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Abstract: The discovery of drugs capable of inhibiting SARS-CoV-2 is a priority for human beings due
to the severity of the global health pandemic caused by COVID-19. To this end, repurposing of FDA-
approved drugs such as NSAIDs against COVID-19 can provide therapeutic alternatives that could
be utilized as an effective safe treatment for COVID-19. The anti-inflammatory activity of NSAIDs is
also advantageous in the treatment of COVID-19, as it was found that SARS-CoV-2 is responsible for
provoking inflammatory cytokine storms resulting in lung damage. In this study, 40 FDA-approved
NSAIDs were evaluated through molecular docking against the main protease of SARS-CoV-2.
Among the tested compounds, sulfinpyrazone 2, indomethacin 3, and auranofin 4 were proposed as
potential antagonists of COVID-19 main protease. Molecular dynamics simulations were also carried
out for the most promising members of the screened NSAID candidates (2, 3, and 4) to unravel the
dynamic properties of NSAIDs at the target receptor. The conducted quantum mechanical study
revealed that the hybrid functional B3PW91 provides a good description of the spatial parameters of
auranofin 4. Interestingly, a promising structure–activity relationship (SAR) was concluded from
our study that could help in the future design of potential SARS-CoV-2 main protease inhibitors
with expected anti-inflammatory effects as well. NSAIDs may be used by medicinal chemists as lead
compounds for the development of potent SARS-CoV-2 (Mpro) inhibitors. In addition, some NSAIDs
can be selectively designated for treatment of inflammation resulting from COVID-19.

Keywords: drug repurposing; SARS-CoV-2 main protease; docking; molecular dynamics; DFT
calculations

1. Introduction

In December 2019, a novel coronavirus disease (COVID-19) was detected initially
in China. The virus outbreak took place first in Wuhan city and continued to spread
worldwide. After the virus’s terrible breakthrough, the World Health Organization assessed
that COVID-19 was a pandemic on 11 March 2020 [1]. By 11 April 2021, approximately
136,781,961 patients were diagnosed with COVID-19, affecting 221 countries and territories
around the world with a total death toll of 2,951,955 [2]. The virus is highly contagious and
lethal, especially for those with other health issues [3].
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Inflammatory cytokine storm is a very common critical symptom in patients with
severe COVID-19, leading to systemic inflammation and high multiple organ failure [3].
Unfortunately, there are no effective drugs—to date—that can treat COVID-19. On the
other hand, the development of a new drug is not a facile process and needs a lot of
time and money to ensure its safe efficacy. This is one of the challenges facing the global
pharmaceutical industry. Therefore, the development of alternative tools is needed to help
in overcoming the prevalence of COVID-19.

Thus, we need to pave the way for unprecedented research efforts and new eligible
approaches within a short time. One of the approaches that can play an important role in
fighting COVID-19 is “drug repurposing”, also called drug repositioning, re-profiling, or
re-tasking. Drug repurposing is a strategy of exploring new uses for existing approved
drugs that are outside the original medical indication [4]. Therefore, drug repurposing
offers a lot of benefits and can be much better than developing an entirely new drug for a
certain indication [5,6]. Drug repositioning is expanding in the area of rare and neglected
diseases. It helps to mitigate failures in drug discovery, and in recent years, approximately
one-third of the approvals have been due to drug repurposing. In drug repurposing
methods, the hidden therapeutic effects of drugs are investigated using diverse approaches,
including computational manners, clinical experiments, and other in vitro approaches.
The implementation of data-driven drug repurposing in most cases is integrated with
computational assistance [7,8].

Computational approaches are valuable and fundamental tools in drug discovery
steps and the development trajectory. Several computational approaches help researchers
in the discovery of new drug candidates. An example of these in silico techniques is
structure-based virtual screening and molecular docking studies [9]. On the other hand,
bioinformatics can be used to detect the main key amino acids at nearly the same normal
conditions, and, hence, confirming the docking results and druggability will be also easier
to handle. Virtual screening can then provide possible drug candidates based on the
chemical nature of the drug and its target protein, saving cost and time, and integrating
intellectual intervention [10].

As mentioned earlier, one of the most critical COVID-19 symptoms is the inflammatory
cytokine storm. This storm results from lung cells damaged by the virus. Subsequently, a
local immune response is triggered, recruiting monocytes and macrophages that release
cytokines and prime adaptive T and B cell immune responses [11]. This process is capable
of resolving viral infection. In some cases, however, a dysfunctional immune response
occurs, which can cause severe lung and even systemic pathology. Thus, the use of anti-
inflammatory drugs in the COVID-19 treatment protocol is required [11,12]. Moreover, it
was also found that SARS-CoV-2 gene mutation may correlate with enhanced cytokine
production, such as TNF-α and IL-6 (Figure 1), compared to that isolated from the Wuhan
virus, increasing the need for anti-inflammatory drugs [13].

As they are commonly used for pain relief and inflammation cure, non-steroidal
anti-inflammatory drugs (NSAIDs) can be considered as an important step in the treatment
of COVID-19. Furthermore, indomethacin showed potent antiviral activity against canine
coronavirus in vitro, and this activity was also observed in vivo and against human SARS-
CoV [14]. Moreover, it was found that rotavirus infectivity was decreased after treatment
with NSAIDs (e.g., indomethacin, ibuprofen, mefenamic acid, and ketoprofen) [15]. Besides,
auranofin (Gold NSAID) showed the potential to reduce the viral reservoir of HIV (human
immunodeficiency virus) in infected T-cells [16].

In vitro studies on NSAIDs revealed that some of them can partially reduce SARS-
CoV-2 replication. For example, celecoxib, indomethacin, ibuprofen, ketoprofen, ketorolac,
meloxicam, and piroxicam were evaluated against NRC-03-nhCoV. The aforementioned
drugs exhibited promising antiviral activities with high selectivity indexes relative to
cellular toxicity. Piroxicam and indomethacin exhibited the highest potency against NRC-
03-nhCoV as their IC50 values were estimated at 8.21 and 8.51 µM, respectively [17].
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Figure 1. Inflammatory cytokine storm induced by SARS-CoV-2 infections and the role of anti-inflammatory drugs such
as NSAIDs.

Therefore, in continuation of our previous work targeting SARS-CoV-2 main pro-
tease [6,18–25] as a promising anti-SARS-CoV-2 drug target, and taking into consideration
the crucial role of Mpro enzyme for SARS-CoV-2 replication (the main protease enzyme
of SARS-CoV-2 and also known as 3C-like protease (3CLpro), which is responsible for
the cleavage of the coronavirus polyprotein at 11 specific sites), besides the previously
mentioned activity of some NSAIDs towards different viruses, our perspective in this
article is targeting the Mpro enzyme through virtual screening of a small library of a subset
of the approved NSAIDs (Figure 2) via molecular docking of the ligands on the 3D crystal
structure of Mpro (PDB ID: 6LU7) [26]. Thus, we can investigate the best ligands that
might have antiviral activity against SARS-CoV-2 or at least recommend the best NSAID
members and prioritize them to be used in the treatment of the inflammatory cytokine
storms accompanying some COVID-19 cases. Also, our study sheds light on some NSAID
candidates as lead compounds that can be optimized in the future to be more effective
against SARS-CoV-2, which was accomplished through a structure–activity relationship
(SAR) study based on the obtained results.

Molecular dynamics (MD) simulations were carried out on the docked complexes of the
highest-ranked docking compounds (sulfinpyrazone 2, indomethacin 3, and auranofin 4)
to gain a deep understanding of the affinity between the ligand and the SARS-CoV-2 main
protease active site in the explicit solvent model in order to estimate the stability of the
drug within the active site of the protein and consequently confirm the docking results.

Furthermore, sulfinpyrazone and indomethacin have been extensively studied pre-
viously for their physicochemical properties [27–29]. On the other hand, auranofin (AF)
contains thiosugar moiety in addition to gold (Au), sulfur (S), and phosphorous (P) atoms.
Hence, studying the spatial and geometrical properties of AF demands a careful choice
of a quantum mechanical method that can describe AF properties more accurately than
other methods. Therefore, we herein conduct a comparative study on quantum mechanical
methods used to calculate the physicochemical properties of AF.
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Figure 2. Chemical structures (in descending order of their docking scores): N3 1, Sulfinpyrazone 2, Indomethacin 3,
Auranofin 4, Phenylbutazone 5, Celecoxib 6, sulfasalazine 7, Oxyphenbutazone 8, Sulindac 9, Metamizole 10, Meloxicam 11,
Oxaprozin 12, Nimesulide 13, Piroxicam 14, Valdecoxib 15, Zomepirac 16, Rofecoxib 17, Etodolac 18, Tenoxicam 19,
Carprofen 20, Ketoprofen 21, Tolmetin 22, Nabumetone 23, Probenecid 24, Ketorolac 25, Ibuprofen 26, Fenoprofen 27,
Flurbiprofen 28, Salsalate 29, Naproxen 30, Flufenamic acid 31, Mefenamic acid 32, Diclofenac 33, Meclofenamic acid 34,
Phenacetin 35, Diflunisal 36, Aurothioglucose 37, Aspirin 38, Sodium aurothiomalate 39, Paracetamol 40, and Allopurinol 41.



Molecules 2021, 26, 3772 5 of 27

2. Materials and Methods

Docking studies using MOE 2019 suite [30] and molecular dynamics simulation
studies using the Desmond simulation package of Schrödinger LLC [31] were carried out
to examine and confirm the binding affinities and modes of the 40 selected FDA-approved
NSAIDs against the viral main protease of SARS-CoV-2. The co-crystallized inhibitor (N3)
was used as a reference standard.

2.1. Molecular Docking
2.1.1. NSAIDs Preparation

The tested compounds were downloaded from (https://pubchem.ncbi.nlm.nih.gov/
last accessed on 1 April 2021) website. Their structures and the formal charges on atoms
were checked by the 2D depiction, subjected to energy minimization, and the partial charges
were automatically calculated. The tested compounds together with the co-crystallized
ligand (N3 inhibitor) were imported into the same database and saved in the form of an
MDB file for the docking calculations with the target protease.

2.1.2. Target (SARS-CoV-2 Mpro) Preparation

Protein Data Bank was used to download the crystal structure of SARS-CoV-2 main
protease (Mpro) (PDB code 6LU7, resolution: 2.16 Å) [26]. The downloaded protein was
prepared as previously described [32]. Briefly, it was protonated and hydrogen atoms were
added with their standard 3D geometry. Automatic correction for any errors in the atom’s
connection and the type was also applied. Site Finder was applied for selection of the same
active site of the co-crystallized inhibitor using all default parameters, and dummy atoms
of the pocket were then created.

2.1.3. Docking of the Tested NSAIDs to the Viral Mpro Binding Site

Docking of the previously prepared database composed of our tested 40 NSAIDs and
the co-crystallized inhibitor N3 was performed. The general methodology was applied as
described earlier where the placement methodology was specified as triangle matcher and
the scoring methodology was selected as London dG. Moreover, the refinement methodol-
ogy was applied as a rigid receptor and the scoring methodology was GBVI/WSA [33,34].
Briefly, the file of the prepared active site was loaded and the general docking process
was initiated. The obtained poses were studied after completion and the ones having
the best ligand–enzyme interactions and the most acceptable Root Mean Squared De-
viation (RMSD_refine) values were selected and stored for energy calculations. In the
beginning, a validation process was also performed for the target receptor by docking
only the co-crystallized ligand, and low RMSD values between the docked and the crystal
conformations indicated a valid performance [35,36].

2.2. Molecular Dynamics (MD) Simulations

The Schrödinger LLC package [31] was used to carry out the MD simulations. The
simulation system was immersed in an orthorhombic box with edges at 10 Å away from
the protein molecule, implementing periodic boundary conditions. The box was filled with
water described by the TIP3P model [37,38]. Salt concentration was set to 0.15 M NaCl
using the Desmond system builder [39]. The OPLS3 force field [40] was utilized for the
protein and the ligand parameters. The MD simulations were performed for 150 ns at the
NPT ensemble (constant number of particles, pressure, and temperature). The pressure
was kept constant at 1 atm implementing the Martyna–Tuckerman–Klein chain coupling
scheme with 2.0 ps as coupling constant. The temperature was controlled at 300 K using
the Nosé–Hoover chain coupling scheme [41,42]. Coulombic interactions were calculated
using a cut-off radius of 0.9 Å.

https://pubchem.ncbi.nlm.nih.gov/
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2.3. Quantum Mechanical Studies

All calculations were performed on the Swinburne supercomputer using GAUS-
SIAN 09 Revision C.01 [43]. Four hybrid functionals B3PW91 [44], CAM-B3LYP [45],
PBE1PBE [46], and wB97X [47] were utilized in conjunction with the split valence and triple
zeta basis set def2tzv [48,49] for the description of the gold (Au) atom, and the standard
basis set 6-311G [50] for the description of all other atoms in the auranofin (AF) molecule.
Energy optimization of AF was performed in three consecutive steps utilizing 6-311G,
6-311+G*, and 6-311++G** for the description of all atoms except Au. Frequency calcula-
tion for geometries obtained from each function was then performed and no imaginary
frequency was detected. The electronic circular dichroism of the AF excited state was then
computed using the Density-Functional Theory (td-DFT) method.

3. Results and Discussion
3.1. Docking Studies

The SARS-CoV-2 Mpro has a Cys–His catalytic dyad, and the inhibitor-binding site
is present in a groove between domains I and II. The N3 inhibitor is fitted inside the
substrate-binding pocket of SARS-CoV-2 Mpro showing asymmetric units containing only
one polypeptide. Molecular docking simulation of N3 inhibitor 1 and the FDA-approved
NSAIDs (2–41)—described in Figure 2—into Mpro active site was done. They were stabilized
at the N3-binding site of Mpro by variable several electrostatic interactions (Table 1). The or-
der of binding strength was: N3 inhibitor (1, docked) > sulfinpyrazone 2 > indomethacin 3
> auranofin 4 > phenylbutazone 5 > celecoxib 6 > sulfasalazine 7 > oxyphenbutazone 8 >
sulindac 9 > metamizole 10 > meloxicam 11 > oxaprozin 12 > nimesulide 13 > piroxicam 14
> valdecoxib 15 > zomepirac 16 > rofecoxib 17 > etodolac 18 > tenoxicam 19 > carprofen 20 >
ketoprofen 21 > tolmetin 22 > nabumetone 23 > probenecid 24 > ketorolac 25 > ibuprofen 26
> fenoprofen 27 > flurbiprofen 28 > salsalate 29 > naproxen 30 > flufenamic acid 31 > mefe-
namic acid 32 > diclofenac 33 > meclofenamic acid 34 > phenacetin 35 > diflunisal 36 > au-
rothioglucose 37 > aspirin 38 > sodium aurothiomalate 39 > paracetamol 40 > allopurinol 41.

Many poses were obtained with better binding modes and interactions inside the
receptor pocket. The poses binding to the main amino acids with the best scores and
RMSD_refine values were selected. Results of scores, RMSD values, and different interac-
tions with amino acids of the Mpro pocket are represented in Table 1.

The results of docking studies revealed that sulfinpyrazone 2, indomethacin 3, and
auranofin 4 had the best binding affinities and modes against SARS-CoV-2 main protease
with binding free energies of −7.12, −7.07, and −6.91 kcal/mol, respectively (Table 1).
These energy values were near to that of the docked N3 inhibitor (binding energy =
−9.39 kcal/mol), and concerning that the catalytic dyad of SARS-CoV-2 Mpro is composed
of cysteine and histidine amino acids.

The detailed binding mode of N3 was as follows; the docked N3 moiety occupied the
branched pocket of Mpro, forming four hydrogen bonds with Glu166, Gln189, Ser46, and
Met49 at 2.94, 3.05, 3.12, and 3.51 Å, respectively. It also formed one pi-H interaction with
His41 at 4.19 Å. However, sulfinpyrazone 2 formed two H-bonds with Glu166 and His41 at
2.98 and 3.21 Å, respectively, and a pi-H interaction with Gly143 at 3.58 Å. Furthermore,
indomethacin 3 showed the formation of three hydrogen bonds, one with His163 at 3.49 Å
and two with Met165 at 3.89 and 4.11 Å. It also formed one H-pi interaction with His41
and another pi-H interaction with Glu166 at 3.87 and 4.30 Å, respectively. On the other
hand, auranofin 4 formed five hydrogen bonds with His41, His163, Leu141, Asn142, and
Gln189 at 2.90, 3.10, 3.39, 3.41, and 3.49 Å, respectively, and an H-pi interaction with His41
at 4.20 Å (Table 2).



Molecules 2021, 26, 3772 7 of 27

Table 1. Receptor interactions and binding energies of the identified NSAIDs and N3 inhibitor (docked) into the N3 binding
site of SARS-CoV-2 main protease.

No. NSAID S a kcal/mol RMSD_Refine b Amino Acid Bond Distance Å

1 N3 −9.39 1.78

Glu166/H-donor 2.94
Gln189/H-acceptor 3.05
Ser46/H-acceptor 3.12
Met49/H-acceptor 3.51

His41/pi-H 4.19

2 Sulfinpyrazone −7.12 1.66
Glu166/H-donor 2.98
His41/H-donor 3.21

Gly143/H-pi 3.58

3 Indomethacin −7.07 1.51

His163/H-donor 3.49
Met165/H-acceptor 3.89
Met165/H-acceptor 4.11

His41/pi-H 3.87
Glu166/H-pi 4.30

4 Auranofin −6.91 0.84

His41/H-donor 2.90
His163/H-donor 3.10

Leu141/H-acceptor 3.39
Asn142/H-donor 3.41
Gln189/H-donor 3.49

His41/pi-H 4.20

5 Phenylbutazone −6.88 1.07 Glu166/H-donor 3.43

6 Celecoxib −6.79 1.17

Ser144/H-donor 3.01
His163/H-donor 3.04

Asn142/H-acceptor 3.88
Gln189/H-pi 4.38

7 Sulfasalazine −6.76 1.77

Thr190/H-acceptor 2.82
Glu166/H-acceptor 3.03

Gly143/H-donor 3.14
His41/H-donor 3.16

8 Oxyphenbutazone −6.75 2.00
His164/H-acceptor 3.12
Asn142/H-donor 3.47
Gly143/H-donor 3.56

9 Sulindac −6.67 1.25
Gly143/H-donor 2.99
Cys145/H-donor 3.14

Glu166/H-pi 4.49

10 Metamizole −6.56 1.49

Gln189/H-acceptor 3.49
Met165/H-acceptor 3.55
Met165/H-acceptor 3.85

Met165/H-pi 3.50
His41/pi-H 4.18

Glu166/H-pi 4.24

11 Meloxicam −6.47 1.35
His163/H-donor 2.84

His164/H-acceptor 3.15
His164/H-acceptor 3.28

12 Oxaprozin −6.43 1.20
Ser144/H-donor 2.97

Glu166/H-pi 3.83
Gln189/H-pi 4.03

13 Nimesulide −6.35 1.35
His41/H-donor 2.86
His163/H-donor 2.91
Cys145/H-donor 3.46
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Table 1. Cont.

No. NSAID S a kcal/mol RMSD_Refine b Amino Acid Bond Distance Å

14 Piroxicam −6.30 1.32

His41/H-donor 3.30
Cys145/H-acceptor 3.81

Met165/H-pi 3.46
His41/pi-H 3.54

Glu166/H-pi 4.54

15 Valdecoxib −6.30 1.12
Glu166/H-acceptor 2.89
Met165/H-acceptor 3.40

Gln189/H-donor 3.41

16 Zomepirac −6.25 1.40
His163/H-donor 3.14

Met165/H-pi 4.42

17 Rofecoxib −6.24 1.02
Cys145/H-donor 2.99

Met165/H-acceptor 3.48
Asn142/H-pi 4.15

18 Etodolac −6.19 0.68
Arg188/H-donor 3.28

Glu166/H-pi 3.74

19 Tenoxicam −6.18 1.47

Gly143/H-donor 2.92
His164/H-acceptor 3.14
Asn142/H-donor 3.18
Gly143/H-donor 3.29

20 Carprofen −6.15 0.90
His164/H-acceptor 2.95
Gln192/H-acceptor 3.77

Gln189/H-pi 4.53

21 Ketoprofen −6.15 1.57 Glu166/H-donor 2.99

22 Tolmetin −6.08 1.64

Gly143/H-donor 3.01
His164/H-acceptor 3.08
Cys145/H-donor 3.36

Met49/H-acceptor 3.93

23 Nabumetone −6.02 1.14
His163/H-donor 3.16

Met165/H-pi 3.74
Glu166/H-pi 4.16

24 Probenecid −5.96 2.19
Glu166/H-donor 3.17

Gln189/H-acceptor 3.44

25 Ketorolac −5.89 1.57
Glu166/H-donor 3.05

Glu166/H-acceptor 3.27

26 Ibuprofen −5.88 0.87
Leu141/H-acceptor 2.99

His163/H-donor 3.03

27 Fenoprofen −5.84 1.14

His163/H-donor 3.01
His163/H-donor 3.14

Glu166/H-pi 4.04
Met165/H-pi 4.22

28 Flurbiprofen −5.74 1.03
Phe140/H-acceptor 2.91

His163/H-donor 3.08
Asn142/H-pi 3.82

29 Salsalate −5.72 1.78
Gln189/H-acceptor 3.08

Glu166/H-donor His41/pi-H 3.17
3.90

30 Naproxen −5.72 1.61
Gly143/H-donor 3.08
Cys145/H-donor 3.31
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Table 1. Cont.

No. NSAID S a kcal/mol RMSD_Refine b Amino Acid Bond Distance Å

31 Flufenamic acid −5.70 1.26

His164/H-acceptor 2.95
Ser144/H-donor 2.98
Ser144/H-donor 3.09

His164/H-acceptor 3.13
Cys145/H-acceptor 3.21

32 Mefenamic acid −5.68 2.08

Glu166/H-donor 3.06
Gln189/H-acceptor 3.21
Met165/H-acceptor 3.68

Gln189/H-pi 4.05

33 Diclofenac −5.54 1.66

Gln189/H-acceptor 2.89
Glu166/H-donor 2.94
Gly143/H-donor 3.25

Leu141/H-acceptor 3.73

34 Meclofenamic acid −5.48 1.18
Glu166/H-acceptor 2.84

Gln192/H-donor 3.09
Glu166/H-acceptor 3.17

35 Phenacetin −5.43 1.27
Glu166/H-acceptor 3.03

Gln189/H-donor 3.37
His41/pi-H 4.18

36 Diflunisal −5.26 1.52
Leu141/H-acceptor 2.80

His163/H-donor 2.97
His41/pi-H 3.83

37 Aurothioglucose −4.90 1.45

His163/H-donor 3.17
Glu166/H-acceptor 3.22

Glu166/H-donor 3.76
Met165/H-donor 4.08

38 Aspirin −4.81 1.31
Gln189/H-acceptor 2.82
Glu 166/H-donor 3.53

39 Sodium aurothiomalate −4.67 1.42
His164/H-acceptor 2.83
Arg188/H-donor 3.55

Met49/H-acceptor 3.87

40 Paracetamol −4.53 0.44
Glu166/H-acceptor 3.11

Glu166/H-pi 4.25

41 Allopurinol −4.33 1.13
Asp187/H-acceptor 3.24

Gln189/H-pi 3.52
a S: Score of a compound into the binding pocket of the receptor, b RMSD_Refine: Root Mean Squared-Deviation between the predicted
pose (after refinement) and the crystal structure (before refinement).
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Table 2. The 3D view of binding interactions and the 3D positioning between the tested NSAID drugs and N3-binding
pocket within the SARS-CoV-2 main protease compared to the N3 (Docked).

Drug 3 D Interaction 3 D Pocket Positioning

Sulfinpyrazone 2

Indomethacin 3

Auranofin 2

N3 1

Red dashed lines refer to hydrogen bonds.
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3.2. Molecular Dynamics (MD) Simulations

To get a deeper insight into the stability of the best three docked compounds (2, 3,
and 4), molecular dynamics simulations were carried out for 150 ns simulation time. The
co-crystallized peptide ligand Mpro complex was also subjected to MD simulation to be
accounted for as a reference, resulting in a total of four dynamics runs.

Analyses of protein RMSD (Root Mean Square Deviation) and RMSF (Root Mean
Square Fluctuation) are depicted in Figure 3. Protein structure stability throughout the
simulation time is measured by protein RMSD. RMSD in the four dynamics run shows
stability throughout the simulation time as compared to the reference N3 complex run.

Figure 3. (A) RMSD (Root Mean Square Deviation) of the protein during the simulation time. (B) Per residue RMSF (Root
Mean Square Fluctuation) of the protein amino acids. (C) RMSD of the docked poses of the four ligands inside the protein
binding site. (Green: N3, Blue: Sulfinpyrazone, Yellow: Indomethacin, Red: Auranofin.)

RMSF is a measure of stability per protein residues and protein local conformational
changes during the simulation. Binding site residues showed minimal local conformational
changes (<2 Å) when compared to the reference structure, which indicates the conforma-
tional stability of the binding site during the simulation. Both N- and C-termini showed
higher RMSF, which conforms with their high flexibility due to their flexible loop structures.

RMSD analysis of each ligand (RMSD_lig) during the simulation time is depicted
in Figure 3. RMSD_lig indicates the stability of the docked pose inside the protein bind-
ing site. N3 co-crystallized ligand showed the lowest RMSD, which reflects its strongest
binding to the binding site, due to its high anchorage sites to the binding site amino acids.
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Sulfinpyrazone showed the highest stability among the three simulated drugs. This was
reflected by its low RMSD_lig and low fluctuations during the simulation time, which
indicate the stability of its binding pose. Indomethacin came in third in stability ranking
indicated by its slightly higher RMSD_lig than sulfinpyrazone. Additionally, the high
fluctuation of RMSD_lig during the simulation was another factor affecting its weaker
binding than sulfinpyrazone. Finally, auranofin showed the highest deviation from its
initial predicted binding pose, as indicated by its high RMSD_lig during the simulation
time. RMSD_lig of auranofin reached 80 Å, which indicates that it completely abandoned
the protein binding site, also indicated by its high RMSD_lig fluctuation.

Figure 4 shows snapshots of the simulation at 0, 75, and 150 ns. For sulfinpyrazone, it
showed stable binding inside the protein binding site, which is indicated by its binding
poses at the start, middle, and end of the simulation. Concerning indomethacin, it aban-
doned the binding site in the middle of the simulation but retrieved a binding pose inside
the binding site at the end of the simulation. On the contrary, auranofin abandoned its
initial binding pose at the middle of the simulation, which explains its high RMSD_lig, and
showed a binding near the binding site at the end of the simulation.

Figure 4. Cont.
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Figure 4. The aligned structures of protein–ligand complexes for sulfinpyrazone (A), indomethacin (B), and auranofin (C)
during simulation. (White: 0 ns, yellow: 75 ns, blue: 150 ns.)

Figure 5 shows the number of hydrogen bonds formed between each ligand and the
protein during the simulation time. N3 showed the highest number of hydrogen bonds
with the protein due to its higher number of hydrogen bond donor/acceptor anchorage
sites with the protein. Sulfinpyrazone showed the highest average number of hydrogen
bonds among the three NSAIDs with the protein during the simulation time. Indomethacin
and auranofin showed a lower number of hydrogen bonds compared to sulfinpyrazone.
Figure 5 also shows the complete absence of hydrogen bonds formed by auranofin during
most of the simulation time.

Figure 5. Number of hydrogen bonds formed between each ligand and the protein during the
simulation.
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The binding interactions histogram was calculated for each protein–ligand complex
during the simulation and is depicted in Figure 6. In the case of sulfinpyrazone, the amino
acids (Arg188, Gln189, Thr190, Ala191, and Gln192) had the greatest contribution to the
hydrogen bonding interactions with sulfinpyrazone (40–80%), and His164 contributed
mainly with hydrophobic interactions (>80%). Leu27, Ser46, Met49, Glu166, Leu167, and
Ala173 also contributed with <30% to the hydrophobic interactions. Figure 7 shows the
timeline heat map for the total number of contacts between each ligand and the protein.
The main binding residues with sulfinpyrazone were Met165, Gln189, Thr190, Ala191,
and Gln192, which maintained contacts with sulfinpyrazone throughout >85% of the
simulation time.

Indomethacin formed weaker interactions than sulfinpyrazone as it was less stable
inside the binding site through the simulation. This could also be observed from the
timeline protein–ligand contacts, which are shown to be less than that of sulfinpyrazone
(Figure 7). The main binding interactions were water bridged hydrogen bonds with Pro132,
Cys145, Met165, Leu167, Pro168, Arg188, Gln189, Ala191, Ala193, Ala194, Gly195, and
Thr196. Hydrophobic interactions were maintained with indomethacin through His164,
Glu166, Leu167, Gly170, Val17, and Gln192. Hydrogen bonding interactions occurred the
least in indomethacin–protein contacts, which were maintained by Pro168, Asp187, Arg188,
Gln189, Thr190, and Thr196.

The protein–ligand contacts histogram of auranofin showed it to have the least contacts
contribution percentage (<20%) throughout the simulation time. Also, the timeline heat
map shows auranofin to have much fewer contacts with the protein. The major contact
type was water bridged hydrogen bonds, which can be explained by its abandonment of
the binding site and interaction with the protein surface by hydrogen bonds through water
molecules.

The N3 molecule formed a high number of contacts with binding site amino acid
residues, with an interaction fraction comparable to that of sulfinpyrazone (80%), as
observed from the protein–ligand contacts histogram (Figure 6) and heat map (Figure 7).
The main interacting amino acid residues were Thr24, Thr25, Thr26, His41, Ser46, Gly143,
Cys145, His164, Glu166, and Gln189, with Thr26, His41, Gly143, Cys145, His164, and
Glu166 contributing to most of the interactions (>60%). The main binding interactions were
found to be hydrogen and bridged hydrogen bonds. The N3 inhibitor stability during the
MD simulations and higher number of contacts with the protein binding site, due to its
higher number of anchorage sites, reflected its superior docking score over the remaining
three NSAIDs. However, the interactions of sulfinpyrazone with the protein binding site
were comparable in number and strength to that of the N3 molecule.

Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. Protein–ligand contacts histograms for sulfinpyrazone (A), indomethacin (B), auranofin (C), and N3 (D).

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Heat map representing the number of protein–ligand contacts for sulfinpyrazone (A), indomethacin (B),
auranofin (C), and N3 (D).

The analysis of RMSD_lig and protein–ligand contacts diagrams together suggests
sulfinpyrazone to have the most stable binding with the protein, followed by indomethacin,
followed by auranofin.

3.3. Quantum Mechanical Studies

Auranofin (AF) is a gold-based compound containing several stereoisomeric centers. It
is well known that not all functionals are designed to describe the electronic properties of all
atoms in the periodic table. Therefore, we herein utilized four hybrid functionals B3PW91,
CAM-B3LYP, PBE1PBE, and wB97X in combination with def2tzvp for the description of
the gold (Au) atom and 6-311++G** for the description of all H, C, N, S, and P atoms. The
calculated spatial properties such as bond length and bond angle were compared with
the X-ray crystallographic data of AF reported by Hill and co-workers [51]. Values of the
computed parameters and the reported experimental ones are listed in Table 3.
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Table 3. Selected calculated geometric and electronic parameters of auranofin computed using different hybrid functionals
in combination with def2tzvp and 6-311++G** basis sets.

B3PW91 CAM-B3LYP PBE1PBE wB97X Exp

Au-P (Å) 2.28 2.29 2.28 2.29 2.26
Au-S (Å) 2.31 2.32 2.31 2.32 2.29
∠ S-Au-P 177.4 179.2 178.9 177.4 173.6
∠ Au-S-C 102.7 101.6 101.3 102.2 105.6
Eh (a.u.) −2335.103739 −2334.956583 −2333.714375 −2335.316967 -

ZPE (a.u.) 0.534394 0.540545 0.537098 0.542842 -
Eh + ZPE (a.u.) −2334.569345 −2334.416038 −2333.177278 −2334.774126 -

Polarizability (a.u.) 348.400064 337.552355 344.065746 334.158185 -
µ (D) 11.5681 11.6597 11.4449 11.8367 -

HOMO-LUMO gap (eV) 4.94 7.30 5.21 9.21 -
Entropy (cal/mol-kelvin) 261.262 256.099 256.603 250.821 -

Since the gold (Au) atom is thought to be the main contributor to AF binding affinity,
hence its biological activity, we mainly focused on the bond length and bond angle where
the Au atom was involved. As can be seen in Table 3, the four functionals gave values for
the bond length between the gold atom and phosphorous atom (Au-P) and between the
gold atom and sulfur atom (Au-S) consistent with the experimental values (deviation by
only 0.03 Å), where B3PW91 and PBE1PBE performed better (deviation by only 0.02 Å) than
wB97X and CAM-B3LYP (deviation by only 0.03 Å). Regarding the bond angle between
Au, P, and S, it was noted that B3PW91 and wB97X functionals performed better than
other functionals.

Other parameters were calculated for AF and listed in Table 3 as well. There were
no significant discrepancies noted for the calculated parameters except for the energy
gap between the lowest unoccupied molecular orbital (LUMO) and the highest occupied
molecular orbital (HOMO). Calculation of HOMO and LUMO energy is of great importance
as it helps in assessing the chemical reactivity of a drug at its binding site on a protein [1,2].
HOMO energy is a measure for the electron-donating strength of a molecule during the
complex formation, while LUMO energy signifies the capacity of the electron-withdrawing
of a molecule. The difference in HOMO and LUMO energy, known as HOMO–LUMO gap
energy, is a measure for computing the molecular reactivity and stability of the compounds
(electronic excitation energy) [3]. In other words, HOMO–LUMO plays a significant role in
stabilizing the interactions between drug and target protein. Hence, the orbital energy of
both HOMO and LUMO and the HOMO–LUMO energy gap were calculated to estimate
the chemical reactivity of the selected compounds using DFT.

B3PW91 computed the HOMO–LUMO energy gap at 4.9385 eV while it was calculated
by wB97X at 9.2141 eV. The discrepancy between the two values was estimated at 4.2756 eV.
We therefore anticipated seeing this discrepancy reflected by the computed electronic
distribution of the outermost molecular orbitals as well.

Surprisingly, the electronic density over HOMO, LUMO, and other molecular orbitals
did not show a significant difference based on the functional used, except for L+2. The
diagrammatic representations of the electronic density of the outermost molecular orbitals
are depicted in Figure 8. It was also noticed that the molecular electrostatic potential
(MEP) map of electron density distribution at the molecular level did not show a significant
discrepancy, as can be seen in Figure 8.
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Since AF structure has many chiral centers, the electronic circular dichroism spectrum
(ECD) was also calculated to validate the performance of hybrid functionals. Each func-
tional gave a distinct ECD spectrum where the position and intensity of peaks differed
significantly. The ECD spectrum of AF is deposited in Figure 9.
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3.4. Structure–Activity Relationship Studies

NSAIDs can be classified according to their chemical structures [52] into:

I. Salicylic acid derivatives: (Sulfasalazine 7, Salsalate 29, Diflunisal 36, and Aspirin 38).
II. p-Amino phenol derivatives: (Phenacetin 35 and Paracetamol 40).
III. Pyrazolidine dione derivatives: (Sulfinpyrazone 2, Phenylbutazone 5, and Oxyphenbu-

tazone 8).
IV. Anthranilic acid derivatives: (Flufenamic acid 31, Mefenamic acid 32, and Meclofe-

namic acid 34).
V. Aryl alkanoic acid derivatives:

a. Indole acetic acid: (Indomethacin 3).
b. Indene acetic acid: (Sulindac 9).
c. Pyrrole acetic acid: (Zomepirac 16 and Tolmetin 22).
d. Phenyl acetic (propionic) acid: (Oxaprozin 12, Etodolac 18, Carprofen 20,

Ketoprofen 21, Ketorolac 25, Ibuprofen 26, Fenoprofen 27, Flurbiprofen 28,
Naproxen 30, and Diclofenac 33).



Molecules 2021, 26, 3772 23 of 27

VI. Oxicams: (Meloxicam 11, Piroxicam 14, and Tenoxicam 19).
VII. Selective COX-2 inhibitors: (Celecoxib 6, Valdecoxib 15, and Rofecoxib 17).
VIII. Gold compounds: (Auranofin 4, Aurothioglucose 37, and Aurothiomalate sodium 39).
IX. Miscellaneous: (Metamizole 10, Nimesulide 13, Nabumetone 23, Probenecid 24, and

Allopurinol 41).

So, based on their stabilities and binding scores to the SARS-CoV-2 main protease, we
could identify the structure–activity relationships of the tested NSAIDs which, interestingly,
showed the following results (Figure 10):

(a) Concerning salicylic acid derivatives, the best activity was attained by maintaining a
salicylic acid scaffold without –OH or –COOH substitution, yet it was preferable to
substitute a phenyl ring at the para position to –OH of the salicylic scaffold to ensure
the best activity (compound 7).

(b) In addition, for p-Amino phenol derivatives, better activity was achieved when
phenolic –OH was substituted by ethyl group (compound 35) than unsubstituted one
(compound 40).

(c) For pyrazolidine dione NSAIDs, the best activity was accomplished by substitution
of a pyrazolidine ring at position 4 by [2-(phenylsulfinyl)ethyl] moiety (compound 2).

(d) Moreover, studying the structure–activity relationship for anthranilic acid derivatives
revealed that substitution of a phenyl ring attached to the anthranilic acid scaffold by
trifluoromethyl group at position 3 attained the best activity (compound 31).

(e) Furthermore, concerning aryl acetic/propionic acid derivatives, the best activity was
attained when the indole acetic acid drug was used (compound 3).

(f) For oxicams better activity was accomplished when 2H-1,2-benzothiazine nucleus
(compounds 11 and 14) was used rather than 2,3-dihydro-4H-thieno[2,3-e] [1,2]thiazine
(compound 19).

(g) On the other hand, with regards to selective cox-2 inhibitors, it worth noting that
substitution of a benzenesulfonamide scaffold at position 4 with 3-trifluoromethyl
pyrazole moiety (compound 6) showed better activity than 5-methyl isoxazole moiety
(compound 15) and 5H-furan-2-one (compound 17).

(h) Additionally, for gold anti-inflammatory compounds, the best activity was attained
when gold was attached to 3,4,5-triacetyloxy-6-(acetyloxymethyl) oxane-2-thiolate
moiety (compound 4).
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Figure 10. Structure-Activity Relationship (SAR) studies of the studied FDA-approved NSAIDs (2-41) according to their
binding potentials towards the SARS-CoV-2 Mpro.*: The connection point to the main molecule.

4. Conclusions

This study revealed the potential of repurposing NSAIDs to bind to the active site
of the SARS-CoV-2 main protease. Molecular docking studies revealed the stability and
conformational flexibility of most of these drugs in the enzyme active site. Three of the
screened drugs (sulfinpyrazone 2, indomethacin 3, and auranofin 4) showed the strongest
binding affinities and the best binding modes as well. Furthermore, molecular dynamics
simulations were performed for the most promising members from the docking studies
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(2, 3, and 4) and confirmed our docking results as being promising SARS-CoV-2 main
protease inhibitors. The quantum mechanical studies revealed that the hybrid functional
B3PW91 provided a good description of the spatial parameters of AF. Moreover, NSAIDs
may be used by medicinal chemists as lead compounds for the development of potent
SARS-CoV-2 (Mpro) inhibitors. As a result, we can prioritize some NSAIDs as recommended
over others in the treatment of inflammation accompanying COVID-19.

Author Contributions: Conceptualization, methodology, original draft preparation A.A.E., M.I.I. and
M.K.; writing—review and editing, M.I.A.H. and E.B.E.; project administration, H.S.A.; supervision,
project administration, writing—review and editing, A.A.A.-K. All authors have read and agreed to
the published version of the manuscript.

Funding: No funding was received for this study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no competing interest.

Sample Availability: Not available.

References
1. WHO. Coronavirus Disease (COVID-19) Pandemic. 2021. Available online: https://www.who.int/emergencies/diseases/novel-

coronavirus-2019?gclid=Cj0KCQjw38-DBhDpARIsADJ3kjmxpTjUS_7o4K1orvnoq-MfSNKEhLJl_TeOoN6DlYz3RBAC8hfU_
rQaAsNwEALw_wcB (accessed on 11 April 2021).

2. Worldometer. Coronavirus. 2021. Available online: https://www.worldometers.info/coronavirus/?utm_campaign=
homeAdvegas1? (accessed on 11 April 2021).

3. Chen, J.; Wang, Y.K.; Gao, Y.; Hu, L.S.; Yang, J.W.; Wang, J.R.; Sun, W.J.; Liang, Z.Q.; Cao, Y.M.; Cao, Y.B. Protection against
COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming. Biomed.
Pharmacother. 2020, 129, 110281. [CrossRef] [PubMed]

4. Sarhan, A.A.; Ashour, N.A.; Al-Karmalawy, A.A. The journey of antimalarial drugs against SARS-CoV-2: Review article. Inform.
Med. Unlocked 2021, 24, 100604. [CrossRef] [PubMed]

5. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C. Drug
repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Dis. 2019, 18, 41–58. [CrossRef] [PubMed]

6. Khattab, M.; Al-Karmalawy, A.A. Revisiting Activity of Some Nocodazole Analogues as a Potential Anticancer Drugs Using
Molecular Docking and DFT Calculations. Front. Chem. 2021, 9, 92. [CrossRef]

7. Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of
therapeutics. Expert Opin. Drug Dis. 2020, 15, 397–401. [CrossRef]

8. Masoudi-Sobhanzadeh, Y.; Omidi, Y.; Amanlou, M.; Masoudi-Nejad, A. Drug databases and their contributions to drug
repurposing. Genomics 2020, 112, 1087–1095. [CrossRef]

9. Brogi, S. Computational approaches for drug discovery. Molecules 2019, 24, 3061. [CrossRef]
10. Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules 2020, 25, 1375.

[CrossRef]
11. Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F. The trinity of COVID-19: Immunity, inflammation and intervention. Nat.

Rev. Immunol. 2020, 20, 363–374. [CrossRef] [PubMed]
12. Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; et al. The use of anti-inflammatory

drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists
from China. Clin. Immunol. 2020, 214, 108393. [CrossRef] [PubMed]

13. Kosuge, M.; Furusawa-Nishii, E.; Ito, K.; Saito, Y.; Ogasawara, K. Point mutation bias in SARS-CoV-2 variants results in increased
ability to stimulate inflammatory responses. Sci. Rep. 2020, 10, 1–9. [CrossRef]

14. Russell, B.; Moss, C.; Rigg, A.; Van Hemelrijck, M. COVID-19 and treatment with NSAIDs and corticosteroids: Should we be
limiting their use in the clinical setting? Ecancermedicalscience 2020, 14. [CrossRef] [PubMed]

15. Guererero, C.A.; Murillo, A.; Acosta, O. Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARγ agonists
and NSAIDs. Antivir. Res. 2012, 96, 1–12. [CrossRef] [PubMed]

16. Madeira, J.M.; Gibson, D.L.; Kean, W.F.; Klegeris, A. The biological activity of auranofin: Implications for novel treatment of
diseases. Inflammopharmacology 2012, 20, 297–306. [CrossRef]

https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=Cj0KCQjw38-DBhDpARIsADJ3kjmxpTjUS_7o4K1orvnoq-MfSNKEhLJl_TeOoN6DlYz3RBAC8hfU_rQaAsNwEALw_wcB
https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=Cj0KCQjw38-DBhDpARIsADJ3kjmxpTjUS_7o4K1orvnoq-MfSNKEhLJl_TeOoN6DlYz3RBAC8hfU_rQaAsNwEALw_wcB
https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=Cj0KCQjw38-DBhDpARIsADJ3kjmxpTjUS_7o4K1orvnoq-MfSNKEhLJl_TeOoN6DlYz3RBAC8hfU_rQaAsNwEALw_wcB
https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?
https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?
http://doi.org/10.1016/j.biopha.2020.110281
http://www.ncbi.nlm.nih.gov/pubmed/32554251
http://doi.org/10.1016/j.imu.2021.100604
http://www.ncbi.nlm.nih.gov/pubmed/34028468
http://doi.org/10.1038/nrd.2018.168
http://www.ncbi.nlm.nih.gov/pubmed/30310233
http://doi.org/10.3389/fchem.2021.628398
http://doi.org/10.1080/17460441.2020.1704729
http://doi.org/10.1016/j.ygeno.2019.06.021
http://doi.org/10.3390/molecules24173061
http://doi.org/10.3390/molecules25061375
http://doi.org/10.1038/s41577-020-0311-8
http://www.ncbi.nlm.nih.gov/pubmed/32346093
http://doi.org/10.1016/j.clim.2020.108393
http://www.ncbi.nlm.nih.gov/pubmed/32222466
http://doi.org/10.1038/s41598-020-74843-x
http://doi.org/10.3332/ecancer.2020.1023
http://www.ncbi.nlm.nih.gov/pubmed/32256706
http://doi.org/10.1016/j.antiviral.2012.06.011
http://www.ncbi.nlm.nih.gov/pubmed/22842004
http://doi.org/10.1007/s10787-012-0149-1


Molecules 2021, 26, 3772 26 of 27

17. Mostafa, A.; Kandeil, A.; Elshaier, Y.A.M.M.; Kutkat, O.; Moatasim, Y.; Rashad, A.A.; Shehata, M.; Gomaa, M.R.; Mahrous, N.;
Mahmoud, S.H.; et al. FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome
Coronavirus 2. Pharmaceuticals 2020, 13, 443. [CrossRef] [PubMed]

18. Alnajjar, R.; Mostafa, A.; Kandeil, A.; Al-Karmalawy, A.A. Molecular docking, molecular dynamics, and in vitro studies reveal
the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon 2020, 6, e05641. [CrossRef]

19. Zaki, A.A.; Al-Karmalawy, A.A.; El-Amier, Y.A.; Ashour, A. Molecular docking reveals the potential of Cleome amblyocarpa
isolated compounds to inhibit COVID-19 virus main protease. New J. Chem. 2020, 44, 16752–16758. [CrossRef]

20. Elmaaty, A.A.; Alnajjar, R.; Hamed, M.I.; Khattab, M.; Khalifa, M.M.; Al-Karmalawy, A.A. Revisiting activity of some glucocorti-
coids as a potential inhibitor of SARS-CoV-2 main protease: Theoretical study. RSC Adv. 2021, 11, 10027–10042. [CrossRef]

21. Eissa, I.; Al-Karmalawy, A.; Dahab, M.A.; Metwaly, A.M.; Elhady, S.S.; Elkaeed, E.B.; Darwish, K.M. Molecular docking and
dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting hACE2 receptor. Front.
Chem. 2021, 9, 227.

22. Al-Karmalawy, A.A.; Alnajjar, R.; Dahab, M.; Metwaly, A.; Eissa, I. Molecular docking and dynamics simulations reveal the
potential of anti-HCV drugs to inhibit COVID-19 main protease. Pharm. Sci. 2021, 9, 661230. [CrossRef]

23. Zaki, A.A.; Ashour, A.; Elhady, S.S.; Darwish, K.M.; Al-Karmalawy, A.A. Calendulaglycoside A Showing Potential Activity
Against SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and SAR Studies. J. Tradit. Complement. Med. 2021,
in press. [CrossRef]

24. Soltane, R.; Chrouda, A.; Mostafa, A.; Al-Karmalawy, A.; Chouaïb, K.; Dhahri, A.; Pashameah, R.; Alasiri, A.; Kutkat, O.;
Shehata, M.; et al. Strong Inhibitory Activity and Action Modes of Synthetic Maslinic Acid Derivative on Highly Pathogenic
Coronaviruses: COVID-19 Drug Candidate. Pathogens 2021, 10, 623. [CrossRef]

25. Elmaaty, A.A.; Darwish, K.M.; Khattab, M.; Elhady, S.S.; Salah, M.; Hamed, M.I.; Al-Karmalawy, A.A.; Saleh, M.M. In a search for
potential drug candidates for combating COVID-19: Computational study revealed salvianolic acid B as a potential therapeutic
targeting 3CLpro and spike proteins. J. Biomol. Struct. Dyn. 2021, 1–28. [CrossRef] [PubMed]

26. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of M pro from SARS-CoV-2
and discovery of its inhibitors. Nature 2020, 582, 289–293. [CrossRef]

27. Borges, R.S.; Palheta, I.C.; Ota, S.S.B.; Morais, R.B.; Barros, V.A.; Ramos, R.S.; Silva, R.C.; Costa, J.D.S.; Silva, C.H.T.P.; Campos,
J.M.; et al. Toward of Safer Phenylbutazone Derivatives by Exploration of Toxicity Mechanism. Molecules 2019, 24, 143. [CrossRef]

28. Aceves-Hernandez, J.; Nicolás-Vázquez, I.; Aceves, F.; Hinojosa-Torres, J.; Paz, M.; Castaño, V. Indomethacin polymorphs:
Experimental and conformational analysis. J. Pharm. Sci. 2009, 98, 2448–2463. [CrossRef] [PubMed]

29. Xu, L.; Li, Y.; Jing, P.; Xu, G.; Zhou, Q.; Cai, Y.; Deng, X. Terahertz spectroscopic characterizations and DFT calculations of
indomethacin cocrystals with nicotinamide and saccharin. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2021, 249, 119309.
[CrossRef]

30. Chemical Computing Group. Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC: Montreal, QC,
Canada, 2021.

31. Release, S. 3: Desmond Molecular Dynamics System, DE Shaw Research; Maestro-Desmond Interoperability Tools; Schrödinger: New
York, NY, USA, 2017.

32. Al-Karmalawy, A.A.; Khattab, M. Molecular modelling of mebendazole polymorphs as a potential colchicine binding site inhibitor.
New J. Chem. 2020, 44, 13990–13996. [CrossRef]

33. Ghanem, A.A.; Emara, H.A.; Muawia, S.; El Maksoud, A.I.A.; Al-Karmalawy, A.A.; Elshal, M.F. Tanshinone IIA synergistically en-
hances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase
II: In vitro and molecular docking studies. New J. Chem. 2020, 44, 17374–17381. [CrossRef]

34. Samra, R.M.; Soliman, A.F.; Zaki, A.A.; Ashour, A.; Al-Karmalawy, A.A.; Hassan, M.A.; Zaghloul, A.M. Bioassay-guided isolation
of a new cytotoxic ceramide from Cyperus rotundus L. S. Afr. J. Bot. 2021, 139, 210–216. [CrossRef]

35. Davis, I.W.; Baker, D. RosettaLigand Docking with Full Ligand and Receptor Flexibility. J. Mol. Biol. 2009, 385, 381–392. [CrossRef]
[PubMed]

36. Eliaa, S.G.; Al-Karmalawy, A.A.; Saleh, R.M.; ElShal, M.F. Empagliflozin and Doxorubicin Synergistically Inhibit the Survival of
Triple-Negative Breast Cancer Cells via Interfering with the mTOR Pathway and Inhibition of Calmodulin: In Vitro and Molecular
Docking Studies. ACS Pharmacol. Transl. Sci. 2020, 3, 1330–1338. [CrossRef]

37. Neria, E.; Fischer, S.; Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921.
[CrossRef]

38. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating
liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]

39. Schrödinger. Desmond Molecular Dynamics System, DE Shaw Research: New York, 2015; Schrödinger: New York, NY, USA, 2015.
40. Harder, E.; Damm, W.; Maple, J.R.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al.

OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12,
281–296. [CrossRef] [PubMed]

41. Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys.
1992, 97, 2635–2643. [CrossRef]

http://doi.org/10.3390/ph13120443
http://www.ncbi.nlm.nih.gov/pubmed/33291642
http://doi.org/10.1016/j.heliyon.2020.e05641
http://doi.org/10.1039/D0NJ03611K
http://doi.org/10.1039/D0RA10674G
http://doi.org/10.34172/PS.2021.3
http://doi.org/10.1016/j.jtcme.2021.05.001
http://doi.org/10.3390/pathogens10050623
http://doi.org/10.1080/07391102.2021.1918256
http://www.ncbi.nlm.nih.gov/pubmed/33928870
http://doi.org/10.1038/s41586-020-2223-y
http://doi.org/10.3390/molecules24010143
http://doi.org/10.1002/jps.21626
http://www.ncbi.nlm.nih.gov/pubmed/19199282
http://doi.org/10.1016/j.saa.2020.119309
http://doi.org/10.1039/D0NJ02844D
http://doi.org/10.1039/D0NJ04088F
http://doi.org/10.1016/j.sajb.2021.02.007
http://doi.org/10.1016/j.jmb.2008.11.010
http://www.ncbi.nlm.nih.gov/pubmed/19041878
http://doi.org/10.1021/acsptsci.0c00144
http://doi.org/10.1063/1.472061
http://doi.org/10.1063/1.445869
http://doi.org/10.1021/acs.jctc.5b00864
http://www.ncbi.nlm.nih.gov/pubmed/26584231
http://doi.org/10.1063/1.463940


Molecules 2021, 26, 3772 27 of 27

42. Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189.
[CrossRef]

43. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.

44. Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45,
13244–13249. [CrossRef] [PubMed]

45. Yanai, T.; Tew, D.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-
B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [CrossRef]

46. Ropo, M.; Kokko, K.; Vitos, L. Proving the Perdew-Burke-Ernzerhof density functional designed for metallic bulk and surface
systems. Mater. Sci. 2007, 77, 195445. [CrossRef]

47. Austin, A.J.; Petersson, G.A.; Frisch, M.J.; Dobek, F.J.; Scalmani, G.; Throssell, K. A Density Functional with Spherical Atom
Dispersion Terms. J. Chem. Theory Comput. 2012, 8, 4989–5007. [CrossRef] [PubMed]

48. Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97,
2571–2577. [CrossRef]

49. Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr.
J. Chem. Phys. 1994, 100, 5829–5835. [CrossRef]

50. McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem.
Phys. 1980, 72, 5639–5648.

51. Hill, D.; Sutton, B. Gold. C20H34AuO9P5. Cryst. Struct. Commun. 1980, 9, 679–686.
52. Alagarsamy, V. Textbook of Medicinal Chemistry; CBS Publishers and Distributors: New Delhi, India, 2018; Volume 2.

http://doi.org/10.1063/1.467468
http://doi.org/10.1103/PhysRevB.45.13244
http://www.ncbi.nlm.nih.gov/pubmed/10001404
http://doi.org/10.1016/j.cplett.2004.06.011
http://doi.org/10.1103/PhysRevB.77.195445
http://doi.org/10.1021/ct300778e
http://www.ncbi.nlm.nih.gov/pubmed/26593191
http://doi.org/10.1063/1.463096
http://doi.org/10.1063/1.467146

	Introduction 
	Materials and Methods 
	Molecular Docking 
	NSAIDs Preparation 
	Target (SARS-CoV-2 Mpro) Preparation 
	Docking of the Tested NSAIDs to the Viral Mpro Binding Site 

	Molecular Dynamics (MD) Simulations 
	Quantum Mechanical Studies 

	Results and Discussion 
	Docking Studies 
	Molecular Dynamics (MD) Simulations 
	Quantum Mechanical Studies 
	Structure–Activity Relationship Studies 

	Conclusions 
	References

