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Abstract: Three phosphine sulfide-based bipolar host materials, viz CzPhPS, DCzPhPS, and TCzPhPS,
were facilely prepared through a one-pot synthesis in excellent yields. The developed hosts exhibit
superior thermal stabilities with the decomposition temperatures (Td) all exceeding 350 ◦C and the
melting temperatures (Tm) over 200 ◦C. In addition, their triplet energy (ET) levels are estimated to
be higher than 3.0 eV, illustrating that they are applicable to serve as hosts for blue phosphorescent
organic light-emitting diodes (PhOLEDs). The maxima luminance, current efficiency (CE), power
efficiency (PE), and external quantum efficiency (EQE) of 17,223 cd m−2, 36.7 cd A−1, 37.5 lm W−1,
and 17.5% are achieved for the blue PhOLEDs hosted by CzPhPS. The PhOLEDs based on DCzPhPS
and TCzPhPS show inferior device performance than that of CzPhPS, which might be ascribed to the
deteriorated charge transporting balance as the increased number of the constructed carbazole units
in DCzPhPS and TCzPhPS molecules would enhance the hole-transporting ability of the devices
to a large extent. Our study demonstrates that the bipolar hosts derived from phosphine sulfide
have enormous potential applications in blue PhOLEDs, and the quantity of donors should be well
controlled to exploit highly efficient phosphine sulfide-based hosts.

Keywords: bipolar host material; phosphorescent organic light-emitting diode; phosphine sulfide;
carbazole; triplet energy level

1. Introduction

Phosphorescent organic light-emitting diodes (PhOLEDs) have been extensively re-
searched in recent decades since they can achieve an internal quantum efficiency of nearly
100% by harvesting both singlet and triplet excitons, and have the advantages of excellent
device stability, high color purity, as well as flexible color adjustment [1–3]. Nevertheless,
the emitters in PhOLEDs need to be incorporated into appropriate hosts for the reason
that the high concentration of emitters can result in concentration quenching, such as
triplet–triplet annihilation (TTA) and triplet–singlet annihilation (TSA) [4,5]. As a con-
sequence, it is of extreme importance to exploit the state-of-the-art hosts to attain high
-performance PhOLEDs.

Bipolar hosts, generally prepared by combining the donor (D) and acceptor (A) units
into a molecular skeleton (i.e., D–A molecules), are capable of achieving a broad recom-
bination zone and balanced charge in the emitting layer (EML), so they are considered
one of the most promising types of hosts to realize highly efficient PhOLEDs [6–8]. Up
until the present, the bipolar hosts for green, yellow, and red phosphorescent emitters have
made commendable progress [9–12], while it is still challenging to develop superior blue
hosts because the blue phosphors inherently possess high triplet energy (ET) levels [13–15],
thus the ET of the hosts should be accordingly elevated to prevent the reverse energy
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transfer from the guests back to the hosts and to effectively confine triplet excitons on the
guests. However, the non-negligible intramolecular interactions in D–A molecules would
produce a low energy charge transfer (CT) state, which brings down the ET levels [16].
Therefore, for the design of blue bipolar hosts that exhibit the balanced charge transport
ability simultaneously maintaining a high ET, D and A constructed groups should be
meticulously selected.

Aryl phosphine oxide (APO, Scheme 1), with moderated electron-withdrawing abil-
ity and excellent charge transport properties, has been widely applied in blue bipolar
hosts [17–24]. Through simply replacing the O atom of APO with the S atom, aryl phos-
phine sulfide (APS, Scheme 1) can be gained. Since the 3p lone-pair electrons of S exhibit the
larger scope than the 2p lone-pair electrons of O, the sulfur atom and π–system interactions
(S–π interactions) can be formed, which would partly enhance intramolecular electronic
communication, leading to selectively modulated frontier molecular orbital energy levels
and improved electrical performance [25,26]. On the other hand, APO with stronger po-
larization of P=O exhibits weaker intramolecular electronic coupling and an unduly deep
highest occupied molecular orbital (HOMO) energy level, rendering it difficult to maintain
the efficient and balanced charge injection and transportation. Hence, the hosts consisting
of APS tend to have enhanced electrical performance than that of APO. However, the
APS-based hosts have hardly been reported so far, and need to be further exploited. In
2016, our group reported a variety of remarkably high-performance bipolar hosts adopting
the phenylphosphine sulfide as the electron-withdrawing unit, of which the host named
as DNCzPS ((9H-carbazol-9-yl)diphenylphosphine sulfide, Scheme 1) displays a ET level
as high as 2.97 eV [25]. The blue PhOLED based on DNCzPS turns on at 2.9 eV with
an impressive maximum external quantum efficiency (EQE) of 21.7%. Subsequently, we
prepared the APS-based host DPSSi ((9-(4-(triphenylsilyl)phenyl)-9H-carbazole-3,6-diyl)
bis(diphenyl-phosphine sulfide), Scheme 1), whose blue PhOLED shows a maximum
EQE of 20.8%, which is 1.58 folds of enhancement compared to that of the APO-based
host DPOSi ((9-(4-(triphenylsilyl)phenyl)-9H-carbazole-3,6-diyl)bis(diphenylphosphine
oxide), Scheme 1) in the same device structure [26]. Encouraged by the above-mentioned
results, in this contribution we employ triphenylphosphine sulfide as A group, and select
mono-, di-, as well as tri-substituted carbazoles with tunable hole-transport ability as D
units, respectively, to construct three original bipolar hosts, i.e., CzPhPS, DCzPhPS, and
TCzPhPS. All three compounds possess the high ETs of ~3.0 eV, much higher than those of
the commonly used blue emitters, demonstrating that they are promising candidates as
the hosts for blue OLEDs. The blue PhOLED hosted by CzPhPS achieves a low turn-on
voltage of 3.1 eV and a maximum EQE of 17.5%, better than the device performance of
DCzPhPS and TCzPhPS, which could be owed to its better charge transport balance.
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outlined in Scheme 2. A nucleophilic addition reaction of the organolithium compounds 
formed from 9-(4-bromophenyl)-9H-carbazole and n-BuLi followed by the treatment with 
sublimed sulfur in dichloromethane furnished the three target molecules in 57–63% 
yields. Their molecular structures were firmly confirmed by 1H and 13C nuclear magnetic 
resonance (NMR) spectra, as well as high-resolution mass spectra (HRMS) (Supporting 
Information, Figures S1–S9). 

 
Scheme 2. Synthetic routes to CzPhPS, DCzPhPS, and TCzPhPS. (i) n-BuLi, THF, −78 °C, 2 h; (ii) 
Ph2PCl, −78 °C, 1 h; (iii) PhPCl2, −78°C, 1 h; (iv) P(OCH2CH3)3, −78 °C, 1 h; (v) Sulfur, CH2Cl2, room 
temperature (r.t.), overnight. 

Scheme 1. Chemical structures of APO, APS, DNCzPS, DPSSi, and DPOSi.

2. Results and Discussion
2.1. Material Synthese

CzPhPS, DCzPhPS, and TCzPhPS were facilely obtained by a one-pot synthesis as
outlined in Scheme 2. A nucleophilic addition reaction of the organolithium compounds
formed from 9-(4-bromophenyl)-9H-carbazole and n-BuLi followed by the treatment with
sublimed sulfur in dichloromethane furnished the three target molecules in 57–63% yields.
Their molecular structures were firmly confirmed by 1H and 13C nuclear magnetic reso-
nance (NMR) spectra, as well as high-resolution mass spectra (HRMS) (Supporting Infor-
mation, Figures S1–S9).
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2.2. Thermal Stability

In order to investigate the thermal properties of the designed phosphine sulfide
molecules, the thermal gravimetric analysis (TGA) and differential scanning calorimetry
(DSC) measurements were carried out under a nitrogen atmosphere. As shown in Figure 1a
and Table 1, all three compounds exhibit outstanding thermal stability with the decom-
position temperatures (Td) of 366, 447, and 479 ◦C for CzPhPS, DCzPhPS, and TCzPhPS,
respectively, indicating that P=S bonds are stable enough for the evaporation process
to fabricate OLEDs. In addition, for these compounds, no glass transition temperature
(Tg) is detected in the tested temperature range shown in Figure 1b, while their melting
temperatures (Tm) can be clearly observed with the Tm values all exceeding 200 ◦C. From
CzPhPS to TCzPhPS, as expected, the phase stability becomes better due to the increased
number of carbazole units.
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Table 1. Thermal, photophysical, electrochemical properties, and energy levels of the developed compounds.

Comp. Td [a]/Tm [b]
(◦C)

λabs [c]
(nm)

λem [c]
(nm)

PLQY [d]
(%)

Lifetime [d]
(ns)

HOMO (eV)
Meas. [e]/
Calcd [f]

LUMO (eV)
Meas. [g]/
Calcd [f]

Eg (eV)
Meas. [h]/
Calcd [f]

ET (eV)
Meas. [i]/
Calcd [f]

CzPhPS 366/209 298, 332, 343 378 24 2.11 −5.71/−5.49 −2.29/−1.12 3.43/4.37 3.00/2.98

DCzPhPS 447/264 298, 335, 343 381 20 1.99 −5.70/−5.52 −2.28/−1.23 3.42/4.29 3.01/2.98

TCzPhPS 479/377 298, 335, 344 380 22 2.06 −5.74/−5.56 −2.34/−1.29 3.38/4.27 3.01/2.99

[a] Decomposition temperatures at 5 wt% weight loss; [b] Melting temperatures; [c] Absorption and PL peaks measured in solid thin
films; [d] Measured in 10−5 M dichloromethane solution; [e] HOMO energy levels estimated from the onset potentials of the oxidation
peaks in cyclic voltammograms; [f] Calculated from Gaussian 09 M062X; [g] Obtained from EHOMO and Eg according to the equation of
ELUMO = Eg + EHOMO; [h] Estimated from the absorption edge of thin films (λonset) employing the formula of Eg = 1240/λonset; [i] Estimated
from the first peaks of phosphorescence spectra recorded in tetrahydrofuran at 77 K.

2.3. Photophysical Properties

Figure 2a displays the absorption and photoluminescence (PL) spectra of the devel-
oped materials in solid thin films. CzPhPS, DCzPhPS, and TCzPhPS exhibit quite similar
absorption and emission spectra as they are constructed by the same electron-accepting unit
(triphenyl phosphine sulfide) and electron-donating unit (carbazole), and the quantities of
carbazole units do not have a large effect on their intermolecular charge transfer properties.
All three compounds exhibit a sharp absorption peak at 298 nm, which can be ascribed to
the π-π* transitions of carbazole groups [27], whereas the absorption peaks of around 335
and 343 nm might be due to the intramolecular CT from the electron donor carbazole to the
electron acceptor triphenyl phosphine sulfide. CzPhPS, DCzPhPS, and TCzPhPS display
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similar PL spectra with the emission peaks at 378, 381, and 380 nm, respectively. In addition,
all the time-resolved transient PL decay curves of those pure films shown in Figure 2b
consist of a nanosecond-order lifetime of ~2 ns, suggesting their fluorescent nature. To
further investigate the luminescent properties of the target molecules, their photolumines-
cence quantum yields (PLQYs) were also measured in 10−5 M dichloromethane solution.
CzPhPS, DCzPhPS, and TCzPhPS exhibit low PLQYs of 24%, 20%, and 22%, respectively.
Moreover, according to the first peaks of phosphorescence spectra (see Figure S10) recorded
at 77 K in THF with a delay time of 20 ms, the ETs of CzPhPS, DCzPhPS, and TCzPhPS
are estimated to be ~3.0 eV, which is high enough for them to serve as hosts for commonly
used blue emitters such as bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium
(III) (FIrpic, ET: 2.65 eV) [28].
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2.4. Electrochemical Properties

Cyclic voltammetry (CV) measurements were carried out to obtain the electrical
properties of these phosphine sulfide compounds [29]. As shown in Figure 3, all the
compounds exhibit an irreversible oxidative wave with the onset potential at ~0.95 eV,
attributed to the oxidation of carbazole units, whereas their reduced waves can not be
observed when the negative voltage is applied. The HOMO energy levels are estimated
to be ~−5.72 eV based on the onset potential of the oxidative wave, and their lowest
unoccupied molecular orbital (LUMO) energy levels are calculated to be −2.29, −2.28, and
−2.34 eV for CzPhPS, DCzPhPS, and TCzPhPS, respectively, according to the HOMO
energy levels and the absorption edge of thin films.
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the working electrodes.

2.5. Theoretical Investigations

Density-functional theory (DFT) calculations were further performed to acquire insight
into the structure–property relationships of CzPhPS, DCzPhPS, and TCzPhPS [30]. As
shown in Figure 4, the LUMO of these three compounds is predominantly located on
the triphenylphosphine sulfide group due to its electron-withdrawing feature, while the
HOMO is mainly distributed on electron-donating carbazole units, as expected. The
separated HOMO and LUMO distributions indicate that the developed compounds should
be of bipolar charge carrier transporting ability, which are suitable for being served as
bipolar hosts in OLEDs. In addition, the HOMO/LUMO energy levels are simulated
to be −5.49/−1.12 eV, −5.52/−1.23 eV, and −5.56/−1.29 eV for CzPhPS, DCzPhPS,
and TCzPhPS, respectively, calculated at the TD-DFT/M062X level using Gaussian 09W
software. The trend is fairly in line with the above-mentioned CV measurements. In
addition, the computational ET levels are almost the same with experimental results
evaluated from phosphorescent spectra with the values of ~3.0 eV.
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2.6. Device Fabrication and Performance

In light of the high ET energy levels and excellent bipolar charge transporting ability of
the developed phosphine sulfide materials, the blue PhOLEDs hosted by CzPhPS (Device
A), DCzPhPS (Device B), and TCzPhPS (Device C) were fabricated in a typical architec-
ture of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) (30 nm)/1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-tetrachloride (TAPC)
(20 nm)/host: 25 wt% FIrpic (20 nm)/1,3,5-tri(m-pyrid-3-yl-phenyl) benzene (TmPyPB)
(35 nm)/lithium fluoride (LiF) (1 nm)/Al (100 nm). The energy level diagrams and chemi-
cal structures of the adopted materials in the blue PhOLEDs are displayed in Figure 5a,b.
Given that the HOMO levels of all three host materials are just 0.2 eV deeper-lying than that
of TAPC, there should be no hole-injection barrier between HTL and EML [31]. Likewise,
there should be no problem for electrons to jump from ETL to EML as their LUMO energy
gap is only 0.4 eV. Luminance–voltage–current density characteristics, EL spectra, and
efficiencies–luminance curves of the devices are shown in Figure 5c,d; the correspond-
ing data are listed in Table 2. Device A turns on at a low voltage of 3.1 eV with a peak
wavelength, maxima luminance, current efficiency (CE), power efficiency (PE), and EQE of
472 nm, 17,223 cd m−2, 36.7 cd A−1, 37.5 lm W−1, and 17.5%. Notably, Device B and Device
C exhibit inferior device performance with maxima EQE of 16.1% and 7.2%, respectively. It
is well known that carrier transporting balance is of particular importance to render the
holes, and electrons recombine in the emitting layer so that high-performance OLEDs can
be achieved [32]. In addition, introducing more carbazole groups into molecule skeletons
would increase the hole-transporting ability of the compounds [33–35]. Hence, it is ratio-
nal to deduce that the poorer device performances of Device B and Device C might be
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ascribed to the increased number of carbazoles in the host molecules, which enhance the
hole-transporting ability of the devices, thus deteriorating the carrier transporting balance.
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Table 2. Electroluminescence (EL) performance of devices based on CzPhPS, DCzPhPS, and TCzPhPS hosts.

Device Host Von [a]
(◦C)

λ [b]
(nm)

Luminance [c]
(cd m−2)

CE [d]
(cd A−1)

PE [e]
(lm W−1)

EQE [f]
(%)

A CzPhPS 3.1 472 17,223 36.7 37.5 17.5

B DCzPhPS 3.4 472 17,176 32.3 29.8 16.1

C TCzPhPS 3.4 476 12,500 15.4 14.2 7.2

[a] Turn-on voltage at a brightness of 1 cd m−2; [b] Electroluminescence peak wavelength at a voltage of 5 V; [c] Maximum luminance;
[d] Maximum current efficiency; [e] Maximum power efficiency; [f] Maximum external quantum efficiency.

3. Materials and Methods
3.1. General Methods

1H and 13C-NMR spectra were recorded on a Bruker Ultra Shield Plus 400 MHz in-
strument using CDCl3 as the solvent and tetramethylsilane (TMS) as the internal standard.
The quoted chemical shifts are in ppm and the J values are expressed in Hz. The splitting
patterns have been designed as follows: s (singlet), d (doublet), t (triplet), dd (doublet of
doublets), and m (multiplet). HRMS were recorded on a LCT Premier XE (Waters) mass
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spectrometer. TGA measurements were conducted on a Netzsch STA2500 thermogravimet-
ric analyzer at a heating rate of 10 ◦C min−1 and a nitrogen flow rate of 50 cm3 min−1. DSC
analyses were performed on a Netzsch DSC214 Polyma instrument under a heating rate of
10 ◦C min−1 and a nitrogen flow rate of 20 cm3 min−1. Ultraviolet-visible (UV-Vis) and fluo-
rescence spectra were recorded on a Jasco V-750 spectrophotometer and Edinburgh FLS980,
respectively. The thin films for UV-Vis spectroscopy measurements were prepared by
high-vacuum thermal evaporation at a rate of 0.1–0.2 nm s−1. The phosphorescence spectra
of the compounds in CH2Cl2 were measured using a time-resolved Edinburgh FLS980
fluorescence spectrophotometer at 77 K, with a 20 ms delay time using a microsecond flash
lamp. CV measurements were performed at room temperature on a CHI660E system in a
typical three-electrode cell with a working electrode (glass carbon), a reference electrode
(Ag/Ag+, referenced against ferrocene/ferrocenium (FOC)), and a counter electrode (Pt
wire) in an acetonitrile solution of tetrabutylammonium hexafluorophosphate (Bu4NPF6)
(0.1 M) at a sweeping rate of 100 mV s−1. The thin solid films of the developed molecules
for CV measurements were formed by adding their solution dropwise on the surface of
the glassy carbon working electrode followed by drying under ambient conditions. The
HOMO energy levels (EHOMO) of the materials were measured according to the reference
energy level of ferrocene (4.8 eV below the vacuum) as illustrated in Equation (1):

EHOMO = −
[

Eox
onset − E(Fc/Fc+) + 4.8

]
eV (1)

where E(Fc/Fc+) is the onset oxidative voltage of FOC vs. Ag/Ag+ whose value is 0.4 V
in our testing conditions, and Eox

onset is the onset potential of the oxidation wave. The
LUMO energy level (ELUMO) was estimated by adding the optical band-gap (Eg) to the
corresponding HOMO energy level as in Equation (2):

ELUMO = −
[
EHOMO − Eg

]
eV (2)

3.2. Material Syntheses

The manipulations involving air-sensitive reagents were performed in an atmosphere
of dry Argon (Ar). The chemicals and solvents, unless otherwise specified, were purchased
from Aladdin, Aldrich or Acros, and used without further purification.

3.2.1. Synthesis of (4-(9H-Carbazol-9-yl)phenyl)diphenylphosphine Sulfide (CzPhPS)

9-(4-Bromophenyl)-9H-carbazole (3.2 g, 10.0 mmol, 1.0 equivalent (eq.)) was dissolved
in 50 mL anhydrous THF under Ar and cooled to −78 ◦C in a dry ice/acetone bath. n-BuLi
(7.5 mL, 12.0 mmol, 1.2 eq., 1.6 M in hexane) was then added dropwise to give a yellow solu-
tion. Two hours later, 2.0 mL diphenylphosphine chloride (10.0 mmol, 1.0 eq.) was injected
into the system at −78 ◦C and the mixture was stirred at this temperature for 1 h, following
which the temperature was allowed to increase to ambient. After stirring overnight, the
reaction was quenched with 50 mL water and extracted by dichloromethane (3 × 50 mL).
The organic layer was dried with anhydride Na2SO4, and the solvent was evaporated
under reduced pressure. The resulting solid resides were dissolved in dichloromethane
(50 mL) for sulfurization by treating with an excessive amount of sulfur (1.0 g, 30 mmol,
3.0 eq.). After stirring overnight at room temperature, the solvent was removed, and
the crude product was purified by a column chromatography to obtain a pure white
solid. Yield: 2.9 g, 63.0%. 1H NMR (400 MHz, CDCl3, ppm) δ 8.15 (d, J = 8.0 Hz, 2H),
7.98 (dd, J = 12.0, 12.0 Hz, 2H), 7.86 (m, 4H), 7.71 (dd, J = 8.0, 4.0 Hz, 2H), 7.57 (m, 8H), 7.44
(m, 2H), 7.33 (m, 2H). 13C NMR (100 MHz, CDCl3, ppm) δ 140.94, 140.19, 134.03, 133.92,
133.05, 132.39, 132.28, 132.20, 132.13, 131.83, 131.81, 131.28, 128.78, 128.66, 126.52, 126.39,
126.18, 123.81, 120.61, 120.47, 109.77. HRMS (EI): m/z calcd for C30H22NPS [M + H]+:
460.1289; found: 460.1284.
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3.2.2. Synthesis of Bis(4-(9H-carbazol-9-yl)phenyl)(phenyl)phosphine Sulfide (DCzPhPS)

DCzPhPS was prepared under the identical synthetic conditions described in the
preparation of CzPhPS using 9-(4-bromophenyl)-9H-carbazole (3.2 g, 10.0 mmol, 2.0 eq.),
n-BuLi (7.5 mL, 12 mmol, 2.4 eq., 1.6 M in hexane), phenylphosphane dichloride (0.7 mL,
5.0 mmol, 1.0 eq.) and sulfur (0.5 g, 15 mmol, 3.0 eq.). Yield: 1.8 g of white power (57.6%).
1H NMR (400 MHz, CDCl3, ppm) δ 8.16 (d, J = 8.0 Hz, 4H), 8.07 (m, 4H), 7.97 (m, 2H),
7.79 (dd, J = 4.0 Hz, 4H), 7.62 (m, 3H), 7.55 (d, J = 8.0 Hz, 4H), 7.46 (m, 4H), 7.35 (m, 4H).
13C NMR (100 MHz, CDCl3) δ 141.17, 140.17, 134.08, 133.97, 132.43, 132.33, 132.05, 131.75,
130.89, 128.96, 128.84, 126.65, 126.52, 126.22, 123.87, 120.69, 120.51, 109.78. HRMS (EI): m/z
calcd for C42H29N2PS [M + H]+: 625.1867; found: 625.1865.

3.2.3. Synthesis of Tris(4-(9H-carbazol-9-yl)phenyl)phosphine Sulfide (TCzPhPS)

TCzPhPS was prepared under the identical synthetic conditions described in the
preparation of CzPhPS using 9-(4-bromophenyl)-9H-carbazole (2.4 g, 7.5 mmol, 3.0 eq.),
n-BuLi (5.0 mL, 8.0 mmol, 3.2 eq.,1.6 M in hexane), triethyl phosphite (0.43 mL, 2.5 mmol,
1.0 eq.) and sulfur (0.25 g, 7.5 mmol, 3.0 eq.). Yield: 1.2 g of white power (60.8%). 1H
NMR (400 MHz, CDCl3, ppm) δ 8.20 (m, 12H), 7.86 (m, 6H), 7.59 (d, J = 8.0 Hz, 6H),
7.47 (m, 6H), 7.36 (t, J = 8.0 Hz, 6H); 13C NMR (100 MHz, CDCl3, ppm) δ 141.46, 140.15,
134.13, 131.39, 130.52, 126.78, 126.27, 123.93, 120.78, 109.78; HRMS (EI): m/z calcd for
C54H36N3PS [M + H]+: 790.2446; found: 790.2448.

3.3. Device Fabrication and Characterization

Typically, ITO-coated glass substrates were etched, patterned, and washed by ultra-
sonic cleaner with detergent, deionized water, acetone, and ethanol in turn. Organic layers
were deposited by high-vacuum (10−6 Torr) thermal evaporation at a rate of 0.1–0.2 nm s−1.
The layer thickness and the deposition rate were monitored in situ by an oscillating quartz
thickness monitor. The devices were measured after fabrication without encapsulation
under an ambient atmosphere at room temperature. EL spectra of the devices were mea-
sured by a PR655 spectra scan spectrometer. The luminance–voltage and current–voltage
characteristics were recorded using an optical power meter and a Keithley 2602 voltage
current source.

4. Conclusions

In conclusion, we successfully synthesized three novel bipolar hosts, CzPhPS,
DCzPhPS, and TCzPhPS, by using triphenylphosphine sulfide as an electron-deficient
unit and adopting mono-, di-, and tri-substituted carbazoles with tunable hole-transport
ability as electron-donating groups. The developed hosts show the outstanding thermal
stability with the Td and Tm surpassing 350 ◦C and 200 ◦C, respectively. In addition, the
absorption and emission spectra of the three compounds are highly similar, indicating the
quantity of carbazoles does not change their intermolecular charge transfer feature. The
high ET levels of ~3.0 eV render these compounds suitable as the hosts for blue OLEDs.
From CzPhPS to TCzPhPS, as the number of constructed carbazole units increases, the
performance of their PhOLEDs becomes worse and worse with the maximum EQE de-
creasing from 17.5% to 7.2%, which can be ascribed to the deteriorated device’s charge
transport balance. The current work is enlightening for designing bipolar hosts to achieve
high-performance blue PhOLEDs.

Supplementary Materials: The following are available online, Figures S1–S6: NMR spectra,
Figures S7–S9: mass spectra, Figure S10: phosphorescence spectra.
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