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Abstract: Magnetic resonance spectroscopy (MRS), as a noninvasive method for molecular structure
determination and metabolite detection, has grown into a significant tool in clinical applications.
However, the relatively low signal-to-noise ratio (SNR) limits its further development. Although
the multichannel coil and repeated sampling are commonly used to alleviate this problem, there
is still potential room for promotion. One possible improvement way is combining these two
acquisition methods so that the complementary of them can be well utilized. In this paper, a novel
coil-combination method, average smoothing singular value decomposition, is proposed to further
improve the SNR by introducing repeatedly sampled signals into multichannel coil combination.
Specifically, the sensitivity matrix of each sampling was pretreated by whitened singular value
decomposition (WSVD), then the smoothing was performed along the repeated samplings’ dimension.
By comparing with three existing popular methods, Brown, WSVD, and generalized least squares,
the proposed method showed better performance in one phantom and 20 in vivo spectra.

Keywords: biomolecular NMR; magnetic resonance spectroscopy; SNR; coil combination; SVD

1. Introduction

Magnetic resonance spectroscopy (MRS), as a useful tool for determining the in vivo
molecular compositions, has achieved impressive success over the past two decades. One
of the main clinical application of MRS is to quantify the concentration of metabolites,
especially for the analysis of the brain neurochemistry changes that are associated with
some brain diseases like tumor [1,2], Alzheimer disease [3,4], Parkinson [5], and stroke [6].
However, due to the low concentration of some metabolites and the relatively low signal-
to-noise ratio (SNR), further quantification and analysis of metabolites is difficult to be
promoted for the brain spectrum [7,8].

There are two different conventional methods for improving the SNR of MRS. One is to
average signals obtained from the repeated collections, regarded as the averages’ dimension
A (size 128 in Figure 1). The other is to receive multichannel spectra from phase arrays and
combine them by signal processing, regarded as the coils’ dimension C (size 32 in Figure 1).
Take the number of sampling points of MRS as npts dimension N (size 2048 in Figure 1),
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then the whole three-dimensions’ MRS acquisition is shown in Figure 1. The multichannel
coil acquisition, which was first proposed by Roemer et al. [9], simultaneously acquires
data from multiple, closely overlapping magnetic resonance receiving arrays in the region
of interest and has been applied in MRS and magnetic resonance imaging (MRI) [10–12].
Based on Roemer theory, several coil-combination signal processing methods have been
proposed for maximizing the SNR. These methods form a linear combination of spectra
with weights (sensitivities matrix) that provide constructive addition of the signals and
give higher emphasis to coils with higher signal [13]. An easy evaluation of the weights
is taking advantage of characteristics of the signal itself, like the amplitude of metabolite
peak [14], unsuppressed water peak [15], or the first point of its time-domain signal [15]
as the weighting coefficient. However, the above methods ignore the correlation of the
noises among coils in practice. Hence, Rodgers and Robson [16] proposed a whitened
singular value decomposition (WSVD) method, aiming to reduce the noise correlation
using whitening before the singular value decomposition process. Another method, named
generalized least squares (GLS) [17], which solves the inverse problem of signal recovery by
using generalized least squares, makes the coefficient of variation of the peak smaller and
provides a more reliable pretreatment for the quantification of metabolites. Nevertheless,
the improvement of SNR is still not satisfying enough. One possible promotion method is
utilizing the information of two acquisition ways simultaneously.
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Figure 1. An illustration of the array coil acquisition with repeatedly sampled, three-dimensions

data acquisition
~
X ∈ CC×A×N (coils (C), averages (A), npts (N)).

In this paper, we proposed a WSVD-based advanced coil-combination method, which
is named as average smoothing singular value decomposition (ASSVD), to further utilize
the similarity between each repeated samplings within one coil. This similarity is achieved
by smoothing the coil sensitivity map along the npts dimension N and averages’ dimension
A with a two-dimensions’ averaging convolution kernel.

2. Materials and Methods
2.1. Materials

All the MRS data were collected on a 3T United Imaging (Shanghai, China) scanner
with 32-channel phase array head coils. The point resolved spectroscopy (PRESS) [18]
sequence was performed, which consisted of three slice-selective RF pulses (90◦-180◦-180◦).
The experimental parameters were as follows: TR/TE = 2000/30 ms, voxel size = 20 mm
× 20 mm × 20 mm, number of points = 2048, and spectral bandwidth = 2000 Hz. Water
suppression was applied using the WET [19], while a water-unsuppressed spectrum was
also collected as the reference signal for the absolute concentration quantification and phase
correction. For each spectrum, 128 repeated samplings took about 4 min, 21 s. Finally, the
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MRS raw data acquired from the machine before coils combination were three-dimensional
with C = 32, A = 128, and N = 2048 and there was no additional preprocessing.

2.1.1. Phantom Experiments

The General Electric golden standard phantom sphere was used for phantom experi-
ments. Voxel locations of the sphere are shown in Figure 2a. The simulated correlation noise
between coils was added to phantom experiments with different noise levels [13,16,17].
The simulated noise of each repeated sampling was independently generated according to
the in vivo spectrum as follows.
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For the noise E, which is often unknown in practical problems, one accepted way is to
regard a range of spectrum, such as the 0.4–1.0 ppm range of 1H MRS, as the noise-only

measurement region [13]. Then, replace the realistic E with the estimated
^
E obtained

from the region. The estimated noise covariance matrix
^
Ψ can be expressed as Formula

(1) [13,17]:
^
Ψ=

^
E

^
E

H

(1)

The experimental correlation noise matrix
^
Ψ was independently measured from each

repeated sampling of in vivo spectrum in the noise-only region. Then, we generated a
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white Gaussian noise matrix EGaussian ∈ CC×N , whose real and imaginary entries belong
to the standard normal distribution. The correlation noise Ecorr was generated as:

^
Ψ = LLH

Ecorr = LHEGaussian
(2)

where H denotes the conjugate transpose operation, L denotes the Cholesky decomposition

of
^
Ψ, and Ecorr denotes the correlation noise called unit (1×) noise level. The phantom data

added to the simulated correlated noise in the time domain was expressed as:

Xq−noise = X + qEcorr, q = 1, 2, . . . , 7 (3)

2.1.2. In Vivo Experiments

In vivo data were acquired from 11 healthy volunteers with the approval of the
Institutional Review Board of Shanghai Jiao Tong University. Informed consent was
obtained from all volunteers before the study began. Three healthy volunteers were
scanned at three different voxel locations (Location A (LA), Location B (LB), and Location
C (LC)) in Figure 2b–d. Five healthy subjects were scanned at the LA only and other three
healthy subjects were scanned at LB and LC. Finally, totally, 20 MRS were acquired for
validation (see Table 1 for details).

Table 1. The scanning single-voxel location list of each volunteer.

Location
Person

1 2 3 4 5 6 7 8 9 10 11

LA
√ √ √ √ √ √ √ √

× × ×
LB

√ √ √
× × × × ×

√ √ √

LC
√ √ √

× × × × ×
√ √ √

The
√

and × indicate the data that were acquired and not acquired, respectively. To illustrate, use P2-LA to represent the spectra scanned
at location A from person 2.

2.2. Methods

In practice, the collected MRS data
~
X ∈ CC×A×N were multi-dimensional, as shown

in Figure 1, where the number of coils, averages, and signal points are denoted as C, A, and
N, respectively.

According to Roemer’s multichannel phase array receive coils theory [9], for C coils
phase array scanner, the received spectrum with N points acquired from the cth coil can be
expressed as:

Xc(n)=scm(n) + Ec(n), n = 1, 2, . . . , N, c = 1, 2, . . . , C, (4)

where sc represents the sensitivity and phase shift of coil c, m(n) is the nth point of the
ideal high SNR combination spectrum, and Ec(n) could be considered as Gaussian white
noise, which mainly arises from the thermal fluctuations within the subject [16]. These
values depend on the location of the exciting voxel relative to the coil, the array design, the
geometry and dielectric properties of the sample, the gain of the receiving coil, etc. [16].
The coils’ combination can be modeled according to the corresponding matrix form of
Formula (4) as:

X = smT + E, (5)

where T denotes the transpose operation and X ∈ CC×N and E ∈ CC×N are the acquisition
signal matrix (the example shown in Figure 1) and the correlation noise matrix, respectively.
The s ∈ CC×1 stands for the sensitivity vector of the coil array and m ∈ CN×1 represents
the ideal high SNR coil-combined spectrum.
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In the next two subsections, we briefly review three typical combined methods,
Brown [15], GLS [17], and WSVD [16]. Then, we propose a new method, average smoothing
singular value decomposition (ASSVD) in Section 2.2.3.

2.2.1. Brown and GLS

As described in the literature [15], the combined result
^
mBrown of Brown’s method

was obtained by weighting each coil xc with the first point Xc(1) of the MRS time-domain
signal:

^
mBrown =

C

∑
c=1

(Xc(1)× xc) (6)

GLS algorithm solves the general model (5) through the generalized least square
method [17]. If the noise E is known to Gaussian normal distribution with the mean of zero,

the best linear unbiased estimation
^
mGLS of the problem (5) is expressed as follows [17]:

^
mGLS =

(sH ^
Ψ

−1

s

)−1

sH ^
Ψ

−1

X

T

(7)

Here, the sensitivity vector s consists of the peak value of NAA at 2.0 ppm from each

coil,
^
Ψ is the noise covariance matrix, which could be calculated by Formula (1), and −1

denotes the inverse operation.

2.2.2. WSVD

The WSVD is a modified SVD-based method, which considers that the noises across
coil arrays are correlated [16]. Therefore, we briefly went through SVD before WSVD.

In model (5), to solve the sensitivity vector s and the ideal coil-combined spectrum m,
the acquired MRS matrix X ∈ CC×N was used for SVD decomposition [16]:

X = UΣVH , (8)

where U ∈ CC×C, V ∈ CN×N are the unitary matrices and Σ represents the diagonal matrix
composed of descending singular values. The left and right singular vectors corresponding
to the maximum singular value Σ11 are uC1 and vN1, respectively.

The coil-combined spectrum
^
mSVD can be solved by the following formula [16,20]

under the assumption that the max contribution or the principal component of Σ is the
solution:

^
mSVD =

(
Σ11vH

N1ξ
)T

^
s = uC1

ξ ,
(9)

where
^
s is the estimated sensitivity matrix and ξ is the free amplitude/phase of each voxel.

The difference between WSVD and SVD is that WSVD does the noise whitening for
decorrelation before the SVD operation. The whitened process is expressed as below:

XWhitened = WX, (10)

where matrices XWhitened and X denote the whitening data matrix and the data acquisition
matrix, respectively. The matrix W ∈ CC×C is the whitening weight matrix constructed

according to the eigen decomposition of the noise covariance matrix
^
Ψ as below:

^
Ψ = GDGH

W = D−1/2GH ,
(11)
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where the complex matrix G consists of eigenvectors of
^
Ψ and the corresponding eigenval-

ues are arranged at the diagonal matrix D.
Results in Figure 3 show the correlation matrix of noise before (Figure 3a) and after

whitened (Figure 3b), indicating the correlation matrix after whitened is closer to the
identity matrix. Finally, substitute XWhitened for X in (8) and the ideal coil-combined
spectrum can be expressed as:

XWhitend =
~
U

~
Σ

~
V

H

^
mWSVD =

(
W−1Σ11

~
v

H
N1ξ

)T
,

(12)

Because D−1/2 and GH are usually full-rank matrices, the inverse whitening operation
W−1 always can be calculated.
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2.2.3. The Proposed Method

Based on the WSVD, which de-correlates the noise by signal whitening, we proposed
a multicoil channel-combination method with the repeated samplings, ASSVD, which
extracts the information among the repeated samplings through the convolution to gain
a higher SNR. The advantages of WSVD are absorbed into the proposed method. In the
meanwhile, ASSVD takes the relationship between repeated samplings into consideration,
making the sensitivity matrix between each repeated sampling smoother. The model and
its solution process are shown as follows.

The repeatedly sampled data acquisition matrix
~
X (shown in Figure 1) can be reshaped

to a complex vector
~
x ∈ CCAN×1. For the ath sampling and the cth coil, the relationship

among the measurement data xc,a ∈ CN×1, the sensitivity sc,a ∈ CN×1, and the pre-

combined signal
^
ma−WSVD ∈ CN×1 obtained from WSVD can be stated as below:

xc,a = sc,a·
^
ma−WSVD, a = 1, 2, . . . , A, c = 1, 2, . . . , C (13)

where · donates the vector dot product.
Presume that the sensitivity of each coil is stable between two arbitrary repeated

samplings by the idea that the magnetic field distribution of its space relative to the coil
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array is constant in the same voxel. Under the assumption, the sensitivity sc,a is arranged

into a new complex sensitivity matrix
~
SWSVD as below:

~
SWSVD =



s1,1(1)
· · ·

s1,1(n)
· · ·

s1,a(1)
· · ·

s1,a(n)
...

sc,1(1)
· · ·

sc,1(n)
· · ·

sc,a(1)
· · ·

sc,a(n)



∈ CCAN×AN , (14)

where sc,a(n) is the sensitivity value of point n = 1, 2, . . . , N of sc,a and all the ungiven
blank positions are zero value. Therefore, by reshaping the non-zero parts of the matrix
~
SWSVD in the form of C× A× N (as shown in Figure 4a), the sensitivity matrix of each coil
should be relatively smooth on the plane formed by the repeatedly sampled dimension.
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To obtain a smoother sensitivity matrix, as expected, we introduced SENSE [10], an
MRI multicoil-combination method, and did the two-dimensional convolution smoothing
~
SWSVD between each sampling by using average filtering convolution kernels ϕ(k) with



Molecules 2021, 26, 3896 8 of 13

the size of k× k. The new smooth sensitivity matrix
~
Sconv (the non-zero part after being

reshaped, as shown in Figure 4b) can be expressed as:

~
Sconv =

~
SWSVD ∗ ϕ(k) (15)

where ∗ represents the convolution operation.

According to
~
Sconv and

~
x, we can obtain the idea of repeatedly sampled coil-combination

~
mASSVD ∈ CAN×1 through solving the model (16):

~
x =

~
Sconv

~
mASSVD (16)

3. Results
3.1. The Evaluation Criteria

We compared ASSVD with three typical coil-combination methods: Brown [15],
GLS [16], and WSVD [17]. The resultant combined spectra were evaluated by the SNR,
which is defined as [21]:

SNR =
max(x− xbaseline)

2
√

1
n‖x− xfitted‖2

2

, (17)

where x and xbaseline denote the coil-combined spectrum and the spectral baseline, respec-
tively. The subtractions of the fitted spectrum xfitted by LCModel [21] and the spectrum x
are the fitting residuals.

In addition, we also considered the LCModel metabolites’ quantification results in
the phantom experiment. The metabolites involved and their abbreviations are listed as
follows: Choline (Cho), Creatine (Cr), Glutamine (Gln), Glutamate (Glu), Glycerophos-
phosphocholine (GPC), L-Lactate (Lac), myo-Inositol (mI/Ins), N-acetylaspartate (NAA),
N-acetylaspartylglutamate (NAAG), Phosphocholine (PCh), and Phosphocreatine (PCr).
To better evaluate the SNR and quantify the coil-combined MRS [22], we utilized a 17-
metabolites basis set, which is commonly used for brain MRS in LCModel analysis, and
presented the sum concentration of similar spectra rather than single one, i.e., NAA +
NAAG instead of NAA, Cr + PCr instead of Cr, GPC + PCh instead of Cho, and Glu +
Gln instead of Glu. In all experiments, eddy-current correction and phase correction were
automatically done by LCModel and analysis results were presented in the spectrum range
of 0.2–4.0 ppm.

3.2. Phantom Experiment

The SNR results in Figure 5 show that all coil-combination methods could achieve
the comparative SNR level (45 dB) in the phantom experiment. The high SNR could be
attributed to the high quality of the phantom spectrum, which was caused by the richer
concentration of metabolites and the absence of experimental interferences compared
with in vivo MRS. It is worth noting that the significant residuals were in the range of
2.2–2.8 ppm in all methods, which was more likely to be caused by the fitting.

Results in Table 2 show the absolute quantification concentration of metabolites after
coil combination under the same water reference spectrum. For ensuring the spectrum
quantification was of comparative significance, we only presented the results by WSVD
and ASSVD, which owned the same scale in water-referenced quantification by LCModel.
Compared with WSVD, the proposed method provided the spectrum whose quantified
concentrations were almost closer to the reference values and acquired a lower relative
error. In addition, the overall quantification concentration of ASSVD was higher than that
of WSVD, which also indicated to some extent that ASSVD could better maintain the peak
intensity.



Molecules 2021, 26, 3896 9 of 13Molecules 2021, 26, x  9 of 13 
 

 

 
Figure 5. Phantom MRS coil-combined results. (a) Brown, (b) GLS using NAA peak as the reference, (c) WSVD, and (d) 
the proposed method ASSVD. The black and purple lines represent coil-combined MRS x  and the spectral baseline 

baselinex  estimated by LCModel, respectively. Additionally, the fitting residuals shown at the top were calculated by 

fitted−x x . 

Results in Table 2 show the absolute quantification concentration of metabolites after 
coil combination under the same water reference spectrum. For ensuring the spectrum 
quantification was of comparative significance, we only presented the results by WSVD 
and ASSVD, which owned the same scale in water-referenced quantification by LCModel. 
Compared with WSVD, the proposed method provided the spectrum whose quantified 
concentrations were almost closer to the reference values and acquired a lower relative 
error. In addition, the overall quantification concentration of ASSVD was higher than that 
of WSVD, which also indicated to some extent that ASSVD could better maintain the peak 
intensity. 

Table 2. Absolute quantification concentration (AQC) (mmol/L) of the phantom experiment. 

Metabolites Reference 
Coil-Combination Methods 

WSVD (RE) ASSVD (RE) 
NAA + NAAG 12.500 12.021 (−3.8%) 12.159 (−2.7%) 

Cr + PCr 10.000 9.832 (−1.7%) 10.016 (+0.2%) 
Cho (GPC + PCh) 3.000 3.284 (+9.5%) 3.348 (+11.6%) 

mI/Ins 7.500 5.868 (−21.8%) 6.014 (−19.8%) 
Glu + Gln 12.500 12.072 (−3.4%) 12.311 (−1.5%) 

Lac 5.000 4.435 (−11.3%) 4.470 (−10.6%) 
Phantom-contained metabolites are bolded in the table and integral-quantified metabolites are shown in the table. Relative 
error (RE) was calculated by method reference referenceRE (AQC AQC ) / AQC= − . 

3.3. In Vivo Experiment 
Coil-combined in vivo spectra with four methods and the fitting residuals by 

LCModel are shown in Figure 6, verifying that ASSVD had a supreme SNR improvement 

Figure 5. Phantom MRS coil-combined results. (a) Brown, (b) GLS using NAA peak as the reference, (c) WSVD, and (d) the
proposed method ASSVD. The black and purple lines represent coil-combined MRS x and the spectral baseline xbaseline

estimated by LCModel, respectively. Additionally, the fitting residuals shown at the top were calculated by x− xfitted.

Table 2. Absolute quantification concentration (AQC) (mmol/L) of the phantom experiment.

Metabolites Reference
Coil-Combination Methods

WSVD (RE) ASSVD (RE)

NAA+ NAAG 12.500 12.021 (−3.8%) 12.159 (−2.7%)
Cr + PCr 10.000 9.832 (−1.7%) 10.016 (+0.2%)

Cho (GPC + PCh) 3.000 3.284 (+9.5%) 3.348 (+11.6%)
mI/Ins 7.500 5.868 (−21.8%) 6.014 (−19.8%)

Glu + Gln 12.500 12.072 (−3.4%) 12.311 (−1.5%)
Lac 5.000 4.435 (−11.3%) 4.470 (−10.6%)

Phantom-contained metabolites are bolded in the table and integral-quantified metabolites are shown in the table.
Relative error (RE) was calculated by RE = (AQCmethod −AQCreference)/AQCreference.

3.3. In Vivo Experiment

Coil-combined in vivo spectra with four methods and the fitting residuals by LCModel
are shown in Figure 6, verifying that ASSVD had a supreme SNR improvement compared
with Brown and WSVD, from 40 dB to 44 dB. Additionally, in the 1.4–2.0 ppm segments,
the proposed ASSVD obviously reduced noises compared with other methods, and in the
2.8–3.0 ppm and 0.4–0.6 ppm segments, the resultant spectrum also had less noise. This
promotion benefited from ASSVD not only taking advantage of the multicoil acquisition
but also integrating the information between repeated samplings for maximizing the SNR.
Therefore, ASSVD is expectedly suitable for MRS, which was acquired with repeated
samplings in routines and has a great application prospect.
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4. Discussions
4.1. Influence of the Kernel Size

The only parameter of the proposed ASSVD was the size of the convolution kernel
that determined the smoothing intensity of the sensitivity matrix. Table 3 presents the SNR
comparison of the ASSVD method with different convolutional kernel sizes of 3, 5, 7, and
9 for the 20 in vivo spectra. For most spectra, the optimal SNR could be obtained when
the convolution kernel was 7 in our data. If the kernel size was small, like 3 or 5, SNR got
worse than the results of WSVD (P7-LA and P9-LB). On the other hand, a too-large kernel,
whose size exceeded the optimal value, would reduce the SNR to a certain extent (P2-LC
and P8-LA). Further, we applied the small size samples’ (20 MRS < 30) one-sided t-test [23],
which is used to determine if the means of two sets of data are significantly different from
each other, to demonstrate that our proposed ASSVD had significant SNR improvement
with WSVD. The results are also shown in Table 3 and indicated ASSVD had a statistically
significant SNR improvement (p value < 0.01) with WSVD in the case of Kernel Size ≥5.

To our best knowledge, there did not seem to be any linear relationship between the
size of the convolution kernel and the SNR of the spectrum itself. How to choose the
optimal size still remains for discussions in the future. Introducing the prior information
such as Low-Rank Hankel [24–26] features or new technologies such as deep learning [27]
to determine this parameter are both potential solutions.
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Table 3. Influence of SNR with the different kernel sizes in ASSVD.

SNR (dB)
Methods

WSVD 1
ASSVD 2

(Kernel Sizes)

Spectra 3 5 7 9

P1-LA 46 47 48 49 49
P1-LB 49 51 54 54 54
P1-LC 44 43 45 46 45
P2-LA 48 51 53 54 53
P2-LB 52 53 55 55 56
P2-LC 35 42 45 47 45
P3-LA 42 44 46 45 45
P3-LB 49 50 51 51 52
P3-LC 42 45 46 45 45
P4-LA 33 32 34 36 37
P5-LA 34 37 37 37 37
P6-LA 32 30 33 33 32
P7-LA 40 37 39 40 40
P8-LA 30 34 34 34 33
P9-LB 35 30 33 36 37
P9-LC 26 27 28 30 31
P10-LB 37 34 35 36 38
P10-LC 34 32 35 38 37
P11-LB 38 38 39 40 40
P11-LC 31 29 32 35 37

Average
(Increases)

38.9
(0)

39.3
(+0.4)

41.1
(+2.2)

42.1
(+3.2)

42.2
(+3.3)

p-value (t-test) / 0.2708 0.001 0.000 0.000
1 The WSVD is the baseline method. 2 The increased SNR compared with the average SNR of WSVD.

4.2. Influence of Noise Level on the Combination Methods

To further investigate the SNR promotion of the proposed method in the strong
noisy scenario, we manually added different levels of correlation noise to the phantom
spectrum. The correlation noise was simulated by the noise matrix obtained from in vivo
spectrum, which was denoted as unit (1×) noise. (Details of noise simulation are explained
in Section 2.1.1). For ASSVD results, the size of the convolution kernel had no apparent
impact on the performance and, thus, we merely presented the result when it was chosen
as 7.

Figure 7 shows the SNR performance of different combination methods under 1×–7×
noise levels. The result indicates that, under seven different noise levels, the proposed
ASSVD always achieved the highest SNR among the four methods, while WSVD and
Brown method always performed comparably, but slightly better than GLSNAA. In the case
of low noise (1× noise), the combined spectra of the three compared methods had similar
SNR. With the increase of the noise level, the gaps between ASSVD and the other three
methods tended to expand, illustrating that the advantage of ASSVD can be more obvious
under the strong noise. In summary, ASSVD showed superiority in the presence of various
levels of noise in our test, implying its wide range of application scenarios.



Molecules 2021, 26, 3896 12 of 13
Molecules 2021, 26, x  12 of 13 
 

 

 
Figure 7. The SNR of different coil-combination results under 1×–7× simulated correlation noise. 

5. Conclusions 
We presented a new MRS multichannel coil-combination method, ASSVD, which 

performed combining while taking the information of repeated sampling into considera-
tion by a smoothing operation for promotion SNR in combined spectra. In addition, 
ASSVD owned merely one parameter, the size of the smooth convolution kernel, offering 
convenience for users. The combination results on phantom and in vivo data showed that 
ASSVD is capable of achieving better SNR than existing typical methods, even in the scene 
of strong noise. In the future, we will focus on exploring the selection of convolution ker-
nel size so that ASSVD can automatically provide better coil-combination spectra. 

Author Contributions: Conceptualization, methodology, writing—original draft preparation, 
W.H., H.C. and X.Q.; project administration, funding acquisition, supervision, X.Q.; validation, in-
vestigation, H.L.; formal analysis D.C.; software, visualization, W.H. and H.L.; resources, data cu-
ration, H.C., H.S. and J.L.; methodology, C.X.; writing—review and editing, W.H., D.C., H.L., T.Q., 
D.G. and H.C. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported in part by the National Natural Science Foundation of China 
(61971361, 61871341, 61811530021, and 61672335), National Key R&D Program of China 
(2017YFC0108703), Health-Education Joint Research Project of Fujian Province (2019-WJ-31), Xia-
men University Nanqiang Outstanding Talents Program, Project of China Mobile Communications 
Group Fujian Co., Ltd. Xiamen Branch (XDHT2021004C). 

Institutional Review Board Statement: This study was approved by the Institutional Review Board 
of Shanghai Jiao Tong University. The protocols used in the study were approved by the Committee 
of Human Subjects Protection of the Shanghai Jiao Tong University, Shanghai, China. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. The data are not publicly available due to the data also forming part of an 
ongoing study and only being authorized for use in this study. The code demo with simulated data 
for the test can be found here: https://csrc.xmu.edu.cn/wanqi/ASSVD_poster.htm. 

Acknowledgments: The authors would like to thank the staff from Shanghai Jiao Tong University, 
United Imaging Research Institute of Intelligent Imaging, and Zhongshan Hospital Xiamen Univer-
sity for technical support. 

Conflicts of Interest: The authors declare no conflict of interest. 

Sample Availability: Not applicable. 

Figure 7. The SNR of different coil-combination results under 1×–7× simulated correlation noise.

5. Conclusions
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performed combining while taking the information of repeated sampling into consider-
ation by a smoothing operation for promotion SNR in combined spectra. In addition,
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