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Abstract: Highly accurate chemical-shift predictions in molecular solids are behind the success and
rapid development of NMR crystallography. However, unusually large errors of predicted hydrogen
and carbon chemical shifts are sometimes reported. An understanding of these deviations is crucial for
the reliability of NMR crystallography. Here, recently reported large deviations of predicted hydrogen
and carbon chemical shifts of a series of solid pyridinium fumarates are thoroughly analyzed. The
influence of the geometry optimization protocol and of the computational level of NMR calculations
on the accuracy of predicted chemical shifts is investigated. Periodic calculations with GGA, meta-
GGA and hybrid functionals are employed. Furthermore, molecular corrections at the coupled-
cluster singles-and-doubles (CCSD) level are calculated. The effect of nuclear delocalization on the
structure and NMR shielding is also investigated. The geometry optimization with a computationally
demanding hybrid functional leads to a substantial improvement in proton chemical-shift predictions.

Keywords: solids; NMR spectroscopy; DFT calculations

1. Introduction

In the past two decades, the progress of experimental and computational solid-state
NMR (SS-NMR) methods has led to the rapid development of NMR crystallography,
which combines theory and experiment to obtain otherwise inaccessible insights into
the structure and dynamics of solids [1]. The success of NMR crystallography has been
particularly driven by the possibility of fast and reliable computations of NMR parameters.
A comparison of experimental and calculated chemical shifts and other NMR parameters
with those calculated for a structural model is often used for the confirmation of the crystal
structure, the discrimination between several different structural models or for de novo
crystal-structure determination [2–6].

Most of the currently used computations of NMR parameters are based on density-
functional theory (DFT) methods [7–9]. The most remarkable success has been achieved by
the gauge-including projector-augmented wave (GIPAW) procedure, which was developed
for the prediction of magnetic-resonance parameters in crystalline materials [10]. The GI-
PAW method has been implemented in several software packages that exploit translational
periodicity in crystals. In these computations, periodic plane waves are used to form the
basis set and the effective-core pseudopotentials are used to describe interactions close to
the nuclei.

The computational level that can be used in combination with the GIPAW method
has severe limitations. Plane-wave computations are usually performed with the general-
gradient-approximation (GGA) family of density functionals, for example the Perdew–
Burke–Ernzerhof (PBE) functional [11]. The GGA functionals are considered outdated
for computations of non-periodic systems, but they are computationally very efficient
for periodic systems. In comparison with the GGA functionals, the meta-GGA family
of functionals adds the orbital kinetic energy density to the exchange-correlation func-
tional. A meta-GGA functional, rSCAN, has recently been developed and implemented
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for condensed-matter simulations [12]. Electronic-structure calculations and geometry
optimizations can also be performed with hybrid functionals, which incorporate a portion
of exact exchange calculated at the Hartree–Fock level. These functionals are widely used
for isolated molecules. Unfortunately, periodic plane-wave computations with hybrid
functionals are almost two orders of magnitude more demanding on computational time
and memory usage than those with GGA functionals. Nevertheless, several studies have
demonstrated that going beyond the GGA level improves the accuracy of the predicted
NMR parameters [13–17].

Despite the limitations of the computational level used in standard NMR crystallog-
raphy studies, the predictions of carbon chemical shifts are usually surprisingly accurate
with an estimated accuracy of approximately 2 ppm, which is usually sufficient for the
purposes of NMR crystallography. However, several studies have reported much larger de-
viations. Corlett et al., for instance, have recently reported an NMR crystallography study
of a series of pyridinium fumarates and observed differences of up to 6 ppm between the
experimental and calculated carbon chemical shifts [18]. A similarly worrying discrepancy
has been observed in GGA–GIPAW calculated carbon chemical shifts of solid testosterone,
where most individual chemical shifts were reproduced to within a few ppm, with the
notable exception of carbon C5, which was significantly overestimated [19,20].

We have recently investigated the factors contributing to the accuracy of the chemical-
shift predictions of hydrogen nuclei in molecular solids and observed that the GGA-
calculated proton chemical shifts deviated up to 1.5 ppm from the experiment, with
the largest deviation observed for a hydrogen atom attached to sulfur, which has been
explained by the neglect of relativistic effects in the calculations [21]. Furthermore, when
hydrogen atoms are involved in strong hydrogen bonds, nuclear quantum effects (NQEs),
such as proton delocalization and tunneling, may become important for the predictions of
nuclear shielding [22–25]. However, with the exception of the hydrogen atom attached to
the sulfur atom, the deviations from the experiment were always lower than 0.7 ppm, even
with the standard GGA–GIPAW calculations. On the other hand, in the above-mentioned
study of pyridinium fumarates, large deviations (up to 1.9 ppm) of the GIPAW predictions
were observed [18].

These exceptions to the usually good accuracy of the predictions of SS-NMR pa-
rameters are worrying, because they undermine the credibility of the standard NMR
crystallography approaches. Therefore, it is crucial to understand the reasons for these
failures. Are they consequences of the choice of the DFT functional, of inherent inaccuracies
in the DFT methodology or of inaccurate structural models?

Here, we have selected the pyridinium fumarate systems reported by Corlett et al. [18]
and we investigate the influence of the geometry optimization protocol and the computa-
tional level of NMR calculations on the accuracy of the predicted proton and carbon chemi-
cal shifts. We employ periodic calculations with GGA, meta-GGA and hybrid functionals.
Furthermore, we apply molecular corrections at the coupled-cluster singles-and-doubles
(CCSD) level, which serves as a benchmark for highly accurate quantum-chemical calcula-
tions. We also investigate the effect of nuclear delocalization on the structure and NMR
shielding of a selected system. The structures of the systems studied, the pyridinium salts
of fumaric acid, are shown in Figure 1. All the crystal structures have been determined
using X-ray diffraction [26–29]. The crystal structures of some of the systems contain
additional fumaric acid or water molecules.
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Figure 1. The structures of the systems studied together with their CSD ref codes (in parentheses)
from the Cambridge Crystallographic Database [30] and atom numbering. Note that we employ
the standard numbering of organic compounds and that the atom numbers differ from those used
previously [18].

2. Results
2.1. Geometry Optimization Protocol

The standard procedure that is most frequently used for the computations of NMR
parameters with the GIPAW method includes the optimization of the positions of all
atoms in the crystal structure obtained from an X-ray diffraction experiment or from a
crystal-structure prediction tool. There are the following two reasons for the geometry
optimization of experimental XRD structures: first, the characterization of the positions of
hydrogen atoms is very challenging for XRD experiments and, second, molecular dynamics
lead to the apparent shortening of the interatomic distances obtained by diffraction [31].
The geometry optimization is usually performed at the same computational level as the
subsequent NMR calculation, i.e., with a GGA functional (typically the PBE functional) and
an energy cutoff (the size of the basis set) of 500–700 eV. Nevertheless, it has been shown
that the PBE functional tends to overestimate the covalent-bond distances of the hydrogen
atoms involved in hydrogen bonding [32].

In addition to the standard level (PBE, 600 eV), we have also performed a geometry
optimization of the studied systems with the computationally very demanding hybrid
functional, B3LYP, and with the newly implemented meta-GGA functional, rSCAN. For
the PBE and rSCAN levels, we have also tested the convergence with respect to the basis-
set size. Table 1 summarizes the N1–H1 distances in the pyrimidium moiety optimized
with the three functionals. These distances are, indeed, significantly longer in the PBE-
optimized structures than in the structures optimized with the hybrid B3LYP functional.
Note, however, that the geometry optimizations at the B3LYP level are impractical for
routine computations because they are extremely demanding on computational resources.
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For example, the geometry optimization of the MIBYEB (1) system took approximately
12 days on 5 computational nodes, each with 36 cores. The distances calculated with the
meta-GGA functional rSCAN are always between the PBE- and B3LYP-calculated distances,
but they are closer to the B3LYP distances. The rSCAN functional may thus serve as a
compromise providing geometries close to those obtained with a hybrid functional but
with a small fraction of computational time (the computational time is approximately only
50% longer than that of the calculations with the PBE functional, about 3 h on 4 nodes for
MIBYEB). The distances obtained with a larger energy cutoff of 900 eV (calculated only for
the PBE and rSCAN functionals) are very close to the distances obtained with a cutoff of
600 eV (Tables S1–S3 in the SI). Other selected interatomic distances, including O–H, are
also shown in the SI.

Table 1. The N1–H1 distances (Å) in the pyrimidium species obtained after the geometry optimization
of the crystal structures with the PBE, B3LYP and rSCAN functionals and an energy cutoff of 600 eV.

PBE B3LYP rSCAN

MIBYEB 1.086 1.063 1.070
RESGEC 1.058 1.042 1.047
COGCIN 1.065 1.047 1.051
DUTNUC 1.055 1.039 1.044

2.2. NMR Calculations—1H Chemical Shifts

As already pointed out in the original paper by Corlett et al. [18], there are significant
deviations between the experimental proton chemical shifts and those calculated with the
standard GIPAW procedure (PBE optimization, PBE calculation of NMR). In agreement
with the previous report, we have observed the largest deviations for the fumaric-acid OH
protons in the MIBYEB and RESGEC systems (deviations of 0.99 and 1.12 ppm, respectively).
Table 2 summarizes the mean absolute errors (MAE) obtained and the maximum errors
(Emax) of the linear fit between the calculated shieldings and experimental shifts. The
optimization with the larger basis set (an energy cutoff of 900 eV) has only negligible
influence on the calculated MAE and Emax values (Table S4 in the SI).

Table 2. The mean absolute errors (MAE) and the maximum errors Emax (ppm) of the linear fit between experimental
chemical shifts and calculated shieldings (a cutoff energy of 600 eV).

Optimization PBE B3LYP rSCAN rSCAN PBE
NMR Calculation PBE PBE PBE rSCAN PBE+CCSD a

MAE Emax MAE Emax MAE Emax MAE Emax MAE Emax

1H MIBYEB 0.29 0.99 0.13 0.39 0.26 0.98 0.28 0.93 – –
RESGEC 0.33 1.12 0.21 0.66 0.28 0.96 0.24 0.81 – –
COGCIN 0.18 0.50 0.23 0.80 0.24 0.80 0.24 0.82 0.14 0.46
DUTNUC 0.27 0.56 0.20 0.59 0.36 0.78 0.35 0.86 0.32 0.72

all 0.46 1.17 0.38 0.81 0.50 1.21 0.47 1.16 – –
13C MIBYEB 1.04 1.93 1.31 4.64 1.09 3.81 0.98 3.41 – –

RESGEC 1.24 2.65 1.93 3.56 1.61 3.65 1.25 2.93 – –
COGCIN 1.56 4.60 1.81 3.31 1.58 4.55 1.21 3.11 1.65 2.90
DUTNUC 1.78 5.85 1.86 4.01 1.76 5.53 1.38 4.16 2.00 3.30

all 1.87 6.41 2.20 5.11 2.06 6.11 1.63 4.53 – –
a Periodic calculation at the PBE level with isolated-molecule corrections at the CCSD level.

The proton-shielding calculations (at the PBE level) performed on the geometries
optimized at the B3LYP level are in substantially better agreement with the experiment
than the calculations on the PBE-optimized geometries, with both the MAE and Emax values
having dropped significantly. The largest maximum error (0.80 ppm) has been observed
for the COGCIN system (Table 1).
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The optimization at the rSCAN level and subsequent NMR calculation does not bring
any clear advantage over the standard PBE method. Although the MAE and Emax values
are slightly better than those obtained at the PBE level for the first two systems (MIBYEB
and RESGEC), they are slightly worse for the remaining two systems (COGCIN and
DUTNUC). The NMR calculations for the rSCAN-optimized structures were performed
with both the PBE and rSCAN functionals with similar results. However, we have observed
a significantly larger basis-set dependence for the rSCAN NMR calculations; increasing the
cutoff energy to 900 eV improves the performance of the NMR predictions (see the SI).

2.3. NMR Calculations—13C Chemical Shifts

The correlation between the experimental 13C chemical shifts and shieldings calculated
with the standard methodology (PBE optimization and NMR calculation) is reasonably
good for the first two systems (MIBYEB and RESGEC). However, in agreement with the
previous report [18], large discrepancies have been observed for carbon C2 in the COGCIN
and DUTNUC systems (deviations of 4.6 and 5.9 ppm, respectively).

Geometry optimization at the B3LYP level does not improve the shielding–shift corre-
lations. On the contrary, the MAE values are even larger for all the systems. Although the
Emax values for the COGCIN and DUTNUC systems have dropped from 4.6 and 5.9 ppm
to 3.3 and 4.0 ppm, respectively, the Emax values for the other two systems have increased
from 1.9 and 2.7 ppm to 4.6 and 3.6 ppm, respectively.

The performance of the geometry optimization at the rSCAN level and the subsequent
NMR calculation at the PBE level is comparable to that of the standard PBE/PBE procedure.
However, the rSCAN calculations of the NMR parameters for structures optimized at the
rSCAN level led to a significant improvement in the MAE values.

Interestingly, the largest error in the chemical-shift predictions obtained for the rSCAN-
and B3LYP-optimized structures is not that of carbon C2, as in the case of the PBE calcula-
tions, but it is always one of the CH carbon atoms in the fumaric-acid residue.

The calculated nitrogen shieldings are reported in the SI; however, the experimental
15N chemical shifts for these structures have not been reported.

2.4. Salt/Cocrystal

We have also investigated the possibility that the experimental positioning of the
acidic protons in the structures was incorrect. The distinction between salts and cocrystals
depends on whether a proton transfer has occurred along the axis of a H-bond between the
base and the acid, or not [33]. The distinction between these two types of crystalline forms
is crucial for the pharmaceutical industry, not only because they often exhibit different
physicochemical and pharmacokinetic performances, but they are also, from the legal and
regulatory points of view, connected to intellectual property issues [34,35]. The structures
of all the studied systems have been determined using X-ray diffraction experiments.
However, hydrogen atoms (particularly those in short and strong H-bonds) are very
difficult to characterize using this technique [36]. Furthermore, a previous computational
study [37] concluded that DFT methods in several cases incorrectly placed the hydrogen
atom on the base, i.e., they favored salts over cocrystals.

We selected the DUTNUC system (4, Figure 2) for the investigation of the proton trans-
fer between the acid and the base. All of the attempts to optimize the crystal structure in
the cocrystal form failed; the optimization always led to the salt form. Nevertheless, when
the position of the hydrogen atom was fixed on the fumaric-acid oxygen, the calculated
shielding differed most significantly (with respect to the fully optimized salt form) for the
carbon atoms C2 and C6 of the pyridine unit. The overall correlation of the experimental
carbon chemical shifts with those calculated for the cocrystal form was significantly poorer
than that of the salt form. This excludes the cocrystal form as the major structural pattern in
the DUTNUC structure. However, partial delocalization of the hydrogen atom between the
nitrogen and oxygen atoms cannot be excluded. The best agreement with the experiment
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was obtained when the shieldings were calculated as a weighted average of approximately
85% of the salt form and 15% of the cocrystal form (Table S7 in the SI).
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2.5. Path-Integral Molecular Dynamics

We have further investigated the possibility of the hydrogen atom delocalization
between the nitrogen and oxygen atoms in the hydrogen bond connecting the pyridine and
fumarate fragments. An elegant and easy way to include nuclear quantum effects (NQEs)
in quantum-chemical simulations is based on the path-integral [38] (PI) formalism. We
have employed a path-integral molecular dynamics (PIMD) simulation, which was shown
previously to be an excellent tool for the investigation of NQEs, such as hydrogen atom
delocalization and tunneling [22–25].

We have performed the PIMD simulation for system 4 (DUTNUC) and analyzed the
delocalization of the acidic hydrogens by plotting the probabilities of selected interatomic
distances (Figure 3). The average N–H distance of the pyridine nitrogen (N1) is significantly
larger (1.083 Å) than the distance in the structure optimized at the same computational
level (1.059 Å). Furthermore, the delocalization of this proton is larger (the probability
distribution is broader) than the delocalization of the other two N–H protons present in
the molecule. The PIMD simulation thus supports the above-discussed possible partial
presence of the cocrystal form in the crystal structure of DUTNUC.
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2.6. CCSD Corrections

We have previously proposed a methodology for a simple correction to the shielding
values of molecular crystals calculated at the PBE level [20]. Briefly, the crystal structure is
optimized, and the NMR parameters are calculated at the PBE level with periodic condi-
tions. Subsequently, the shielding values at the PBE level and at a higher computational
level are calculated for a single molecule extracted from the optimized crystal structure,
and the difference between these two single-molecule calculations is added to the shielding
values calculated with the periodic conditions as a correction. This methodology was par-
ticularly successful for the calculations of carbon chemical shifts; the correlation between
predictions and experiment improved significantly [20].

Here, we have applied this methodology and calculated the single-molecule correc-
tions at the currently highest possible computational level, coupled-cluster singles and
doubles (CCSD), for the two systems with large errors in the calculated carbon chemical
shifts (COGCIN and DUTNUC). Note that the CCSD computations are extremely demand-
ing, and the size of the investigated systems is probably at the limit of what can currently
be calculated.

When the molecular corrections calculated at the CCSD level are added to the carbon
shieldings calculated at the PBE level, the correlation with the experiment is significantly
better (Table 2).

3. Conclusions

The rapid development of NMR crystallography in the past two decades is largely
a result of the availability of fast and reliable computational predictions of the NMR
chemical shifts of solids. The GIPAW method is probably the most successful method for
the chemical-shift calculations of crystalline solids. This methodology has been particularly
successful and the most documented for the calculation of carbon chemical shifts. Very
good agreement between the calculations and the experiment is usually observed. This
success of the GIPAW methodology is somewhat surprising given the many approximations
used in the calculations. The most critical limitation is probably that only GGA functionals
(most often the PBE functional) can be widely used with the GIPAW method. Al-though
the computations are very successful, several worrying cases have been reported with large
deviations of the calculated shifts from the experiment. As these deviations undermine the
reliability of the NMR crystallography methodology, it is crucial to understand the reasons
for the failures.

In this paper, we have investigated the large discrepancies previously observed be-
tween the experimental and calculated carbon and hydrogen chemical shifts in the fumarate
salts of pyridine derivatives. We have employed the newly implemented meta-GGA func-
tional rSCAN and the computationally very demanding hybrid functional B3LYP for
geometry optimizations. The bond distances between the atoms involved in intermolecular
H-bonds are significantly shorter in the structures optimized at the B3LYP level than in the
structures optimized at the standard PBE level. The bond distances in the rSCAN-optimized
structures are closer to the B3LYP-derived distances, and the geometry optimization at
the rSCAN level may thus serve as a fast and more accurate alternative to the standard
PBE level.

The inaccurate distances obtained at the standard PBE level of approximation may
be the reason for the larger discrepancies between the experimental and predicted proton
chemical shifts. Indeed, the proton chemical shifts calculated for the B3LYP geometries
are in very good agreement with the experiment. However, the geometry optimization of
periodic systems at the B3LYP level is extremely computationally demanding and cannot
be used routinely. The performance of the rSCAN functional for NMR calculations is
not convincing—we have observed only a modest improvement in the predictions of
proton chemical shifts. Further investigation of the performance of this functional for NMR
calculations on a larger set of systems is necessary.
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The geometry optimization at the expensive B3LYP level had an ambiguous effect
on the performance of carbon chemical-shift predictions. The largest deviations observed
for the PBE predictions for carbon C2 in the pyridinium moiety decreased; at same time,
however, the B3LYP geometry optimization deteriorated the very good predictions of
carbon chemical shifts of the first two systems (MIBYEB and RESGEC).

We have also investigated the effect of the partial delocalization of the hydrogen atom
in the intermolecular hydrogen bond between the fumarate and pyridinium moieties of
system 4 (DUTNUC). NMR calculations for the structure with the hydrogen atom fixed on
the fumarate oxygen (i.e., a cocrystal instead of a salt) have revealed that the position of the
hydrogen atom most significantly affects the chemical shifts of the carbon atoms C2 and
C6. A partial presence of the cocrystal form (about 15%) leads to a significant drop in the
deviations of the predicted carbon chemical shifts. Partial delocalization of the hydrogen
atom between the acid and the base has also been observed in the PIMD simulations.

Additionally, we have calculated single-molecule corrections to the predicted carbon
shieldings at the highly accurate CCSD level. These corrections have also improved the
agreement between the calculated and experimental carbon chemical shifts of the two most
problematic systems (COGCIN and DUTNUC).

It may seem paradoxical that the geometry optimization at the B3LYP level leads to
shorter bond distances and better predictions of hydrogen chemical shifts and, on the other
hand, the PIMD simulation reveals that the average bond distances are longer than in the
geometry-optimized structures and, taking the hydrogen atom delocalization into account,
improves the carbon chemical shifts. We hypothesize that the geometry optimizations
using the standard PBE functional may lead to a fortunate error cancellation and a good
estimation of the finite temperature bond distances and accurate predictions of the carbon
chemical shifts in most cases. However, in the “problematic” systems, such as those
with short strong H-bonds, this error cancellation is incomplete, and the chemical-shift
predictions are less accurate.

In summary, we can conclude that the geometry optimization level is crucial for the
predictions of hydrogen atom positions and proton chemical shifts. Systems with strong
intermolecular hydrogen bonds may be particularly sensitive to the geometry optimization
level. Furthermore, NMR calculations for geometry-optimized structures do not include
the possible effect of hydrogen atom delocalization, such as the partial presence of both the
salt and cocrystal forms.

4. Methods
4.1. Structures

The structures of the studied systems determined using X-ray diffraction (CSD ref
codes MIBYEB, RESGEC, COGCIN and DUTNUC) were obtained from the Cambridge
Crystallographic Database [30].

4.2. Geometry Optimization

The positions of all atoms with fixed unit-cell parameters were optimized using the
CASTEP program [39], version 20.11, which is a DFT-based code that uses pseudopotentials
to model the effects of core electrons and plane waves to describe the valence electrons.
Electron-correlation effects were modeled using the GGA functional PBE [11], the meta-
GGA functional rSCAN [12], or the hybrid functional B3LYP [40,41]. The optimization was
performed utilizing the plane-wave basis-set energy cutoff of 600 or 900 eV, default ‘on-the-
fly generation’ pseudopotentials for PBE and rSCAN calculations and norm-conserving
pseudopotentials for B3LYP calculations, and a minimum k-point spacing of 0.05 Å−1 over
the Brillouin zone via a Monkhorst–Pack grid [42]. Empirical dispersion corrections TS [43]
were used for the PBE and B3LYP calculations, and MBD [44] for the rSCAN calculations.
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4.3. NMR Shieldings in Infinite Crystals

The NMR shieldings of the geometry-optimized structures were calculated at the
PBE or rSCAN level using the GIPAW approach [10,45]. The shielding values of the three
equivalent hydrogen atoms in methyl groups were averaged before the comparison with
experimental values.

4.4. PIMD Simulations

The PIMD simulation of system 4 (DUTNUC) was also performed in CASTEP using
an NVT ensemble, a temperature of 300 K, a Langevin thermostat, a 0.5-fs integration time
step, ultrasoft pseudopotentials [46] and a planewave cutoff energy of 300 eV. Integrals
were taken over the Brillouin zone using a Monkhorst–Pack [42] grid of the minimum
k-point sampling of 0.1 Å–1. Electron-correlation effects were modeled using the PBE
functional. The atomic positions were optimized by energy minimization prior to the MD
runs at the same computational level. The lattice parameters were fixed to the experimental
values. No symmetry constraints were applied during the runs, as these are only relevant to
the time-averaged structure. After 1 ps of equilibration, a 5-ps-long productive simulation
run was performed. The path-integral propagation used a Trotter decomposition of all
nuclei into 16 beads, which has been shown to be sufficient for simulations of molecular
crystals at 300 K [23].

4.5. Isolated-Molecule Corrections

DFT NMR shieldings for the isolated molecules (in vacuum) were calculated using
the Gaussian16 program [47]. The gas-phase molecule-input geometries were taken from
the periodic DFT geometry-optimized structures and were not further optimized. The PBE
functional together with the 6-31+G(d,p) basis set were used for the calculations. NMR
shieldings at the CCSD [48–51] level and the 6-31+G(d,p) basis set were calculated with the
CFOUR program package, which is suitable for performing high-level quantum-chemical
calculations on atoms and molecules [52,53]. The CCSD correction was obtained as the
difference between the CCSD and PBE chemical shieldings.

Supplementary Materials: The following are available online, Table S1: The C4–H4 distances (Å) in
the pyrimidium species obtained after geometry optimization of the crystal structures with the PBE,
B3LYP and rSCAN functionals and energy cutoffs of 600 and 900 eV, Table S2: The O–H distances (Å)
in the pyrimidium species obtained after geometry optimization of the crystal structures with the PBE,
B3LYP and rSCAN functionals and energy cutoffs of 600 and 900 eV, Table S3: The N1–H1 distances
(Å) in the pyrimidium species obtained after geometry optimization of the crystal structures with the
PBE and rSCAN functionals and energy cutoffs of 600 and 900 eV, Table S4: Mean absolute errors and
maximal errors (ppm) of the linear fit between experimental chemical shifts and calculated shieldings
(PBE or rSCAN functional, cutoff energy of 600 or 900 eV), Tables S5–S8: Experimental chemical
shifts ([18] in the main text) and calculated shieldings (ppm) of MIBYEB, RESGEC, COGCIN and
UDTNUC. The atom numbering corresponds to the numbering in the crystal structure deposited in
CSD. Parameters of the linear fit between the experimental shifts and calculated shieldings, Table S10:
The calculated shieldings (σ) and chemical shifts (δ) of the N–H and O–H protons in DUTNUC and
the corresponding bond distances (Å). All NMR calculations were performed with the PBE functional
and Ecut = 600 eV.
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