drug combination do not share metabolic pathways or transporters and only
one has high protein binding. Therefore, it can be assumed that no drug interaction will
occur, and each drug disposition will not be affected. Therefore, the compartmental models
are developed for each drug separately, but they are connected in the same human model.
The layout of each model will be detailed for each case.
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2.4.3. Determination of the AUC for Each Drug Combination Effect in Humans

AUC is usually calculated when bioavailability is concerned, to compare two different
drug formulations, routes of administration or the effect of food on the bioavailability of
a certain drug, for example [30,31]. In the models developed in this work, “AUC plasma
concentration” was calculated for model validation purposes. “AUCeffect” was determined
to evaluate the overall effect of each drug combination tested in the NSCLC cell line A549.
In current STELLA® models, AUC is recorded using a separate compartment, but it follows
a principle which is mathematically expressed in Equation (2):

AUC = AUC(t − dt) + “variable in study” ∗ dt (2)

The model built for gemcitabine and 5-FU is a two-compartmental model since their
Cp-time profile has a two-compartment distribution. Using gemcitabine and 5-FU Cp-time
data for intravenous infusion obtained from literature and the PK/PD modeling program
Phoenix WinNonlin (64-bit, version 7.00), the curve that best fitted the experimental values
obtained in the experimental in vitro approach was traced and the values for each PK
parameter (Vd1, Vd2, CL, k12 and k21) were obtained. Therefore, with the input of the
parameters obtained through WinNonlin, the models developed in STELLA® describe
the disposition of each drug over time, after intravenous infusion. The input dose is also
the same as the one reported in the literature source used (infusion of 15.7 mg·min−1 for
120 min for gemcitabine, and bolus injection of 900 mg for 5-FU).

The gemcitabine and 5-FU concentration-dependent percentage of cell growth inhi-
bition was determined by the previous in vitro studies, where a range of concentrations
of either gemcitabine or 5-FU was tested. Therefore, in the models, gemcitabine/5-FU
tissue concentration was linked to percentage of cell growth inhibition in cancer cells,
i.e., the percentage of cell growth inhibition depends on the concentration of anticancer
drug in the tissue compartment over time. Although tumor microenvironments have
different characteristics from healthy tissues, including vascularization and permeability,
for simplification purposes, in the developed models it was assumed that tumor tissue
behaves the same way as other tissues grouped in tissue compartments.

Dose-response curves were obtained from the in vitro studies in the A549 cell line
as reported above. With the constants obtained from those curves, such as the lowest
and highest effect achieved (“Bottom” and “Top” respectively), the steepness of the curve
(“Steepness factor”) and the drug concentration at which 50% of the maximum effect was
obtained (“EC50”), the effect over time can be determined through a Hill Equation (3)
(because tissue concentration will vary over time):

% of effect = (Bottom) +
(Top)− (Bottom)

1 +
(

tissue concentration
EC50

)−steepness factor (3)

The parameters from all the 8 dose-response curves were used in this model (one
at a time) and for each, the AUCeffect was evaluated: Gemcitabine alone; gemcitabine +
itraconazole 2 µM; gemcitabine + itraconazole 4 µM and gemcitabine + itraconazole 6 µM;
5-FU alone; 5-FU + itraconazole 2 µM; 5-FU + itraconazole 4 µM and 5-FU + itraconazole
6 µM. All the variables, such as drug plasma concentration, drug tissue concentration,
drug amount eliminated, and percentage of effect can be plotted in graphs or tables and
evaluated over time.

For the simulations, Runge-Kutta 4th order integration method was used since it is
the most accurate integration method available in STELLA®. Simulation length and step
size (h) were chosen in a way that h was low enough to give accurate results without
compromising the speed of the simulation and simulation length was long enough to
allow the lower effect value to be reached. Therefore, h = 0.02 and 400 min of simulation
length were used for gemcitabine and h = 0.02 and 200 min of simulation length were used
for 5-FU.
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Figures 2 and 3 show the models for gemcitabine and 5-FU, respectively, without
itraconazole (I = 0 µM). For the combinations of gemcitabine or 5-FU with itraconazole, the
exact same layout was used and only the “Bottom”, “Top”, “Steepness factor” and “EC50”
variables were changed, according to each situation.

Figure 2. Two-compartment model of gemcitabine intravenous infusion administration. The drug is infused to plasma com-
partment at a rate of 15.7 mg·min−1 for 120 min. The drug is transferred from plasma compartment to tissue compartment
and vice versa at a rate defined by “k12” × ”gemcitabine plasma amount” and “k21” × ”Tissue amount”, respectively, where
“k12” and “k21” are transfer rate constants. The drug is eliminated from plasma compartment to elimination compartment
at a rate defined by “CL” × ”gemcitabine plasma concentration” where “CL” is a constant and “gemcitabine plasma
concentration” is a variable that changes over time. “Gemcitabine plasma concentration” is the result of “gemcitabine
plasma amount” divided by “Vd1”, while “gemcitabine tissue concentration” results from “Tissue amount” divided by
“Vd2”. “Gemcitabine plasma amount” is the net result of the amount of drug that leaves plasma compartment (to elim-
ination and tissue compartment) and the amount that enters in this compartment (coming from the infusion and tissue
compartment). “AUC plasma concentration” is generated through Equation (2), where the variable in study is “gemcitabine
plasma concentration”. Considering Equation (3), “gemcitabine tissue concentration” and the four parameters obtained
from gemcitabine without itraconazole dose-response curve (“Bottom”, “Top”, “Steepness factor” and “EC50”), the effect of
gemcitabine alone is modelled over time.

2.4.4. Itraconazole’s Dose-Dependent Effect, when Combined with Gemcitabine or 5-FU

After quantification of each drug combination effect (through the determination of
their AUCeffect), where the main variable was ACD tissue concentration, itraconazole’s
dose-dependent effect was evaluated. At this stage, the exact same 8 dose-response curves
were considered: ACD alone; ACD + itraconazole 2 µM; ACD + itraconazole 4 µM and
ACD + itraconazole 6 µM. The difference from the previous study lies in the addition
of a second two-compartment model (this time for itraconazole) and the itraconazole
dose-dependent effect evaluation. For this purpose, three different itraconazole doses were
evaluated in the simulations (100, 300 and 500 mg). ACD doses remained the same as in
the previous study (1884 mg of gemcitabine and 900 mg of 5-FU).
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Figure 3. Two-compartment model of 5-FU intravenous injection administration. The drug is injected into plasma
compartment at a dose of 900 mg. The drug is transferred from plasma compartment to tissue compartment and vice versa
at a rate defined by “k12” × ”Plasma amount 5-FU” and “k21” × ”Tissue amount 5-FU”, respectively, where “k12” and “k21”
are transfer rate constants. The drug is eliminated from plasma compartment to elimination compartment at a rate defined
by “CL” × ”Plasma concentration 5-FU”, where “CL” is a constant and “Plasma concentration 5-FU” is a variable that
changes over time. “Plasma concentration 5-FU” is the result of “Plasma amount 5-FU” divided by “Vd1” while “Tissue
concentration 5-FU” results from “Tissue amount 5-FU” divided by “Vd2”. “Plasma amount 5-FU” is the net result of the
amount of drug that leaves plasma compartment (to elimination” or tissue compartment) and the amount that enters in
this compartment (coming from tissue compartment). “AUC plasma concentration” is generated through Equation (2)
where the variable in study is “Plasma concentration 5-FU”. Considering Equation (3), “Tissue concentration 5-FU” and the
four parameters obtained from 5-FU without itraconazole dose-response curve (“Bottom”, “Top”, “Steepness factor” and
“EC50”), the effect of 5-FU alone is modeled over time.

Two-compartment PK models were built for each ACD in study, in accordance with
the literature information about the model that best fits their Cp-time data. Although
itraconazole is most frequently administered orally, the intravenous infusion was selected
to avoid the low oral bioavailability characteristic of this drug. Therefore, based on the
literature human Cp-time data for intravenous infusion of itraconazole and using the
WinNonlin program, all PK parameters needed for two-compartment model construction
were collected and the model was built.

Only the “Bottom” value of the ACD dose-response curve was found to be significantly
affected by itraconazole concentration. Therefore, equations that relate the change of
“Bottom” value with the concentration of itraconazole were included in “Bottom” Converter,
i.e., the percentage of cell growth inhibition is given taking into account not only ACD
concentration (Equation (3), but also the influence of itraconazole concentration on “Bottom”
value. Equation (4) describes the change of “Bottom” value in gemcitabine + itraconazole
dose-response curves and Equation (5) describes it for the 5-FU + itraconazole combination.
x is itraconazole tissue concentration, in µg·mL−1. In relation to the other variables that
describe dose-response curve (“Top”, “Steepness factor” and “EC50”), the average of the
three values (relative to ACD + itraconazole 2, 4 and 6 µM dose-response curves) were
used. The model for gemcitabine + itraconazole combination is shown in Figure 4. 5-FU +
itraconazole combination model is shown in Figure 5. Again, the exact same layout was
used to test three different doses of itraconazole, and 5-FU dose remained the same. All
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the variables, such as drug plasma concentration, drug tissue concentration, drug amount
eliminated, and percentage of effect can be plotted in graphs or tables and evaluated over
time. Similar Runge-Kutta 4th order integration methods were used.

Bottom = 2.44x2 − 1.95x − 1.06 (4)

Bottom = 2.15x2 − 1.15x − 0.47 (5)

Figure 4. Two-compartment PK model for gemcitabine with IV infusion, two-compartment PK model for itraconazole with
IV infusion and the relation of their tissue concentration with percentage of cell growth inhibition in A549 cancer cell line.
Gemcitabine’s model has been described in Figure 2. For itraconazole compartmental model, drug is infused to plasma
compartment at a rate of 8.3, 5 or 1.7 mg·min−1 during 1 h (500, 300 or 100 mg doses, respectively). It is transferred from
plasma compartment to tissue compartment and vice versa at a rate defined by “k12” × ”Itraconazole plasma amount”
and “k21” × ”Itraconazole tissue amount”, respectively, where “k12” and “k21” are transfer rate constants. The drug is
eliminated from plasma compartment to elimination compartment at a rate defined by “CL” × ”Itraconazole plasma
concentration”, where “CL” is a constant and “Itraconazole plasma concentration” is a variable that changes over time.
“Itraconazole plasma concentration” is the result of “Itraconazole plasma amount” divided by “Vd1” while “Itraconazole
tissue concentration” results from “Itraconazole tissue amount” divided by “Vd2”. “Itraconazole plasma amount” is
the net result of the amount of drug that leaves plasma compartment (to elimination and tissue compartment) and the
amount that enters in this compartment (coming from infusion and tissue compartment). “AUC plasma concentration” is
generated through Equation (2), where variable in study is “Itraconazole plasma concentration”. Considering Equation (3),
“Gemcitabine tissue concentration”, the average of gemcitabine + itraconazole dose-response curve parameters “Top”,
“Steepness factor” and “EC50”, and Equation (4), itraconazole dose-dependent effect was modelled.
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Figure 5. Two-compartment PK model for 5-FU with IV injection (described in Figure 3), two-compartment model for
itraconazole with IV infusion and the relation of their tissue concentration with percentage of cell growth inhibition in
A549 cancer cell line. For itraconazole, compartment model drug is infused to plasma compartment at a rate of 8.3, 5 or
1.7 mg·min−1 during 1 h (500, 300, or 100 mg doses, respectively). It is transferred from plasma compartment to tissue
compartment and vice versa at a rate defined by “k12” × ”Itraconazole plasma amount” and “k21” × ”Itraconazole tissue
amount”, respectively, where “k12” and “k21” are transfer rate constants. The drug is eliminated from plasma compartment
to elimination compartment at a rate defined by “CL” × ”Itraconazole plasma concentration”, where “CL” is a constant and
“Itraconazole plasma concentration” is a variable that changes over time. “Itraconazole plasma concentration” is the result
of “Itraconazole plasma amount” divided by “Vd1”, while “Itraconazole tissue concentration” results from “Itraconazole
tissue amount” divided by “Vd2”. “Itraconazole plasma amount” is the net result of the amount of drug that leaves plasma
compartment (to elimination and tissue compartment) and the amount that enters in this compartment (coming from
infusion and tissue compartment). “AUC plasma concentration” is generated through Equation (2) where variable in
study is “Itraconazole plasma concentration”. Considering Equation (3), “Tissue concentration 5-FU”, the average of
5-FU + itraconazole dose-response curve parameters “Top”, “Steepness factor” and “EC50”, and Equation (5), itraconazole
dose-dependent effect was modelled.

2.5. Model Validation

Two assessments were carried out to establish whether two-compartment models
were well-constructed and that there were no errors in parameter inputs. First, STELLA®

generated Cp-time curves were plotted against literature Cp-time data and general shape
of the curve and fitting was evaluated. AUC plasma concentration was another parameter
used to evaluate the accuracy of the models. Therefore, using the exact same dosages and
routes of administration as the ones used in the literature experiments, Cp-time curve and
AUC plasma concentration were determined and compared with literature data.

The results of the present study provide new insight in ACD and RD combinations
evaluated for lung and prostate cancer treatment and a new tool to quantify drug combi-
nations effect, as the area under the dose-response-time curve, or AUCeffect. Furthermore,
the innovative idea developed in this work resides in an in silico study that enables the
coupling of cell viability assay data with human drug disposition.

3. Results and Discussion
3.1. In Vitro Experiments—Evaluation of Inhibition of Cell Growth

To evaluate the effect of six drug combinations (ACD gemcitabine or 5-FU with RD
itraconazole, verapamil or tacrine) in cell proliferation, MTT assay was performed following
72-h treatment in human lung carcinoma A549 cell line, human prostate adenocarcinoma
PC-3 cell line and normal human prostate epithelium PNT2 cell lines.
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3.1.1. Range of ACD Concentrations + Fixed Concentration of RD

Firstly, several ACD concentrations (gemcitabine or 5-FU) were tested with or without
RD (itraconazole, verapamil or tacrine) at a fixed concentration. The dose-response curves
are represented in Figures 6 and 7.

Figure 6. Dose-response curve of gemcitabine in combination with RD. Percentage of cell growth
inhibition of human lung carcinoma A549 cell line ((A)—top left), human prostate adenocarcinoma
PC-3 cell line ((B)—right top) and normal human prostate epithelium PNT2 cell line ((C)— bottom
left), treated with a wide range of concentrations of gemcitabine (Gem) alone (black line) or Gem
in combination with a fixed concentration of RD (verapamil, V, green line; itraconazole, I, blue line;
or tacrine, T, orange line), during 72 h, determined with MTT assay. The results are the mean of at
least three independent experiments. The DMSO control did not present toxicity to the cells (data
not shown).

These results show all tested cell lines are sensitive to gemcitabine and 5-FU but to
different degrees. The dose-response curve for gemcitabine and 5-FU alone is approximate
to gemcitabine and 5-FU in combination with verapamil or tacrine, in all cell lines. On the
other hand, itraconazole combination substantially improved the overall effect, comparing
to ACD alone. In healthy and cancer prostate cell lines (PNT2 and PC-3, respectively),
itraconazole effect is more noticeable when gemcitabine concentration is low (<0.5 µM in
PNT2 and <0.1 µM in PC-3 cell lines). At higher concentrations, Gem + I curve matches the
control line, suggesting that the overall effect is due to gemcitabine. In the A549 cell line,
itraconazole considerably enhanced cell growth inhibition in all gemcitabine concentrations
tested. However, the overall effect of 5-FU + I combination is almost independent on 5-FU
concentration, suggesting that the observed response is mostly due to itraconazole. Yet,
this conclusion cannot be validated due to the lack of itraconazole alone control.

The three selected repurposed drugs were expected to show noticeable improvement
in cell growth inhibition when combined with gemcitabine or 5-FU. However, tacrine and
verapamil did not reveal promising activity. Tacrine has been reported to enhance tumor
suppressor’s activity, such as caspase, Bax, and p53 expression in mouse hepatocytes [32];
though, when used in combination with gemcitabine or 5-FU at a concentration of 1 µM in
the cell lines tested here, it did not reveal significant improvement in cell growth inhibition
comparing to the control (ACD alone). Verapamil is known to promote intracellular
accumulation of chemotherapeutic drugs. It has been studied in multiple types of cancer
cell lines and in combination with multiple ACDs and has proven efficacy in reversing
multidrug resistance through inhibition of P-gp, one of the main proteins responsible for
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drug extrusion in cancer [31,33–37]. A recent study has also evaluated the combination of
verapamil with gemcitabine in chemotherapy-resistant pancreatic cancer side population
(SP) cells, showing enhancement in cytotoxicity when used in combination with this
chemotherapeutic agent, as well as apoptosis induction of stem-like SP cells in L3.6pl and
AsPC-1 pancreatic carcinoma models and significant inhibition of pancreatic cancer tumor
growth in vivo, potentially by targeting stem-like side population cells [38]. However, in
this work, verapamil did not show significant improvement of cell growth inhibition when
in combination with gemcitabine or 5-FU.

Figure 7. Dose-response curve of 5-FU in combination with RD. Percentage of cell growth inhibition
of human lung carcinoma A549 cell line ((A)—top left), human prostate adenocarcinoma PC-3 cell
line ((B)—top right) and normal human prostate epithelium PNT2 cell line ((C)—bottom left), treated
with wide range of concentrations of 5-fluorouracil (5-FU) alone (black line) or 5-FU in combination
with a fixed concentration of RD (verapamil, V, green line; itraconazole, I, blue line; or tacrine,
T, orange line), during 72 h, determined with MTT assay. Results are the mean of at least three
independent experiments. The DMSO control did not present toxicity to the cells (data not shown).

As shown in the results above, itraconazole was the only RD that significantly in-
creased the cell growth inhibition when combined with an ACD (gemcitabine or 5-FU).
Itraconazole has been extensively studied in cancer research and several anticancer mecha-
nisms of action have been identified, which include the ability to inhibit Hedgehog pathway
and angiogenesis, both mechanisms related to cancer development, autophagy induction
and reversal of multidrug resistance [39–44]. Therefore, the enhancement of cell growth
inhibition may be explained by the targeting of an additional pathway in cell division. To
better understand how the itraconazole concentration affected cell growth inhibition, lower
itraconazole concentrations were tested, since the concentration tested in the previous
experiments was the maximum plasma concentration recommended.

3.1.2. Range of Itraconazole Concentrations + Fixed Concentration of ACD

A range of concentrations of itraconazole was either tested alone (control) or in
combination with a fixed concentration of ACD. ACDs were also tested alone as a control.
Itraconazole dose-response curve is represented in Figure 8, demonstrating no cell growth
inhibition is achieved at concentrations lower than 2 µM. Concentrations higher than
this value drove cell growth inhibition in a dose-dependent manner. However, the dose-
response curve of itraconazole + 5-FU overlaps itraconazole alone dose-response curve.
Hence, this data is not enough to understand if itraconazole is improving 5-FU effect or if
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the result is only due to itraconazole itself. For the itraconazole + gemcitabine combination,
at higher concentrations of itraconazole the effect is higher than itraconazole or gemcitabine
effect alone. As stated, only itraconazole concentrations above 2 µM enhanced the cell
growth inhibition when in combination with an ACD. Thus, to evaluate the itraconazole
concentration effect in ACD dose-response curve, further experiments were done.

Figure 8. Dose-response curve of itraconazole in combination with ACD. Percentage of cell growth
inhibition of human lung carcinoma A549 cell line treated with a range of concentrations of itra-
conazole alone (black line) or itraconazole in combination with a fixed concentration of ACD (Gem
(blue line) or 5-FU (green line)), during 72 h, determined with MTT assay. The results are mean of at
least three independent experiments. The DMSO control did not present toxicity to the cells (data
not shown).

3.1.3. Range of ACD Concentrations + Fixed Concentration of Itraconazole

ACD range of concentrations was tested with or without a fixed concentration of
itraconazole. Three different concentrations of itraconazole were tested: 2, 4 and 6 µM.
Itraconazole was also tested alone as a control. Figure 9 shows gemcitabine + itraconazole
(A) and 5-FU + itraconazole (B) dose-response curves. According to the results, itraconazole
concentration does not significantly affect the highest percentage of cell growth inhibition
(“Top” value), but it strongly affects the lowest value of the curve (“Bottom” value),
meaning the highest effect (“Top” value) achieved with gemcitabine or 5-FU alone is
approximately the same as drug combinations, values rounding 73% and 59%, respectively
(Tables 1 and 2). On the other hand, the lowest percentage of cell growth inhibition
(“Bottom” value) strongly depends on itraconazole concentration, varying in a dose-
dependent manner. Increasing itraconazole concentration to 4 and 6 µM increases “Bottom”
value from 0 (control) to about 13%, and 33%, respectively, in both combination groups
(Figure 9A,B).

Table 1. Dose-response curve parameters for gemcitabine and itraconazole combinations, obtained
from GraphPad. (N.A.: non-applicable.).

Gem + I a Bottom (%) Top (%) Steepness Factor EC50 (µg·mL−1)

I = 6 µM 34.33 ± 2.43 80.39 ± 1.71 4.30 ± 1.30 0.0016 ± 3.2 × 10−7

I = 4 µM 12.83 ± 2.79 73.07 ± 1.97 4.37 ± 0.99 0.0018 ± 3.1 × 10−7

I = 2 µM −5.51 ± 1.83 67.47 ± 1.29 5.35 ± 1.12 0.0022 ± 1.6 × 10−7

I = 0 µM −1.06 ± 2.35 70.12 ± 1.67 23.14 ± 4.20 × 105 0.0026 ± 2.2 × 105

Average N.A. 72.76 4.67 0.0021
a I is the drug itraconazole. Gem + I = 2 µM for “Bottom (%)” and Gem + I = 0 µM for “Steepness factor” were not
included in the calculation of the average.
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Figure 9. Dose-response curves of ACD in combination with itraconazole. (A): Percentage of cell growth inhibition of
human lung carcinoma A549 cell line treated with wide range of concentrations of gemcitabine (Gem) alone (control) or
Gem in combination with a fixed concentration of itraconazole (I), during 72 h, determined with MTT assay; (B): Percentage
of cell growth inhibition of human lung carcinoma A549 cell line, treated with wide range of concentrations of 5-FU alone
(control) or 5-FU in combination with a fixed concentration of I, during 72 h, determined with MTT assay. The results are the
mean of at least three independent experiments. The DMSO control did not present toxicity to the cells (data not shown).

Table 2. Dose-response curve parameters for 5-FU and itraconazole combinations, obtained from
GraphPad. (N.A.: non applicable.).

5-FU + I a Bottom (%) Top (%) Steepness Factor EC50 (µg·mL−1)

I = 6 µM 33.22 ± 1.58 63.24 ± 1.62 2.77 ± 1.23 0.36 ± 0.01
I = 4 µM 13.42 ± 3.09 56.05 ± 2.87 2.90 ± 2.40 0.20 ± 0.0071
I = 2 µM −6.99 ± 2.14 57.52 ± 2.11 1.70 ± 0.26 0.27 ± 0.002
I = 0 µM −0.47 ± 1.32 57.80 ± 1.32 2.19 ± 0.27 0.28 ± 0.001
Average N.A. 58.65 2.39 0.28

a I is the drug itraconazole. 5-FU + I = 2 µM for “Bottom (%)” was not included in the calculation of the average.

3.2. WinNonlin: PK Analysis

The concentration-time curves of gemcitabine in plasma from the literature were
evaluated by compartmental analysis (Phoenix WinNonlin (64-bit, version 7.00)). The best
fitting was achieved with a two-compartmental model (Figure 10) and PK parameters were
obtained through PK analysis (Table 3). Although WinNonlin prediction (blue line) did
not fit all experimental values (red circles), k10, AUC, Cmax and CL values obtained are
in accordance with the literature. However, transfer rate constants k12 and k21 and tissue
compartment volume of distribution (Vd2) measurements are not very precise, but since no
more accurate data was available, the values were included in the STELLA® model.

Table 3. Gemcitabine PK parameters obtained from WinNonlin.

Gemcitabine Parameters Estimate CV (%) Literature Values [27]

k10 (min−1) 5.54 × 10−2 144.9 7.00 × 10−2

k12 (min−1) 6.64 × 10−4 45,998.6 -
k21 (min−1) 1.02 × 10−1 29,203.6 -

AUC (µg·mL−1·min) 499.58 10.3 453.00
Cmax (µg·mL−1) 4.16 10.5 4.92
CL (mL·min−1) 3771.20 10.3 3940.05

Vss (mL) 68,464.40 37.4 -
Vd1 (mL) 68,019.62 148.8 -
Vd2 (mL) 444.79 19,137.5 -

k10: elimination rate constant; k12: transfer rate constant from central compartment to tissue compartment; k21:
transfer rate constant from tissue compartment to central compartment; AUC: area under the plasma concentration-
time curve; Cmax: maximum plasma concentration; CL: clearance; Vss: steady state volume of distribution; Vd1:
volume of distribution of central compartment; Vd2: volume of distribution of tissue compartment.
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Figure 10. Gemcitabine Cp-time curve prediction through two-compartment model fitting of its
observed Cp-time data. Red circles correspond to the experimental data, obtained from the liter-
ature, and the continuous blue line corresponds to the in silico Cp-time curve prediction. Plasma
concentration is given in µg·mL−1 and time in minutes.

The concentration-time curves of 5-FU in plasma from the literature were also evalu-
ated by compartmental analysis and the best fitting was achieved with a two-compartment
model (Figure 11). PK parameters were obtained through PK analysis (Table 4). As shown
in Figure 11, WinNonlin prediction (blue line) fits all experimental values (red circles)
almost perfectly. All PK parameters obtained are also in accordance with literature values.

Figure 11. 5-FU Cp-time curve prediction through two-compartment model fitting of its observed
Cp-time data. Red circles correspond to the experimental data, obtained from the literature, and the
continuous blue line corresponds to the in silico Cp-time curve prediction. Plasma concentration is
given in µg·mL−1 and time in minutes.

Finally, concentration-time curves of itraconazole in plasma were also evaluated and
best-fitted to a two-compartmental model (Figure 12 and Table 5). Although the predicted
steady-state volume of distribution (Vss) is quite lower than the volume of distribution
reported in literature source, WinNonlin prediction (blue line) fits all experimental values
(red circles) almost perfectly and % CV is fairly small in all parameters determined. There-
fore, WinNonlin prediction was assumed to be reliable. In fact, the volume of distribution
parameter determined in the literature is Vdarea [28], which means that it was determined
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during the elimination phase and not at steady-state, as in WinNonlin prediction [45].
Therefore, the parameters cannot be compared.

Table 4. 5-FU PK parameters obtained from WinNonlin.

5-FU Parameters Estimate CV (%) Literature Values [29]

k10 (min−1) 9.17 × 10−2 4.9 -
k12 (min−1) 3.21 × 10−2 29.5 -
k21 (min−1) 1.07 × 10−1 28.1 -

AUC (µg·mL−1·min) 1058.81 1.6 926.80
Cmax (µg·mL−1) 97.14 5.1 -
CL (mL·min−1) 850.01 1.6 1069.20

Vss (mL) 12,056.99 4.9 15,912.00
Vd1 (mL) 9265.14 5.1 -
Vd2 (mL) 2791.84 14.2 -

k10: elimination rate constant; k12: transfer rate constant from central compartment to tissue compartment; k21:
transfer rate constant from tissue compartment to central compartment; AUC: area under the plasma concentration-
time curve; Cmax: maximum plasma concentration; CL: clearance; Vss: steady state volume of distribution; Vd1:
volume of distribution of central compartment; Vd2: volume of distribution of tissue compartment.

Figure 12. Itraconazole Cp-time curve prediction through two-compartmental model fitting of
its observed Cp-time data. Red circles correspond to the experimental data, obtained from the
literature, and the continuous blue line corresponds to the in silico Cp-time curve prediction. Plasma
concentration is given in µg·mL−1 and time in minutes.

Table 5. Itraconazole PK parameters obtained from WinNonlin.

Itraconazole Parameters Estimate CV (%) Literature Values [28]

k10 (min−1) 2.80 × 10−2 8.8 2.66 × 10−2

k12 (min−1) 2.38 × 10−2 9.4 -
k21 (min−1) 2.34 × 10−3 15.3 -

AUC (µg·mL−1·min) 437.73 7.9 449.88
Cmax (µg·mL−1) 3.88 0.6 -
CL (mL·min−1) 228.45 7.9 246.67

Vss (mL) 90,922.24 20.9 558,000.00
Vd1 (mL) 8145.37 2.6 -
Vd2 (mL) 82,776.88 22.9 -

k10: elimination rate constant; k12: transfer rate constant from central compartment to tissue compartment; k21:
transfer rate constant from tissue compartment to central compartment; AUC: area under the plasma concentration-
time curve; Cmax: maximum plasma concentration; CL: clearance; Vss: steady state volume of distribution; Vd1:
volume of distribution of central compartment; Vd2: volume of distribution of tissue compartment.
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3.3. STELLA® Models
3.3.1. Input Data for the Model

For the models described in the experimental section, two types of parameters were
used: (1) the parameters related with the drug in focus obtained through WinNonlin
(Tables 3–5), which were used as constants without further modification, and (2) the pa-
rameters obtained from the in vitro studies.

3.3.2. Model Validation

To evaluate the model accuracy, Cp-time curve was determined through STELLA®

models and compared with the experimental values. Figure 13 shows that gemcitabine
STELLA® model (Figure 2) is quite accurate in predicting gemcitabine’s plasma concen-
tration over time. Since the input values came from WinNonlin, and WinNonlin Cp-time
curve prediction did not fit all experimental values, then Cp-time curve predicted through
STELLA® will not fit them all either. For the 5-FU STELLA® model, Figure 14 demonstrates
Cp-time curve predicted with STELLA® (blue line) fitting all the experimental values
(orange circles). Thus, model accuracy predicting 5-FU’s plasma concentration over time
can be assumed. Similarly, itraconazole Cp-time curve predicted with STELLA® (blue line)
is also fitting all the experimental values (orange circles) (Figure 15). Once more, model
accuracy predicting itraconazole plasma concentration over time can be assumed. Besides
Cp-time curve graphical analysis, to validate STELLA® models, AUC values were deter-
mined and compared with literature sources. In Figure 16, three AUC values are depicted
for each drug: AUC calculated from experimental data (literature value), WinNonlin PK
analysis, and STELLA® model simulation prediction. As expected, for each drug, STELLA®

prediction is in perfect accordance with WinNonlin PK analysis, showing the exact same
AUC value. Literature values are slightly different from STELLA® and WinNonlin pre-
dictions, probably due to differences in the integration method used for AUC calculation
(all literature sources used trapezoidal rule, while STELLA® and WinNonlin predictions
resorted to 4th order Runge-Kutta method).

3.3.3. AUCeffect: Drug Combination Effect Comparison

To compare drug combination effect in A549 cancer cell line, AUCeffect was determined
in STELLA®. The effect is calculated through Equation (3), where the only variable is
ACD tissue concentration. All the other parameters are constants and characterize the
dose-response curve obtained from the in vitro studies, i.e., depending on ACD tissue
concentration and the parameters introduced in model converters, “Effect” gets a certain
value over time. AUCeffect quantifies the overall effect during simulation. According to the
simulations (Figure 17), and in accordance with the in vitro experimental results (Figure 9),
the higher the itraconazole concentration, the higher is the AUCeffect value. In gemcitabine
combinations, when itraconazole tissue concentration is 4 µM and 6 µM, AUCeffect is about
9% and 22% higher than control (gemcitabine without itraconazole), respectively. In 5-FU
combinations, these values reach 12% and 34% improvement relative to control (5-FU
without itraconazole), respectively. However, for unknown reasons, when itraconazole
concentration is 2 µM, AUCeffect is lower than control, in both combination groups.

Although gemcitabine and 5-FU elimination half-life (t1/2) is identical (10 and 12 min,
respectively) [27,29], the former is infused at a rate of 15.7 mg per minute, over 2 h, which
represents a total dose of 1884 mg, while the latter is administered through a bolus IV
injection at a dose of 900 mg. Therefore, the AUCeffect of 5-FU is expected to be much
smaller than gemcitabine’s, due to the lower dose and overall reduced exposure time of
5-FU in tissue. Besides the AUCeffect, further analysis was done regarding itraconazole
dose-dependent effect. This time, instead of only one variable (ACD concentration), as in
the previous study, the percentage of effect will also depend on itraconazole tissue concen-
tration over time. “% Effect” is still calculated through Equation (3), where ACD tissue
concentration is the main variable, but “Bottom” parameter is now an equation dependent
on itraconazole tissue concentration, instead of being a constant (Equations (4) and (5)).
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Figure 13. Graphical representation of experimental Cp-time data of gemcitabine and Cp-time curve generated in silico for
this drug over 210 min.

Figure 14. Graphical comparison between experimental Cp-time data of 5-FU and Cp-time curve generated in silico for this
drug over 90 min.

Figure 15. Graphical comparison between experimental Cp-time data of itraconazole and Cp-time curve generated in silico
for this drug over 5000 min.
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Figure 16. Graphical representation of AUC plasma concentration of gemcitabine, 5-FU, and itra-
conazole when determined experimentally, through WinNonlin or STELLA® models.

Figure 17. Graphical representation of AUCeffect for gemcitabine + itraconazole and 5-FU + itracona-
zole combinations.

Figure 18 presents five different graphs that enable the evaluation of drug concen-
tration in the tissue compartment and its relationship with % effect over time. Graphs A
and B show effect-time curve of ACD and itraconazole drug combination. Using constant
ACD dose administration and three different doses of itraconazole, differences between
effect-time curves can be observed. According to Figure 18A,B, depending on itraconazole
dose administration, the final part of the curve is different.

For gemcitabine + itraconazole drug combination (Figure 18A), first the “% Effect”
remains constant, at a level of 73% of cell growth inhibition. Then, at minute 260, the effect
starts dropping abruptly. This drop can be explained with a deeper analysis of Equation (3).
Gemcitabine concentration affects “% Effect” through exponential function described by
Equation (6), where x is gemcitabine tissue concentration. According to this equation, at
very high concentrations, gemcitabine tissue concentration influence on “% Effect” can
be despised because f(x) will result in a very low value (Equation (6). Then, this value
will be summed to 1 and divided to (“Top”-“Bottom”) values. When this concentration is
reduced to a value lower than 0.008 µg·mL−1, f(x) increases exponentially, reducing “%
Effect” abruptly. Figure 18C shows gemcitabine tissue concentration-time curve:

f(x) =
( x

0.0019

)−4.67
. (6)
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Figure 18. ACD + itraconazole (I) combination STELLA® simulation. (A,B): Effect curves for gemcitabine + itraconazole
and 5-FU + itraconazole combinations, respectively. Three itraconazole doses were tested, (C,D): Tissue concentration-time
curves of gemcitabine and 5-FU, when intravenously administered at a dose of 1884 mg (infusion), and 900 mg (injection),
respectively; (E): Tissue concentration-time curve of itraconazole for three different doses of intravenous infusion.

After the drop in “% Effect” value, slight differences between effect-time curves start to
be noticed. At this point, itraconazole tissue concentration plays the main role in the overall
effect, since “% Effect” equals “Bottom” value (Equation (3), which is directly dependent on
itraconazole tissue concentration. In Figure 18E, itraconazole tissue concentration is shown
for the three studied doses. According to the results, itraconazole is slowly eliminated from
the tissue compartment and will maintain % of cell growth inhibition relatively constant
while it is being eliminated from the tissue compartment. In fact, if higher values of
itraconazole tissue concentration were considered, “% Effect” would be equally higher.
This can be mathematically explained through Equation (4) analysis. Itraconazole multiple
dosing simulation was attempted in the STELLA® simulation program, with the objective
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of increasing itraconazole tissue concentration, but limitations in the software’s built-in
functions did not allow the study.

For 5-FU + itraconazole drug combination (Figure 18B), first “% Effect” remains
constant, at a level of 59% of cell growth inhibition. Then, at minute 70, effect starts
dropping abruptly. This drop can be explained with the same reasoning as presented
above for gemcitabine (Equation (7). When 5-FU concentration is reduced to a value lower
than 0.5 µg·mL−1, f(x) increases exponentially reducing “% Effect” abruptly. Figure 18D
shows 5-FU tissue concentration-time curve. When the drop in “% Effect” value starts,
slight differences between effect-time curves start to be noticed. At this point, itracona-
zole tissue concentration plays the main role in the overall effect, since “% Effect” equals
“Bottom” value (Equation (3), which is directly dependent on itraconazole tissue con-
centration. As stated above, if higher values of itraconazole tissue concentration were
considered, “% Effect” would be equally higher. This can be mathematically explained
through Equation (5) analysis:

f(x) =
( x

0.28

)−2.62
(7)

While drug dose-response curves enable the establishment of a relationship between
drug concentration and % of cell growth inhibition, this kind of approach facilitates the
study of drug concentration-% of cell growth inhibition relationship over time, providing a
better understanding about for how long a drug will exert its effect when administered at a
certain dose until metabolization reduces drug concentration to a non-therapeutic level.

4. Discussing the Limitations in Pharmacokinetics Modeling

Despite the overall success of this project, some difficulties were detected during its
development, particularly regarding STELLA® simulation program, namely the impossi-
bility to make multiple dosing regimens (for IV infusion). As mentioned in Section 3.3.3.,
itraconazole concentration in the tissue compartment was not high enough to significantly
influence the overall “% Effect”. The idea of using multiple dosing regimen was to reach
steady-state plasma concentration (Css), increasing itraconazole accumulation in tissue com-
partment, and thus, to predict the influence of itraconazole in cell growth inhibition. Thus,
alternatives to the STELLA® simulation program were explored to overcome this problem,
which included the use of GastroPlus™ PBPK simulation software and Microsoft Excel.

In this project, an attempt to replicate experimental Cp-time data of itraconazole in
GastroPlus™ was made, but neither uploading itraconazole molecular structure nor in-
putting experimental parameters could replicate the concentration plasma profile reported
in the literature. As shown in Figure 19, itraconazole Cmax predicted through this program,
for 100 mg, 1 h IV infusion, is about 0.095 µg·mL−1, while the equivalent value reported in
the literature, for the same dosing regimen, is 3.9 µg·mL−1. GastroPlus™ is a complex soft-
ware and it is not solely ruled by simple pharmacokinetics equations. To run a simulation
in this program, the input of a few parameters is needed. Apart from common parameters
input as dose, dosage form, solubility and the pH at which it was measured, logP and
pKa’s (if any), it also requires some knowledge about particle radius, particle density and
diffusion coefficient. In the simulation presented in Figure 19, most of the parameters
used were predicted through itraconazole structure upload. Even with the input of some
experimental values, itraconazole Cp-time is quite different from the reported one. Thus, it
was impossible to validate the model and multiple dosing regimen could not be evaluated.

Given the circumstances, the study of itraconazole’s multiple dosing regimen was
done in Microsoft Excel. The literature Css value was used as the itraconazole plasma con-
centration. The transfer rate constants k12 and k21 previously obtained through WinNonlin
were used to simulate itraconazole flow between plasma and tissue compartment. Then,
the “Bottom” value was calculated at every time point, which is dependent on itraconazole
tissue concentration on that specific time point (Equation (4) or Equation (5)). Finally, “%
Effect” was calculated through Equation (3).
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Figure 19. Itraconazole Cp-time profile predicted through GastroPlus™ simulation software.

There are several potential benefits in employing in silico models in the process of drug
R&D. However, reliable results require complex and data-intensive models. Furthermore,
the use of complex models in drug development requires adequate resources and well-
qualified researchers with a good understanding of the ADME data required to drive
the models.

STELLA® models developed in this work are simple but innovative, and provided
insight on the PK and effect of combinations of anticancer drugs with repurposed drugs.
Ideally, parameters used in the model structure should be more consistent, but for a first
idea of the general behavior of the drug combinations in human body, the data used is fairly
appropriate. There is variability in the populations originating the data, and moreover, the
tumor is assumed to behave like the tissues grouped into a tissue compartment, but no
such assumption was confirmed or validated. Although in vitro results do not correlate
directly with in vivo effect, these preliminary studies might be useful for comparative effect
purposes and to provide mechanistic predictions of dosing regimens.

5. Conclusions

We know that the interaction of two drugs in a combination can generate distinct but
complementary cellular responses, but the outcome of this study suggests an interesting
hypothesis to be tested in the clinic, and the preclinical model developed in our study might
provide a reference for the dose selection in the combination therapy of cancer treatment.
Therefore, it is now possible to study tissue drug concentration—% of cell growth inhibition
relationships over time. This provides a better understanding regarding how long a drug
will exert its effect when administered at a certain dose until metabolization reduces drug
concentration to a non-therapeutic level.

In the future, other drug combinations can be tested in cell models, and % effect can
be evaluated over time through similar models. However, due to some limitations and
inconsistencies found in the models developed here, some upgrading/alterations may
be required. Furthermore, future experiments may need different model construction,
depending on the context in which they are inserted, but understanding how STELLA®

modeling program works, one can collect and analyze the necessary data and build the
most convenient model. Additionally, the effect of these combinations must be studied
using appropriate in vivo models.
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