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Abstract: Flavonoids comprise a large group of structurally diverse polyphenolic compounds of
plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy
products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols,
anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal
significance, flavonoids are now considered as an indispensable component in a variety of medicinal,
pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant
role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant,
antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antiox-
idant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of
LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids
and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One
study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of
developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%.
This review summarizes dietary flavonoids with their sources and potential health implications in
CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant
effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic as-
pects of dietary flavonoids are also addressed herein with future directions for the discovery and
development of useful drug candidates/therapeutic molecules.

Keywords: dietary flavonoids; cardioprotective effects; ROS scavenging; myocardial dysfunction;
bioavailability and drug metabolism; toxicity; drug discovery

1. Introduction

Cardiovascular diseases (CVDs) are the most prominent cause of death across the
world. Over three-quarters of deaths due to CVDs take place in low- and middle-income
countries. An estimated 17.9 million people died from CVDs in 2016, constituting 31%
of all global deaths. Of these deaths, 85% are due to heart attack and stroke [1]. Most
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of the CVDs can be prevented by tackling behavioral risk factors such as tobacco use,
insalubrious diet and obesity, physical inactivity, and long consumption of alcohol using
population-wide approaches. In the United States, for example, lack of awareness towards
leading a healthy lifestyle contributes to nearly half of all cardiometabolic disorders [2].
In India, premature mortality because of CVDs has increased from 37 million in 2010 to
52 million in 2020. In Western populations, only 23% of CVD deaths occur before the
age of 70 years while in India this number is 52% [3]. The World Health Organization
(WHO) estimation demonstrates that over 75% of premature CVD is preventable, and that
associated risk factors betterment can help decrease the mounting CVD burden on both
people and healthcare workers [4]. Autopsy evidence suggests that the progression of CVDs
in later years is not foreseeable, and thus management is crucial. The INTERHEART study
explicated the consequences of CVD risk factors including dyslipidemia, hypertension,
diabetes, abdominal obesity, smoking, at the same time as it demonstrated the shielding
effects of consumption of nutritious fruits and vegetables, and regular exercise. People
with cardiovascular disease or who are at high cardiovascular risk, including those having
an already-established disease like hypertension, diabetes, hyperlipidemia, etc., require
early recognition and management using appropriate counseling and medications [5].

Diet and lifestyle have an eminent effect on LDL-cholesterol levels and CVD risk.
Patients with CVDs should be counseled about lifestyle modifications to reduce fat and
cholesterol ingestion, to avoid tobacco products, and to maintain the caloric level in their
body by ensuring appropriate physical activity in order to maintain a healthy BMI. A
body mass index (BMI) > 25 is a risk factor for CVDs, with the lowest probability at BMI
20–25, while a BMI < 20 is not routinely recommended [6]. In the prevailing years, it
has been reported that the majority of cardiovascular diseases occur due to an imbalance
between the formation of reactive oxygen species (ROS) and ROS-degrading antioxidant
systems. This disparity results in the accrual of superoxide, hydrogen peroxide, and other
by-products such as peroxynitrite and hypochlorous acid, which leads to oxidative damage
of vital cell structures and essential biomolecules including lipids, membranes, proteins,
and DNA. This phenomenon causes deactivation of essential metabolic enzymes and
also destroys signal transduction pathways [7]. Oxidative stress (OS) has been linked
to a variety of diseases, including neurodegenerative disorders, autoimmune diseases,
complex lifestyle diseases, and cancer, and it is implicated in the pathogenesis of over
100 inflammatory disorders, including diabetes, rheumatoid arthritis, periodontitis, stroke,
CVDs, and alveolar inflammations. In general, there are numerous molecular mechanisms
involving sources of ROS and their respective targets. One intracellular site for ROS
generation is the mitochondrial electron transport chain where the generation of ROS takes
place due to the leakage of a small fraction of electrons to oxygen. Antioxidants present in
the mitochondria including superoxide dismutase (SOD) and glutathione sequester ROS to
reduce their reactivity [8]. Cardiac tissues hold a large number of mitochondria, but the
antioxidant capacity is not sufficient enough for sequestering ROS, which results in cardiac
dysfunction or mitochondrial cellular oxidative stress. It has been proven that oxidized
low-density lipoprotein (ox-LDL) increases the development of ROS [9] in human umbilical
vein endothelial cells (HUVECs). Angiotensin II and uremic toxin indoxylsulfate-induced
endothelial cell dysfunction are two other recognized causes of ROS noticed in CVDs [10].

It has been well established from previous reports that sugars are involved in the
development of atherosclerosis, hypertension, peripheral vascular disease, coronary artery
disease, cardiomyopathy, heart failure, and cardiac arrhythmias, and that these effects of
added sugars are mediated through ROS, as glucose can produce ROS via various pathways
including the sorbitol pathway, insulin pathway, and NADPH-oxidase (Nox) pathway. Nox
signaling is crucial for normal physiology, but overstimulated Nox enzymes contribute
to oxidative stress and cardiovascular disease [11]. In AT-II-induced hypertension, NOX-
2 activation induces sirtuin-3 (SIRT3) S-glutathionylation which causes acetylation of
vascular SOD2 and reduces SOD2 activity, which further results in increased mitochondrial
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superoxide levels and lessened endothelial nitric oxide bioavailability which acts as an
antioxidant in vivo [11,12].

A diet low in saturated fat and high in fruits, vegetables, and essential fatty acids, as
well as moderate wine intake, appears to protect against the production and progression
of CVDs, according to epidemiological evidence [13]. Long-term metabolic studies have
shown that the fatty acid composition of the diet, rather than the overall amount of fat
consumed, predicts serum cholesterol levels. Saturated fatty acids (SFA) and trans fatty
acids are the ones associated with elevated cardiovascular risk; however, monounsaturated
fatty acids (MUFA, omega-9) and polyunsaturated fatty acids (PUFA, omega-3, omega-6)
explicitly decreased the risk of coronary heart disease (CHD) [13]. The activity of enzymes
involved in the desaturation of fatty acids in the body is highly influenced by dietary
fat quality. Plant sterols and stanols (saturated form of sterols) are natural elements of
plants structurally related to cholesterol. Plant stanols lessen cholesterol absorption in
the GIT thereby dipping plasma LDL concentrations. These stanols are found abundantly
in vegetable oils, olive oil, fruits, and nuts. Recent progressions in food technology have
perceived the emergence of nutrition products such as margarine, milk, yoghurt, and
cereal products being supplemented with plant sterols/stanols and being encouraged as
a food that can help lower serum cholesterol [14]. It has been found via clinical studies
that serum LDL cholesterol significantly dropped when stanols were added to milk (15.9%)
and yoghurt (8.6%), but dropped significantly less when added to bread (6.5%) and cereal
(5.4%). Nonetheless, routine consumption of phytosterols has emerged as an effective
strategy in the management of hypercholesterolemic patients in the clinical situation. Al-
ternatively, red yeast rice (Monascus purpureus) is a natural compound capable of reducing
cholesterol levels. This fermented rice holds plentiful monacolins that are naturally occur-
ring HMG-CoA reductase inhibitors [15]. The commercial preparations of this traditional
supplement possess a beneficial lipid-lowering effect. Several studies including cohort
studies have suggested a J-shaped relationship between salt intake and CVD risk. As per
the recommendation of WHO, gradual salt reduction in one’s diet represents an attainable,
cost effective, and efficient strategy to prevent CVD worldwide. The INTERSALT study (an
international study of electrolyte excretion and BP) confirmed a direct association between
salt intake and the increase in BP with age [16].

Despite many previous published reports on flavonoids (including dietary flavonoids)
and their health benefits/biological potential in various human diseases such as cancer,
neurodegenerative diseases, CVDs, etc., there are no clear reports available in current
literature that indicate biochemical mechanisms of action, or the pharmacokinetic and
toxicological profile, of dietary flavonoids associated with cardioprotective effects. In view
of this, the aim of this paper was to review the cardioprotective effects of dietary flavonoids
summarizing their antioxidant potential in OS/ROS-induced CVDs including biochemical
mechanisms of action, pharmacokinetic and toxicity issues, and therapeutic/nutraceutical
approaches with future directions in the discovery of drugs or therapeutic candidates.

2. Dietary Flavonoids
2.1. Dietary Occurrence

Flavonoids are secondary metabolites located in the vacuoles of plants. Approximately
10,000 flavonoids have been reported in the literature, positioning them in third place of the
most abundant bioactive compounds in plants. The main function of flavonoids in plants
is to protect plants against pathogens and UV radiation, and to participate in pollination
by being recognized by pollinators [17]. Flavonoids’ basic chemical structure consists of
15 carbon atoms (C6-C3-C6) making up the two aromatic rings A and B linked by a C ring
consisting of 3 carbon atoms (Figure 1).
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The classification of flavonoids can be done according to the position of the carbon
in the B ring linked with the C ring. Thus, the flavonoids linked in position 3 of the
C ring are denominated isoflavones, the ones linked in position 4 are neoflavonoids,
and, finally, those linked to position 2 are subdivided into different subgroups (flavones,
flavonols, flavanones, flavanonols, flavanols, anthocyanins, and chalcones), depending on
the structural characteristics of the C ring [18]. Flavonols, such as quercetin, kaempferol,
and myricetin, are one of the most common flavonoids found in fruits and vegetables,
including apples, grapes, berries, tomatoes, onions, lettuce, etc. The chemical structure
of flavonols is characterized by a ketone group and a hydroxyl group located in position
3 of the C ring, which can have different glycosylation patterns. For these reasons, the
flavonoid subgroups are the largest subgroups present in plants and foods [19].

On the other hand, the most well-known compounds in the flavanones group are
hesperidin, naringenin, and eriodyctiol, which are regularly found in the white part of the
peel of citrus fruits such as lemon, orange, and grapefruit. Structurally, these compounds
are very similar to flavonols; the only difference is the saturation of the C ring in the 2 and
3 position [19].

Isoflavonoids are less distributed throughout plants, and are usually present in lentils,
beans, soybean, and other leguminous plants. The most important bioactive compounds
on this group are genistein and daidzein, which are well known as a phytoestrogen due to
their osteogenicactivity [18].

Neoflavonoids are a less studied group. Their structure is characterized by a 4-
phenylchromen backbone with no hydroxyl group substitution at position 2. The hydroxyl
group is bound to position 3 of the C ring [18]. One of the neoflavones is calophyllolide
from Calophyllum inophyllum seeds, found in other plants and flowers [20]. Flavanols like
catechins are abundantly distributed in berries, bananas, peaches, and apples.

Anthocyanins are a flavonoids class that is widely studied. Their notable blue, black,
red, and pink colors depend on the pH as well as by the methylation or acylation in the
hydroxyl groups on the A and B rings. This characteristic produced high interest in the
food industry in a variety of applications. The well-known anthocyanins are cyanidin,
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delphinidin, malvidin, pelargonidin, and peonidin. Those compounds are present in
strawberries, raspberries, blueberries, blackberries, blue corn, black beans, among others
(Table 1) [18]. The structures of dietary flavonoids are represented in Figures 2–4.

2.2. Health Benefits, Medicinal Significance, and Nutraceutical Importance

Flavonoid-rich foods are widely studied and considered as potent bioactive com-
pounds with different biological activities, participating in different important signaling
pathways related to chronic disease [23]. Herbal supplements enriched with flavonoids
are frequently reported for their ameliorative effects in the management of metabolic
syndromes including CVDs and diabetes mellitus. Anthocyanins, like cyanidin and del-
phinidin 3-glucoside, have shown to improve insulin resistance, insulin production, and
hepatic glucose uptake during type 2 diabetes mellitus [24]. Many flavonoids, specifically
flavanols, are well known for their antihypertensive effect and endothelial protection by
lowering triglycerides and detrimental lipid accumulation. Several flavonoid molecules
have been established for their wide range of therapeutic benefits in CVDs including
endothelial dysfunction, coronary artery disease, cardiac fibrosis, myocardial infarction,
ischemic reperfusion injury, etc. [9,25].

Table 1. Dietary flavonoids with their natural sources and health benefits [18,21,22].

Flavonoids Major
Flavonoids Major Source Health Benefits

Flavonols

Isorhamnetin
Kaempferol
Myricetin
Quercetin

Onions, broccoli, tea,
apple, blueberries

Regulates systolic blood
pressure, glycemic levels,

and BMI.

Flavones Apigenin
Luteolin

Parsley, celery,
chamomile tea,

fenugreek, onion, garlic,
pepper, citrus fruits

Regulates blood glucose levels.

Flavanones
Eriodictyol
Hesperetin
Naringenin

Citrus fruits,
mint, tomatoes. Lowers risk of ischaemic stroke.

Flavanols Catechins
Epicatechins

Apricots, cocoa,
chocolates, red grapes,

red wine, tea

Reduces mean arterial pressure.
Improves insulin resistance and

LDL-C, HDL-C levels.

Procyanidins Theaflavins
Thearubigins

Cocoa, apples, grapes,
red wine, chocolates Regulates blood pressure.

Anthocyanidins

Cyanidin
Delphinidin

Malvidin
Pelargonidin

Peonidin
Petunidin

Berries, red wine, red
cabbage, bright
colored fruits,

cherries, cranberries

Lowers risk of
Myocardial infarctions.

Isoflavones
Daidzein
Genistein
Glycitein

Soyabean, dairy
products, egg, meat Beneficial for T2DM.
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One study suggests that regular consumption of 100 mg of total flavonoids in a
day may reduce the risk of developing morbidity as well as fatality due to CVDs by
approximately 10% [26]. Due to the presence of multiple hydroxyl groups (-OH) in the
flavonoid structure, they exert a strong antioxidant effect and neutralize the oxidative
insult during various pathological events [18]. Flavonoids have also been reported as
strong inhibitors of DNA damage due to oxidative stress. Nevertheless, flavonoids have
also been explored for their positive impact in neurological health and found to be effective
on neural regeneration and counter-inflammation in the nerve cells. A study indicated
that [6]-epigallocatechingallate, a flavonoid mainly found in green tea, can produce mi-
croglial activation and protect against inflammation in Alzheimer’s disease [27]. These
days, flavonoids are increasingly being recognized in the field of nutraceuticals for the
management of chronic lifestyle-related disorders and the maintenance of healthy aging.
Several herbal beverages enriched with a high content of flavonoids are commercially avail-
able as anti-aging, antidiabetic and anti-obesity, and blood pressure lowering purposes.
For example, hibiscus tea, blue matcha tea, green tea, red tea, rose wine, kiwi wine, and
red wine are the most popular beverages commercially available and widely acclaimed for
their scientifically proven beneficial health effects.
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2.3. Antioxidant Potential of Dietary Flavonoids in OS-Induced CVDs

The cardiovascular system is the system most commonly affected by the oxidative
stress triggered by spontaneously generated ROS due to the intake of a high-calorie diet,
drugs, and other xenobiotics. Mostly, the intake of a high-calorie diet over a long pe-
riod of time alone can lead to the depletion of myocardial antioxidantstatus and also
allows developing chronic abnormalities like endothelial dysfunction, ischemia, and car-
diac hypertrophy [28]. Flavonoids consumption has been proven to exhibit a noticeable
positive influence in preventing damages produced by ROS and other free radicals in
the human body. The beneficial effects of flavonoids have been mostly linked to their
strong antioxidant activity. The basic antioxidant mechanism of flavonoids consists in the
oxidation of flavonoids by free radicals, resulting in a more stable, less reactive radical [17].
The high reactivity of the hydroxyl group of the flavonoids produces inactivation of the
free radicals. Some of the flavonoids can directly scavenge superoxide, whereas other
flavonoids can scavenge the highly reactive oxygen-derived radicals like peroxynitrite
ions [29]. The preventive action of flavonoids on cardiovascular diseases has been one of
the most studied topics. It is well known that the antioxidant activity of these compounds
is responsible for the diminution of the oxidative damages of cellular components and
induction of cardiomyocytes apoptosis [16,25]. Moreover, another mechanism action of
flavonoids is the vasodilation by maintaining the action of the Renin-angiotensin aldos-
terone system and eNOS in the blood vessel [30]. Flavonoids also have been reported
for their anti-apoptotic function on the cardiomyocytes during oxidative insult. Notice-
ably, fruits and vegetables rich in flavonoids like anthocyanins, and other flavonoids like
quercetin, rutin, apigenin, etc., administered to experimental animals exhibited remark-
able improvement of the myocardial antioxidant status during drugs (doxorubicin)- and
chemical (isoproterenol)-induced cardiac dysfunction [25,27,28].

3. Cardioprotective Potential of Dietary Flavonoids
3.1. Dietary Flavonoids and Their Health Implications in CVDs

In a metanalysis of prospective cohort studies, regular diets containing flavonoids
were accompanied with a lesser risk of CVD mortality. Additionally, consumption of
200 mg/day of total flavonoids is associated with reduced danger of all-cause mortality [31].
Chemically, flavonoids contain a C6-C3-C6 skeleton and consist of 2 aromatic rings (A and
B ring). Based on their binding functional group, they are further classified into the
subspecies flavonols, flavones, flavanols, flavanones, anthocyanidins, procyanidins, and
isoflavones. The hydroxyl radical of flavonoids scavenges free radicals and intercedes
antioxidant effects associated with numerous health benefits [17,30]. In the West, the main
dietary sources of flavonoids are tea, chocolate, cocoa, vegetables, fruits, red wine, and
legumes. In Asian countries such as Japan, soybean is the major source of flavonoids
(isoflavones) besides tea, coffee, and legumes [32].

The structural variation in the flavonoid types contributes to their specific activities
modulated by their definite molecular pathway. This affects their ADME profile after
consumption, thereby altering their bioavailability, target site, and metabolites produced
in-vivo. Flavonoids having high absorption are well distributed in multiple tissues while
those having limited absorption or distribution exhibit their systemic effects by interac-
tion with microbiota [33]. Colonic microbiota present in our gut can enzymatically break
flavonoids into small phenolic acids and aromatic metabolites. These microbiota-generated
metabolites curbed the production of cytokines more efficiently when compared with their
parent flavonoids. Many of these microbial-derived flavonoid metabolites also provided
protection against pancreatic β-cell dysfunction and platelet and monocyte adhesion to the
arterial wall [34,35]. Overall, in vitro and in vivo studies suggest that flavonoids exhibit
a long range of activities such as antihypertensive effect by inhibiting ACE, potentiating
bradykinin effects, decreasing endothelin levels, and increasing NO-mediated vasodilation;
anti-apoptotic activity, which lowers the risk of myocardial infarctions; antithrombotic
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activity; the prevention of LDL oxidation, thereby inhibiting the progression of arterioscle-
rosis [30,36].

3.2. Cardioprotective Mechanisms of Dietary Flavonoids

Over the past decade, a growing interest in scientific research regarding flavonoid
consumption to prevent CVDs and to improve vascular health has been noticed. Several
studies have shown the advantageous propensities of various classes of flavonoid com-
pounds and flavonoid-enriched plant extracts on the cardiovascular system by balancing
the cellular oxidative stress, countering inflammation, and modulating various intracellular
signaling pathways [9,24]. Some important molecular mechanisms of the cardiovascular
protective function of flavonoids are described below (Table 2).

Table 2. Cardioprotective effects of dietary flavonoids in OS-induced CVDs.

Flavonoids Oxidative Stress Model Molecular Mechanism Reference (s)

Apigenin
Myocardial ischemia-reperfusion injury in
h9C2 cardiomyocytes; adriamycin-induced

cardiotoxicity in Kunming mice
↑PI3K/AKT/mTOR pathway [37,38]

Apigenin-7-O-b-D-(-6′ ′-p-
coumaroyl)-

glucopyranoside

Primary neonatal cardiomyocyte (C57/6J)
ischemic reperfusion model in vitro

↑PKCe translocation signaling
↑Nrf2/HO-1 pathway
↓NF-kB signaling

Pathway

[39]

Dihydromyricetin Doxorubicin-induced cardiotoxicity ↑SIRT1
↓NLRP3 inflammosome [40]

Quercetin Isoproterenol-induced cardiac fibrosis ↑Nrf2-HO; ↓LDL receptor
expression; ROS scavenger [41]

Icarin High glucose- and adenovirus-induced
cardiomyopathy in neonatal C57 mice ↑Apelin/SIRT3 [42]

Isoliquiritigenin Hypoxia-induced contractile dysfunction
in cardiomyocytes

↑AMPK and ERK signaling
pathways; ROS scavenger [43]

Scutellarin Isoproterenol-induced myocardial
infarction in SD rats

↓α-SMA
↑CD31, Jagged1, Notch 1, and Hes1 [44]

Cyanidin-3-glucoside Wistar rats induced by STZ
↑TIMP-1

↓MMP-9,.TGF-b, p-MEK1/2, CTGF,
P-ERK1/2, FGF2

[45]

Morin
Isoproterenol-induced myocardial

infarction; doxorubicin-induced
cardiac fibrosis

Restored the mitochondrial
function and improvement of

mitochondrial antioxidant enzymes;
↓myocardial; Apoptosis; ↑Bcl-2

[46,47]

Fisetin Isoproterenol-induced cardiac ischemia
↓RAGE and NF-κB; ↓Bax, caspase-3,

cytochrome-c; ↑Bcl-2;
↓Myocardial apoptosis

[48]

Rutin Cobalt chloride-induced hypoxic injury in
H9c2 cells

Modulation of Akt, p-Akt, p38 and
p-p38; ↓of HIF-1α, BAX and caspase [49]

Acacetin Doxorubicin-induced cardiomyopathy ↑Sirt1/pAMPK pathway
↑AMPK/Nrf2 signal pathway [50]

Hesperidin Nitric oxide deficiency-induced
cardiovascular remodeling

↓TNF-R1 and TGF- β1 protein
expression; ↓MMP-2 and MMP-9 [51]

Luteolin Doxorubicin-induced cardiotoxicity
↑AKT/Bcl-2 signaling pathway;

↑Nrf2/HO-1 pathway;
↑eNOS/Nrf2 signaling pathway

[52,53]
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Table 2. Cont.

Flavonoids Oxidative Stress Model Molecular Mechanism Reference (s)

Baicalein t-BHP-induced oxidative stress; H2O2 and
ischemia/reperfusion (I/R) stress

↑Nrf2/Keap1 pathway;
↓KLF4-MARCH5-Drp1 pathway [54,55]

Baicalin

Hypoxia-induced oxidative stress
in cardiomyocytes;

Angiotensin-II-induced
endothelial dysfunction

↑Nrf2/HO-1 signaling pathway;
↓NF-kB signaling pathway; ↓iNOS

protein expression
[56,57]

Astragallin Myocardial ischemia/reperfusion (I/R)
injury in isolated rat heart

↓ROS; ↓ Inflammation;
↓Myocardial apoptosis; ↑Bcl-2 [58]

Cyanidin-3-O-glucoside Myocardial ischemia-reperfusion injury in
SD rats and H9c2 cells

↓USP19, Beclin1, NCOA4, and
LC3II/LC3I; ↓LC3II/LC3I; ↓TfR1

expression; ↑FTH1 and GPX4;
↓Ferroptosis promoter RSL3

[59]

Hyperoside High glucose-induced oxidative stress in
cardiac cells

↑ p-AKT/AKT and p-Nrf2/Nrf2;
↓Myocardial apoptosis and levels of

ROS and MDA
[60]

Chrysoeriol Doxorubicin-induced toxicity in
cardiomyocytes ↓ROS, MDA; ↑GSH, SOD [61]

Orientin Myocardial ischemia reperfusion injury ↑AMPK, Akt and Bcl-2; ↓mTOR
and Raptor, Beclin 1 [62]

Vitexin Myocardial ischemia/reperfusion
(I/R) injury

↓phospho-c-Jun; ↑phospho-ERK;
↓inflammatory cytokines and

↓MAPK pathway.
[63]

Kaempferol Cardiac hypertrophy by aorta banding
↓ASK1/JNK1/2/p38 signaling

pathway; ↓ASK1/MAPK signaling
pathways (JNK1/2 and p38)

[64]

Naringin High-cholesterol-diet-induced endothelial
dysfunction and oxidative stress in rats

↓LOX-1, NADPH oxidase subunits
(p47phox, Nox2, and Nox4),

and iNOS
[65]

Naringenin H2O2-induced oxidative stress
in cardiomyocytes ↓ROS; ↑Nrf2 signaling pathway [66]

Tilianin Myocardial ischemia/reperfusion injury
in rats

↑AMPK, pAMPK, SIRT1,
PGC-1alpha, NRF1, TFAM and

FOXO1 proteins
[67]

Spinosin Myocardial ischemia/reperfusion injury
in rats

↓GSK3β; ↑PGC-1α;
↑Nrf2/HO-1 pathway [68]

Delphinidin Myocardial ischemia/reperfusion injury
in rats ↓STAT1 [69]

Daidzein Isoproterenol-induced apoptosis in
H9c2 cardiomyoblast ↑Akt activation [70]

Genistein Doxorubicin-induced cardiotoxicity ↑Nrf2/HO-1 signaling pathway;
↓DNA damage [71]

Malvidin Isoproterenol-induced apoptosis in
H9c2 cardiomyoblast

↑Nrf2/HO-1 signaling pathway;
↓NF-κB signaling

pathway activation
[72]

Petunidin Myocardial ischemia/reperfusion injury
in rats

↑Bcl-2 protein expression, ↓ NOX4
and Bax expression, ↓cytoplasmic

cytochrome c expression; ↓ROS
[73]
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Table 2. Cont.

Flavonoids Oxidative Stress Model Molecular Mechanism Reference (s)

Aspalathin Doxorubicin-induced cardiotoxicity
in cardiomyocytes ↓ROS; ↓ Myocardial apoptosis [74]

Diosmin Myocardial ischemia/reperfusion injury
in rats

↑Bcl-2 expression; ↑antioxidant
enzyme activities; ↓LPO [75]

Wogonin Isoproterenol-induced
myocardial infarction

↑Nrf2/HO-1 signaling pathway;
↓Inflammation [76]

Tangeretin Isoproterenol-induced
myocardial infarction ↑PI3K/Akt signaling pathway [77]

Embelin Isoproterenol-induced myocardial injury ↑Bcl-2; ↓Bax, Cytochrome c,
cleaved-caspase-3 & 9 and PARP; [78]

Neferin Isoproterenol-induced myocardial injury ↓Inflammation; ↑ Tissue
antioxidant status [79]

Mangiferin Myocardial ischemia/reperfusion injury
in rats

↓Phosphorylation of p38 and JNK,
phosphorylation of ERK1/2;

↓TGF-β, ↓MAPK
[80]

Calycosin H2O2-induced oxidative stress
in cardiomyocytes ↓ Apoptosis; ↑ ER/ and Akt [81]

Licochalcone D Myocardial ischemia/reperfusion (I/R)
injury in cardiomyocytes

↓ Caspase 3 and PARP; ↓ IL-6,
NF-kB and p38 MAPK [82]

Hispidin H2O2-induced oxidative stress
in cardiomyocytes

↓ Apoptosis, ROS, DNA damage,
caspase 3 and Bax expression
↑ HO-1, CAT, Bcl-2, Akt/GSK3

and ERK 1
2

[83]

3.2.1. ROS Scavenging Mechanism

OS plays key role in the development of CVDs including myocardial injury and is-
chemic heart diseases leading to fatal complications like cardiomyopathy and heart attack,
etc. Oxidative insult in the myocardium and endothelial wall occurs due to an imbalance
between the generation of ROS/RNS and the clean-up mechanisms of endogenous antioxi-
dant defense systems. Spontaneous generation and accumulation of reactive species (ROS
and RNS) accelerates the apoptosis of cardiomyocytes and endothelial cells [84]. Many
experimental studies have shown that the antioxidant mechanism of various naturally
occurring flavonoids or their active metabolites counters oxidative stress and protects
heart tissue during toxic insult [24,85]. However, the ROS scavenging and antioxidant
mechanism of individual flavonoids may vary depending on their structural orientation,
number and position of hydroxyl groups (-OH), and linkage of the other functional groups
to the structural skeleton [30,85].

Flavonoids may quench ROS by several mechanisms: direct neutralization of the
different type (superoxide radical, OH., peroxynitrite radical) of free radicals or ROS; metal
chelation property; increase production of endogenous antioxidant enzymes like GSH,
SOD, and catalase, etc. and inhibition of cellular ROS-generating enzymes like xanthine
oxidase, myeloperoxidase, NADPH oxidase, etc. [30,86]. Various flavonoids which exhibit
antioxidant and radical scavenging mechanisms in OS-associated cardiovascular dysfunc-
tion are mentioned in Table 2. The basic mechanisms involved in the cardioprotection of
dietary flavonoids in OS-associated CVDs are displayed in Figure 5.
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Figure 5. Mechanisms involved in the cardioprotection of dietary flavonoids in OS-associated CVDs.
Dietary flavonoids counter myocardial OS via inhibition of endogenous ROS production, down-
regulation of inflammatory cytokines (IL-6, TNF-α, NFkB), and reversal of mitochondrial respiratory
chain reactions.

3.2.2. Intracellular Antioxidant Signaling Pathways

Unlike the in vitro environment, antioxidative mechanisms of flavonoids in the in vivo
system often do not work only on the principle of scavenging free radicals. Rather,
flavonoids have been found to activate intracellular antioxidant signaling pathways to
accelerate the production of endogenous antioxidants like GSH, SOD, and catalase, etc. [87].
The physiological system comprises various mechanisms to control oxidative stress by
accelerating the release of endogenous antioxidants. Nuclear factor erythroid 2, commonly
known as Nrf2, is one such important cellular mechanism responsible for the production
of endogenous antioxidants during oxidative stress conditions. In normal physiological
conditions, Nrf2 couples with KEAP1 protein in the Kelch domain of KEAP1 and sponta-
neously undergoes degradation in the cytosol [88]. Although mild to moderate oxidative
stress triggers dissociation of the Nrf2-KEAP1 complex and translocation of Nrf2 in the
nucleus and stimulates upregulation of antioxidant responsive genes like HO1, NQO1, etc.,
which further accelerates the production and release of endogenous antioxidants like GSH,
SOD, and catalase, etc. to control oxidative stress [87,88].

Flavonoid compounds have been reported to inhibit Nrf2-KEAP1 protein-protein
interactions in the cytosol and diminish the spontaneous degradation of Nrf2 protein.
Flavonoids competitively bind with the Keap1 protein in the Nrf2 binding site resulting in
the translocation of Nrf2 protein into the nucleus and activating the downstream proteins
HO1 and NQO1 [88]. Activation of these downstream proteins directly influences the
up-regulation of antioxidant genes like GSH, SOD, and catalase (Figure 6). For example,
flavonoids like quercetin, luteolin, baicalin, genistein, wogonin, etc. have been found to
protect the heart via activation of the Nrf2 pathway during chemical-induced myocardial
infarction and cardiotoxicity [88,89].
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Figure 6. Activation of Nrf2-mediated antioxidant signaling cascade by dietary flavonoids. Nrf2
and Keap1 ubiquitously coupled in the cytosol and lead to the spontaneous destruction of Nrf2.
Dietary flavonoids inhibit the Nrf2-Keap1 protein-protein interaction, which results in free Nrf2 to
get phosphorylated and bind with the ARE, which activates the downstream antioxidant signaling
via up-regulation of HO1 and NQO1.

3.2.3. Counter-Inflammatory Pathways

Inflammation is thought to be one of the most aggravating factors in the progression
of a variety of CVDs, from endothelial dysfunction to myocardial apoptosis [90]. Inflam-
mation occurs due to the increased oxidative stress and elevated level of ROS in response
to injurious stimuli and in conjunction with the multiple complex signaling pathways. A
short-term inflammation is the result of immunological response to the body; however,
chronic inflammation in the cardiovascular system leads to the development of patho-
logical incidents in myocardial tissue and blood vessels. During chronic inflammation,
pro-inflammatory cytokines such as IL-1, IL-6, and TNF- cause damage to the myocardial
and vascular tissue, resulting in myocardial infarction and hypoxia in cardiomyocytes,
which leads to apoptosis. Similarly, increased inflammation substantially damages the en-
dothelial wall resulting in the development of a ischemic condition [85,90]. Oral flavonoids
supplementation is extensively reported to produce decreased inflammatory cell invasion,
lowered levels of pro-inflammatory cytokines and tissue fibrosis, and increased cell sur-
vival and function, according to epidemiological studies. Inhibition of signaling through
NF-kB (nuclear factor-B) seemed to be a central pathway that seemed to mediate the
anti-inflammatory effect of several flavonoids [85,91]. Many flavonoids, in general, can
exert cardioprotective effects by modulating multiple targets and genes involved in major
pathways such as MAPK/ERK/JNK/p38 impairment, modulation of PI3K-Akt-eNOS, the
STAT3 pathway, and the AMPK-mTOR pathway [30,85]. Other anti-inflammatory mech-
anisms of flavonoids involved during cardiovascular oxidative stress are up-regulation
of SIRT1, SIRT3, VEGF-B, pAkt, GSK3, and Bcl-2 genes and down-regulation of TLR-4,
COX-1,COX-2, FAK, ET-1, Caspase 9, and Bax genes [92].

3.2.4. Mitochondrial and Intracellular Pathways

Mitochondria play a vital role in the normal functioning of cardiomyocytes and
endothelial cells. Synthesis of ATP by catabolism of carbon-rich sources via oxidative
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phosphorylation is one of the major roles of mitochondria. The integrity of the inner
mitochondrial membrane is very much essential to normal physiological and biophysical
functioning [93]. Mitochondrial damage during oxidative insult like the accumulation of
cardiotoxins or due to ischemia/reperfusion is considered a key event leading to cardiomy-
ocytes dysfunction and apoptosis [94]. In this regard, the protective potential of various
flavonoids on mitochondrial functions has been widely investigated. The mechanism
of action of certain flavonoids on mitochondrial targets may be another reason for the
cardioprotective effect, which is enabled by maintaining mitochondrial ATP output and
calcium homeostasis, as well as preserving mPTP opening and subsequent cell apopto-
sis [94,95]. Many flavonoid compounds—for example, epigallocatechin3-gallate, baicalein,
puerarin, naringenin, etc.—have been reported to exhibit cardioprotection during oxidative
stress via activation of mitochondrial ion channels present in the inner mitochondrial
membrane-like mitoK, mitoKATP channels [96,97]. Another study suggested that dietary
flavonoid consumption also acts as a cardioprotective agent by activation of Ca+2 channels
and modulation of mitochondrial Ca2+ uptake [94].

Oxidative phosphorylation and maintenance of respiratory chain or electron transport
chain are the vital functions of mitochondria. However, oxidative insult in the cardiac
tissue hampers the complex formation (Complex I) and subsequently releases cytochrome
C [94,96]. Notably, anthocyanin flavonoids like cyanidin 3-O-glucoside and delphidin
3-O-glucoside have been found to reduce oxidative stress in cardiac cells by restoration
of mitochondrial bioenergetics and safeguarding the preservation of normal functioning
of the complex I [98]. Flavonoids have also been found to suppress the generated ROS
due to mitochondrial respiration by directly inhibiting enzymes and chelating the trace
elements involved in ROS generation [94]. Evidently, flavonoids prototypes like quercetin,
kaempferol, and epicatechin, etc. have been found to inhibit H2O2 production in isolated
rat heart mitochondria [99].

4. Pharmacokinetic and Toxicological Issues
4.1. Bioavailability and Biotransformations of Dietary Flavonoids

Although flavonoids have shown countless health benefits, their low oral bioavail-
ability has been a major concern in drug development. Absorption and distribution of
flavonoids and their metabolites from the gut to the blood stream are the important phe-
nomena to achieve the optimum therapeutic efficacy. Also, to understand the bioactivity
and mechanism of action of dietary flavonoids in the body, it is fundamental to deter-
mine how much and which chemical forms they reach in systemic circulation, as these
would be the physiologically active forms [100]. The most important factors which are
associated with the absorption and bioavailability of dietary flavonoids are their types,
number and position of sugar linkage, metabolism via phase II metabolic enzymes, and
gut microbiota [101]. In foods, flavonoids are often present in their glycosylated form; but
once they are ingested, the sugar moiety is removed before the absorption phase. This
mechanism is carried out in the brush border of the small intestine by the enzyme lactase
phlorizin hydrolase (LPG) that produces the hydrolyzation of the structure and the sugar
is removed to release the aglycone to enter in the epithelial cells by passive diffusion.
Organic anion transporter (OAT) families SLC22A, SLC21A, and MRP are also responsible
for the absorption and delivery of flavonoids around the body as well as their excretion in
urine [102].

The food matrix and where flavonoids exist in the dietary sources play an important
role in the absorption and bioavailability of various flavonoids. Evidently, ethanol present
in red wine enhances the absorption of anthocyanins from the gut [102]. Flavonoid (for
example, quercetin) co-administration with carbohydrate-containing foods exhibited en-
hanced absorption in the intestine and bioavailability. A fatty matrix can increase the uptake
of flavonoids and slow down their clearance. On the other hand, protein co-administration
and flavonoid protein interactions significantly reduce the oral bioavailability of many
flavonoids [103].
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The aglycones of flavonoid glycosides undergo metabolic conversion or modification
before passing into the blood stream, presenting sulfate, glucuronide conjugate, and/or
methylated metabolites through the action of sulfotransferases, uridine-5′-diphosphate
glucuronosyltransferases (UGT), catechol-O-methyltransferases (COMT), and glutathione
transferees [104]. When metabolites reach the bloodstream, they are subjected to phase
II metabolism with transformations taking place in the liver, prior to urinary excretion.
Cytochrome P450 (CYP450) superfamily in the liver microsomal enzymes mostly bear the
responsibilities of phase II metabolism. Mostly CYP1A2 and CYP3A4 are demonstrated
to be the key enzymes in human liver mediating the oxidative de-methylation of many
flavonoid compounds in the A and B ring [105].

Another important mechanism of non-absorbed flavonoids in the small intestine
consists in the passing of flavonoids into the distal colon where the intestinal microbiota
makes some changes and produces phenolic acids and aromatic compounds that can
enter in the phase II metabolism and are excreted in the urine [106]. Recently, it has been
proven that the gut microbiota plays a significant role in the metabolic conversion of many
flavonoids as well as other phenolic compounds present in the dietary sources. Beneficial
micro-organisms like lactobacillus in the gut release enzymes like phenolase, glucosidase,
etc., which eventually transform the parent compounds into several newer metabolites
with high bioavailability [107]. Biotransformation not only caters to the clearance of the
flavonoids from the human body but also facilitates the molecular interactions with the
therapeutic target. It is also proven that the therapeutic properties exerted by the many
naturally occurring flavonoids and phenolics are because of their metabolites but not
the actual compounds due to their several biopharmaceutical limitations. A schematic
of bioavailability and metabolism/biotransformation reactions of dietary flavonoids is
depicted in Figure 7.
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Figure 7. Schematic of bioavailability and metabolism of dietary flavonoids. Flavonoids from dietary
sources after ingestion go through de-glycosylation and modifications like sulphate conjugation,
glucuronide conjugation, etc. in the small intestine and enter the liver via the portal vein. Hepatic
microsomal enzymes (CYP450 isoforms) take major responsibility to convert the flavonoid agly-
cones into the simpler form. After hepatic first-pass metabolism, metabolites reach the systemic
circulation and finally bind to the target site. Colonic gut microbiota also plays a similar role in the
de-glycosylation and biotransformation through microbial enzymes.



Molecules 2021, 26, 4021 17 of 24

4.2. Toxicities and Interactions with Drugs/Foods/Herbs

In contrast to the beneficial effects of flavonoids, the toxic effects and interactions
with drugs/foods/herbs and other phytochemicals have been less explored. Nevertheless,
scientific interest to uncover the toxicity profile and chemical/physicochemical/biological
interactions of flavonoids and their possible metabolites is continuously increasing. A wide
variety of flavonoid compounds have exhibited cytotoxic effects to various cancer cells and
inhibit tumor progression substantially by acting as pro-oxidants and inducing mitochon-
drial oxidative stress and also leading to DNA damage [108]. Many vegetables, fruits, and
medicinal herbs enriched with flavonoids are also found to exhibit anti-proliferative proper-
ties against cancer cells. On the contrary, flavonoids and flavonoid-enriched foods/herbal
extracts often demonstrated no or mild cytotoxicity in normal cells only with a very high
concentration. A possible explanation for these conflicting phenomena is that they may be
due to the selective toxicity of flavonoids to cancer cells and differences in their cellular
physiology and biochemical events than the normal cells [109].

The interest in using flavonoids as food supplements and/or nutraceuticals alone
or together with other prescription medicines are increasing, which may lead to a risk
of flavonoid-drug/herb/food interactions. According to certain published reports, some
dietary flavonoids may have the potential to interact adversely with clinically used drugs.
Dietary flavonoids alone or a combination present in dietary sources were often found
to alter the pharmacokinetic profile of therapeutic drugs [109,110]. Many herbal drugs
enriched with flavonoids have been reported to accelerate or diminish the rate of absorp-
tion of various drugs when co-administered. One of the most studied mechanisms of
dietary flavonoids leading to increased or decreased bioavailability of the therapeutic drug
is CYP450 enzyme interaction. Dietary flavonoid compounds individually or present in di-
etary supplements or herbal preparations were found to inhibit or induce various isoforms
of CYP450 enzyme in the gut and liver and also found to modify the action of xenobiotic
efflux in the gut [111,112]. This phenomenon was often found to increase the bioavailability
of many drugs, which is of course beneficial for the drugs with low bioavailability or
metabolic stability. However, these pharmacokinetic alterations turn negatively for drugs
with an extremely narrow therapeutic index like digoxin, lisinopril, captopril, etc. [111].
The interactive behavior of dietary flavonoids and alterations of pharmacokinetics are not
always predictable. One of the main reasons behind this effect is that the concentrations of
individual flavonoids and other non-flavonoid constituents are different in every matrix.
Toxicity on the other hand is a dose and concentration-dependent phenomena. Consump-
tion of dietary flavonoids as food or supplements generally produces low concentrations
of flavonoids during daily dietary intake. On the other hand, high doses of flavonoids in
food supplements can become pro-oxidants and generate free radicals rather than acting
as antioxidants [110]. Hence, it is very important to have a better understanding of the
timing and amount of intake of dietary flavonoids in order to maximize the benefits while
minimizing the risks. Some important flavonoid-drug interactions are depicted in Table 3.

Table 3. Flavonoid-drug interaction [111].

Drugs Flavonoid Species in Which Tested Change in Bioavailability

Diltiazem (15 mg/kg, oral) Morin (1.5–7.5 mg/kg, oral) Rat 1.4- to 1.8-fold increases

Talinolol (10 mg/kg, oral) Naringin (1–20 mg/kg, oral) Rat 1.5- to 3.0-foldincreases

Etoposide (6 mg/kg, oral) Morin (15 mg/kg, oral) Rat 1.4-fold increases

Digoxin (0.02 mg/kg, oral) Quercetin (40 mg/kg, oral) Pig 1.7-foldincreases

Moxidectin
(0.2 mg/kg, subcutaneous)

Quercetin (10 mg/kg,
subcutaneous) Sheep 1.8-fold increases

Verapamil (10 mg/kg, oral) Quercetin (15 mg/kg, oral) Rabbit 2-fold increases

Paclitaxel (30 mg/kg oral) Genistein (10 mg/kg, oral) Rat 1.5-fold increases
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4.3. Strategies to Overcome Pharmacokinetic and Toxicological Limitations

The delivery of phytochemicals like flavonoids is challenging due to poor solubil-
ity, run-down permeability, low bioavailability, instability in the biological environment,
and extensive first-pass metabolism. Recently, various absorption-enhancing techniques
have been developed and used to improve the oral bioavailability and efficacy of poorly
absorbable flavonoids by increasing their solubility or gastrointestinal permeability and
preventing metabolic degradation. Researchers across the globe have proposed several
approaches including structural modifications of the parent compound, nano-formulation,
matrix complex formation, co-crystal technique, and dispersion techniques, etc. to enhance
the pharmacokinetics and bioavailability of natural active flavonoids and improve their
efficacy [113]. Colloidal drug delivery systems (CDDS) as carriers for phytochemicals
have seen an exponential rise and have also helped in the rejuvenation of ancient and
forgotten natural molecules by optimizing some unfavorable chemical or physical prop-
erties of the natural active compounds, including solubility and the biological stability,
while, on the other hand, also improving their radical scavenging activity and promot-
ing bioavailability [114]. The delivery system is capable of increasing the antioxidant
activity of flavonoids by preventing degradation of the formulation due to encapsulation
and maintaining the drug concentration over time, which in turn increases the antioxi-
dant/radical scavenging activity of the active compound compared to the unloaded one.
Furthermore, these also help in compounding sustained and controlled release formu-
lations which can be used for flavonoid-targeted therapies [115]. In comparison to the
conventional formulation, micro or nano-emulsion increases the penetration rate through
biological membranes and also enhances their ADME phase, thereby decreasing associated
toxicities [116]. The use of biopolymers in formulations used for CVDs treatment adds
an advantage because of its favorable properties such as biodegradability, good biocom-
patibility, and attractive biomimetic characteristics [117]. Structural modification of the
parent flavonoid compounds also has been proven as one of the successful strategies to
overcome poor solubility and GI absorption. Glycosylation and glucuronide conjugation
are the useful tailoring reactions which may significantly change the physicochemical
properties of hydrophobic flavonoids. The introduction of new polar groups or masking
the selective functional groups in the structural skeleton, which is popularly known as the
pro-drug approach, have become useful to improve the pharmacokinetic profile of various
dietary flavonoids [118]. It is often observed that co-administration of food and flavonoids
together produces better absorption of flavonoids from the gut. Hence, the complex carrier
formation approaches like cyclodextrin complex or lipid/carbohydrate-flavonoid conju-
gate are some of the approaches to overcome pharmacokinetic limitations [104,112]. The
formulation of nanoparticles or nanocrystals is the most common approach to enhance
the absorption and bioavailability of flavonoids and has been found to be remarkably
effective in cancer chemoprevention [119,120]. However, all these strategies to improve
the pharmacokinetic profile of dietary flavonoids are exclusively dependent on the area of
their application and most of them are still under experimental investigational phases and
need more in-depth studies to make any conclusive statement.

5. Therapeutic Approaches and Future Drug Discovery

Flavonoids are allied with a wide spectrum of health-promoting effects and there-
fore are a requisite component in a variety of nutraceutical, medicinal, and cosmetic
applications. These compounds exhibit a wide variety of medicinal properties such as
anti-mutagenic, anti-atherosclerotic, cardiovascular protective, antidiabetic, insulin sen-
sitizer, anti-carcinogenic, antioxidant, anti-inflammatory, antithrombogenic, and antitu-
mor agents [16,17]. Flavonoid supplementation exhibited positive improvements during
neurodegenerative complications like Alzheimer’s disease [27]. In anticancer therapy,
flavonoids have been extensively used. Flavonoids were used as a single agent or in
combination with other therapeutics against hematopoietic/lymphoid or solid cancers in
22 phase II and 1 phase III clinical trials (PubMed, Scopus, and Web of Science) released by
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January 2019. Quercetin is one of the most studied flavonoids in the mitigation of cancer
and related complications [121]. Flavonoids have also been known for their antimicro-
bial activity and many of them have been isolated and identified as having properties
of antifungal, antiviral, and antibacterial activity. Many flavonoid molecules have been
used in combination with synthetic and other existing antibiotics to increase the efficacy
and overcome drug resistance [122]. Naturally occurring flavonoid scaffolds often offer
novel templates to design various potent synthetic drugable molecules. For example,
phlorizin is a chalcone type of flavonoid which brings the idea of clinically approved
SGLT-2 inhibitor gliflozins [123]. The most intriguing properties of flavonoids in the field of
disease management are their antioxidant and cytoprotective properties during oxidative
stress. Because of this property, flavonoids hold an irreplaceable position in the fields of
nutrition, food safety, and health. Various flavonoid-enriched nutraceuticals like green tea,
matcha tea, and beverages are gaining global interest [124]. Flavonoids such as quercetin,
naringin, hesperetin, and catechin possess a higher grade of antiviral activity and they act
by affecting the replication and infectivity of certain RNA and DNA viruses [125]. Recently,
during this COVID-19 pandemic, there is an overwhelming scientific interest in searching
for naturally occurring and synthetic flavonoid compounds to reduce COVID-19-infected
cardiovascular malfunctioning by blocking the viral entry at the ACE2 receptor [126].

Despite their broad and multi-potent pharmacological properties, research into the
therapeutic efficacy of standardized flavonoid products extracted from plant sources in
prospective human studies is still missing. To produce cost-effective flavonoid-based natu-
ral health products, scale-up, consumer- and environment-friendly green technologies are
needed. Flavonoid supplementation should be performed with caution in cancer patients
because it can interfere with radiotherapy and various chemotherapies. There should be
a strict monitoring of the flavonoid-rich food-drug interactions as well to minimize the
unwanted contraindications. To resolve bioavailability issues, improve targeted delivery,
and improve the therapeutic efficacy of certain flavonoids, multidisciplinary research col-
laborations are needed. The biotransformation of flavonoids is also a major concern in its
drug development aspects. Microsomal- and gut microbiota-mediated metabolism of a
large variety of dietary flavonoids is still not well studied, which can give ideas on how to
design novel and therapeutically active potent small molecules and also open up newer
directions for therapeutic strategies.

6. Conclusions

Dietary flavonoids are bioactive components of fruits and vegetables that may be
effective in the prevention of diseases such as cancer and CVDs. Current research trends on
flavonoids aim to identify plant-derived/dietary flavonoids with regard to exploring their
medicinal applications and/or biological/pharmacological activities in various chronic
disorders. The bioactivity of flavonoids depends on their pharmacokinetic, metabolic, and
pharmacodynamic profile in the human body. Information embedded in this review would
help researchers to understand the biochemical (molecular) mechanisms of action, bioavail-
ability, metabolism and other pharmacokinetic aspects, and toxicities/safety concerns of
dietary flavonoids possessing beneficial health effects in various CVDs.
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