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1. Synthetic route of novel compounds 

 

Scheme S1. Synthetic route for compound L3. 

 

 

Scheme S2. Synthetic route for compounds D1, D2 and D3. 
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2. 1H NMR and 13C{1H} NMR spectra of novel compounds 

 

Figure S1. 1H NMR spectrum of compound L3 (400 MHz, CDCl3, 298 K). 
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Figure S2. 13C{1H} NMR spectrum of compound L3 (101 MHz, CDCl3, 298 K). 

 

 

Figure S3. 1H NMR spectrum of compound D1 (400 MHz, CDCl3, 298 K). 
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Figure S4. 13C{1H} NMR spectrum of compound D1 (101 MHz, CDCl3, 298 K). 
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Figure S5. 1H NMR spectrum of compound D2 (400 MHz, CDCl3, 298 K). 

 

 

Figure S6. 13C{1H} NMR spectrum of compound D2 (101 MHz, CDCl3, 298 K). 
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Figure S7. 1H NMR spectrum of compound D3 (400 MHz, CDCl3, 298 K). 

 

 

Figure S8. 13C{1H} NMR spectrum of compound D3 (101 MHz, CDCl3, 298 K). 
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3. ESI-HRMS spectrum of novel compounds 

 

Figure S9. ESI-HRMS spectrum of compound L3. 

 

 

Figure S10. ESI-HRMS spectrum of compound D1. 

 

 

Figure S11. ESI-HRMS spectrum of compound D2. 
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Figure S12. ESI-HRMS spectrum of compound D3. 

4. Chemical structures of L4-L12 

 

Scheme S3. Chemical structures of compounds L4-L12. 
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5. Stacked CD spectra between 1a and L1-L12 

 

Figure S13. Stacked CD spectra of cyclo[6]aramide 1a (25 M) and chiral guests L1-L12 

(74 M ) in the presence of host 1a (25 M) measured in HPLC chloroform at 298 K 

respectively (optical path of cell: 10 mm). 
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6. Stacked 1H NMR spectra of 1a⊃L2-L3 

 Figure S14. Stacked 1H NMR spectra (400 MHz, CDCl3, 298 K) of (a) 2 mM 1a, (b) 2 mM 

1a and 2 mM L2, (c) 2 mM L2. 

 

 Figure S15. Stacked 1H NMR spectra (400 MHz, CDCl3, 298 K) of (a) 2 mM 1a, (b) 2 mM 

1a and 2 mM L3, (c) 2 mM L3. 
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7. 2D NOESY spectra 

 

Figure S16. 2D NOESY spectrum of a mixture of 10 mM 1a and 10 mM L1 (600 MHz, 

CDCl3, 298 K, mixing time = 0.4 s). 
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Figure S17. 2D NOESY spectrum of a mixture of 10 mM 1a and 10 mM L2 (600 MHz, 

CDCl3, 298 K, mixing time = 0.4 s). 

 

 

Figure S18. Partial 2D NOESY spectrum of a mixture of 10 mM 1a and 10 mM L2 (600 

MHz, CDCl3, 298 K, mixing time = 0.4 s). 
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Figure S19. 2D NOESY spectrum of a mixture of 10 mM 1a and 10 mM L3 (600 MHz, 

CDCl3, 298 K, mixing time = 0.4 s). 
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Figure S20. Partial 2D NOESY spectrum of a mixture of 10 mM 1a and 10 mM L3 (600 

MHz, CDCl3, 298 K, mixing time = 0.4 s). 
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8. Binding ratios determination between 1a and L1-L3 

8.1 Job Plot experiments 

 

Figure S21. Stacked UV-vis spectra of Job plot experiment between 1a and L1 in HPLC 

chloroform. The total concentration is 50 M. 
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Figure S22. Job plot for the complexation of 1a and L1 based on the absorbance at 370 nm of 

UV-vis spectra. 

 

 

Figure S23. Stacked UV-vis spectra of Job plot experiment between 1a and L2 in HPLC 

chloroform. The total concentration is 50 M. 

 

 

Figure S24. Job plot for the complexation of 1a and L2 based on the absorbance at 375 nm of 

UV-vis spectra. 
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Figure S25. Stacked UV-vis spectra of Job plot experiment between 1a and L3 in HPLC 

chloroform. The total concentration is 50 M. 

 

 

Figure S26. Job plot for the complexation of 1a and L3 based on the absorbance at 375 nm of 

UV-vis spectra. 
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8.2 MALDI-TOF-MS experiments 

 

Figure S27. Partial MALDI-TOF-MS spectrum of complex 1a⊃L1. 

 

 

Figure S28. Partial MALDI-TOF-MS spectrum of complex 1a⊃L2. 
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Figure S29. Partial MALDI-TOF-MS spectrum of complex 1a⊃L3. 

9. Binding constants determination between 1a and L1-L3 

 

Figure S30. Stacked UV-Vis spectra of macrocycle 1a (50 M) titrated by L1 from 0 eq. to 

2.0 eq. in chloroform at 298 K. 
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Figure S31. Determination of the binding constant of 1a⊃L1 in chloroform at 298 K. Fitting 

result based on absorbance at 370 nm. 

 

 

Figure S32. Stacked UV-Vis spectra of macrocycle 1a (50 M) titrated by L2 from 0 eq. to 

2.0 eq. in chloroform at 298 K. 
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Figure S33. Determination of the binding constant of 1a⊃L2 in chloroform at 298 K. Fitting 

result based on absorbance at 370 nm. 

 

 

Figure S34. Stacked UV-Vis spectra of macrocycle 1a (50 M) titrated by L3 from 0 eq. to 

2.0 eq. in chloroform at 298 K. 
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Figure S35. Determination of the binding constant of 1a⊃L3 in chloroform at 298 K. Fitting 

result based on absorbance at 370 nm. 

10. Symmetrical CD spectral profiles of 1a, 1a⊃L/D-amino acid 

esters and L/D-amino acid esters 
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Figure S36. CD spectra of 1a (25 μM), L1 (25 μM), D1 (25 μM) and 1a in the presence of 

L1 and D1 respectively in CHCl3 at 298 K (The stoichiometry of host and guest is 1:2. 

Optical path of cell: 10 mm). 

 

 

Figure S37. CD spectra of 1a (25 μM), L2 (25 μM), D2 (25 μM) and 1a in the presence of 

L2 and D2 respectively in CHCl3 at 298 K (The stoichiometry of host and guest is 1:2. 

Optical path of cell: 10 mm). 
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Figure S38. CD spectra of 1a (25 μM), L3 (25 μM), D3 (25 μM) and 1a in the presence of 

L3 and D3 respectively in CHCl3 at 298 K (The stoichiometry of host and guest is 1:4. 

Optical path of cell: 10 mm). 

11. DFT simulations 

 

Figure S39. Side view (a) and top views (b) / (c) / (d) of optimized geometry of complex 

1b⊃L2 at the B3LYP/6-311G (d, p) level (gray = C, white = H, red = O and blue = N). All 

side chains are replaced by methyl groups for simplicity and the counterion tetrakis 

[3,5-bis(trifluoromethyl)phenyl] borate anion (BArF-) is omitted for clarity. The dashed green 

lines indicate C-H∙∙∙O hydrogen bonds A-G and with A = 2.949 Å (150.84°), B= 2.587 Å 

(131.47°), C = 2.963 Å (135.27°), D = 2.411 Å (144.15°), E = 3.277 Å (122.50°), F = 2.333 Å 

(173.98°), G = 2.652 Å (154.95°). The dashed purple lines indicate N-H∙∙∙O hydrogen bonds 

a-f and with a = 3.056 Å (64.01°), b = 1.814 Å (150.85°), c = 3.026 Å (65.65°), d = 3.060 Å 

(64.79°), e = 3.053 Å (65.11°), f = 1.827 Å (151.47°). The dashed red lines indicate N+∙∙∙O 

cation-dipole interactions g-j and with g = 4.033 Å, h = 2.765 Å, i = 2.781 Å and j = 4.628 Å. 
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Figure S40. Side view (a) and top views (b) / (c) / (d) of optimized geometry of complex 

1b⊃L3 at the B3LYP/6-311G (d, p) level (gray = C, white = H, red = O and blue = N). All 

side chains are replaced by methyl groups for simplicity and the counterion tetrakis 

[3,5-bis(trifluoromethyl)phenyl] borate anion (BArF-) is omitted for clarity. The dashed green 

lines indicate C-H∙∙∙O hydrogen bonds A-G and with A = 2.723 Å (136.37°), B= 2.521 Å 

(169.89°), C = 2.541 Å (173.77°), D = 3.221 Å (159.00°), E= 2.505 Å (145.68°), F = 3.104 Å 

(120.84°), G = 2.254 Å (155.43°). The dashed purple lines indicate N-H∙∙∙O hydrogen bonds 

a-e and with a = 3.077 Å (61.53°), b = 3.208 Å (54.44°), c = 2.833 Å (77.10°), d = 3.013 Å 

(67.71°), e = 2.038 Å (127.88°). The dashed red lines indicate N+∙∙∙O cation-dipole 

interactions f-i and with f = 4.349 Å, g = 2.740 Å, h = 2.791 Å and i = 4.556 Å. 


