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Abstract: In this modern era, nanofluids are considered one of the advanced kinds of heat transferring
fluids due to their enhanced thermal features. The present study is conducted to investigate that how
the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a
Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel
of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a
permeable medium, and a uniform magnetic field and radiation flux are also involved in determining
flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the
flow phenomenon is examined for three different situations. To evaluate the influence of shape factor,
MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical
modeling is performed in the form of non-integer order operators, and a double fractional analysis is
carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional
models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation,
and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions
of flow and energy equations are presented in terms of graphical illustrations and tables to discuss
important physical aspects of the observed problem. Moreover, a detailed inspection on shear
stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer
mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat
transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced
skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it
is perceived that velocity and energy functions of the nanofluid exhibit significant variations because
of the different shapes of nanoparticles.

Keywords: comparative fractional study; shape factor; time-dependent conditions; laplace transform;
heat transfer
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1. Introduction

Nanotechnology, described as the development of atomic-scale structures through
appropriate manipulation of molecules and atoms, is influencing a wide variety of mod-
ern physical phenomena in today’s world. For example, personal computers are more
advanced, faster, less expensive, and hold enhanced storage capacities. Silver nanoparticles
are coated on bandages for the speedy healing of the cuts and wounds. Nanomaterials are
being utilized in the manufacturing of automobiles, which indicates that their functioning
may require less fuel and fewer metals. Thanks to nanotechnology, synthetic chemistry has
progressed to the extent that it is now possible to create nanoscopic molecules of almost
any shape and structure that can be used to prepare a broad range of effective chemicals
such as pharmaceuticals and industrial polymers. Nanomedicine is another important
application of nanotechnology. Nanofluid is one of the most fundamental and significant
units of nanotechnology. During the period of last forty years, nanofluids have piqued the
attention of a great number of scientists due to their practical applications and enhanced
physical characteristics over conventional fluids.

In this modern era, the class of nanofluids is considered an advanced category of heat
transporting fluids because of the potential features and augmented thermal performances
of nanofluids. A nanofluid is a combination of some pure fluid like water or oil and
nanometer (nm) sized particles (typically 1–100 nm) made of carbon nanotubes (CNTs),
oxides, or metals [1]. The development of nanofluids leads to giving rise to a slew of
new research directions in numerous sub-disciplines of science and engineering. Choi
and Eastman’s pioneering study in which they proposed the concept of nanofluids, is
credited for these extensive advancements [2]. Nanofluids contain unique attributes that
make them appreciably productive for multiple purposes, for instance, oil purification,
production of fiber, accurate drug delivery, manufacturing of plastic and rubber sheets,
replacement and repairing of tissues, lubrication, and wear prevention. Apart from this,
replacing conventional fluids with nanofluids is one of the best operational strategies for
efficient thermal management of various mechanical and industrial systems such as gener-
ators, transformers, nuclear reactors, freezers and refrigerators, lawnmowers, electronic
equipment, microprocessors, heat exchangers, automobile engines, energy storage instru-
ments, chillers, drilling machines, hydrodynamic pumps, and many others [3]. A complete
understanding of nanofluids’ rheological attributes is necessary to determine their viability
for heat transport challenges. In the last twenty years, plenty of experimental and com-
putational investigations have been conducted to evaluate different aspects of nanofluids,
for example, methods of preparation, enhancement in particular features, uniform and
smooth dispersion of nanoparticles, and improvement in the thermal behavior.

Ali et al. [4] experimentally anticipated the enhancement in thermal efficiency of car
radiators. They conducted this study for four different volumetric proportions of ZnO
nanoparticles in water (0.01%, 0.08%, 0.2%, 0.3%) and witnessed maximum augmentation
of heat transfer (i.e., 46%) against 0.2% volume proportion. Saffarian et al. [5] examined
various geometries of homogeneous lengths to analyze the influence of a conduit’s shape
on the heat transporting tendency of nanofluids. More precisely, they investigated the flow
phenomenon through wavy, U-shaped, and spiral conduits. According to their findings,
a wavy pipe shaped conduit is the most appropriate geometry among the ones considered,
as it increased the heat transportation capacity of base fluid by 78%. Uddin et al. [6]
theoretically inspected the two-dimensional slip flow of a nanofluid in a Darcian porous
material generated due to the shrinking and stretching motion of a sheet. They utilized a
numerical method to solve an intricate nonlinear system of partial differential equations.
This study reveals that the heat transfer rate is greater for the case of a shrinking sheet
as compared to that of a stretching sheet. The mixed convective flow of ethylene and
water based γ-nanofluids over an extended upward surface was studied by Khan et al. [7].
The experimental expressions of viscosity and thermal conductance were used and con-
sequences of radiation and entropy production were also evaluated. It was reported that
a substantial advancement in the heat transportation rate appears because of radiation
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and unsteady parameter. Mahanthesh et al. [8] inspected the impacts of heat injection on
viscous nanofluid, which exhibits its motion near a radially stretched disk. Thermophoresis
and Brownian motion mechanisms were also incorporated in the model. It was claimed
that the influence of thermophoresis on heat transport coefficient is dominant than that of
Brownian motion. Sun et al. [9] explored that how the thermal conductivity of iron oxides
based water nanofluid, which indicates circular motion inside a tube is altered by flux
density, gradient, and different magnetic field orientations. They came to the conclusion
that a vertically applied magnetic field causes the formation of chain-like structures, which
minimizes thermal resistance and escalates convectional heat transport. Khan et al. [10]
carried out a numerical analysis to probe the significance of magnetic dipole and activation
energy for nanofluid’s cross-flow and heat transportation in a cylinder. They also discussed
that the thermophoretic parameter intensifies the temperature function. Some latest inves-
tigations on improved features and better thermal performance of nanofluids are enclosed
in [11–20].

In this century, fractional calculus is a rapidly evolving field because of its widespread
applications in a range of real-world scenarios. Several scholars recently claimed that
fractional operators provide much more accurate results and have a greater impact on
analysis than standard derivatives. With the help of various experimental and theoretical
studies, it has been reported that the adaptation of an appropriate fractional parameter
results in almost complete consistency between theoretic and experimental findings. In the
area of fluid mechanics, certain rheological properties of fluids can only be analyzed using
fractional operators. During the duration of the last fifteen years, fractional operators have
been effectively utilized for adequate modeling of a wide range of practical operations
and processes. The application fields of fractional operators include biophysics, signals
processing, epidemic simulations, fluid mechanics, moving wave solutions, rheology, bio-
chemical models, viscoelasticity, economics, and so forth. Viewing the crucial implications
of fractional operators, researchers/investigators realized imperative demands to develop
some new fractional operators, which guarantee the specificity of the modeling process,
possess various novel features, and able to appropriately describe complex real-life phe-
nomena. In this regard, all the proposed fractional operators so far have a unique kernel.
For example, Riemann-Liouville and Caputo fractional operators are established in terms
of the power-law kernel, which later proved to be a singular one [21]. Caputo and Fabrizio
dealt with this singularity problem by devising a new fractional operator made up of a
kernel in the form of an exponential decay law [22]. The Atangana-Baleanu fractional
operator is the latest introduction to the family of fractional operators, which applies
the concept of generalized Mittag-Leffler law to effectively overcome the deficiencies of
preceding operators [23]. Since fractional operators are so efficient in simulation and mod-
eling, some researchers are interested in converting problems from regular to fractional
environments. Goufo et al. [24] used the Atangana-Baleanu fractional operator to analyze
neuronal activities with the support of a three-dimensional Hindmarsh-Rose neuron model.
Faraz et al. [25] operated different fractional operators to transform some existing models
in order to perform an inclusive dynamical study of COVID-19. They also explicated the
efficacy of several precautionary measures such as lockdown and quarantine in preventing
the infection’s spread. Tarasov [26] discussed the ongoing development in modern mathe-
matical economics due to fractional operators. Skovranek [27] investigated and explained
the effects of unemployment on the inflation rate by developing a mathematical model
such that the power function was replaced with the Mittag-Leffler function for the transfor-
mation of the problem to a fractional framework. Riaz et al. [28] elucidated how modern
fractional operators significantly contribute to describe simultaneously occurring heat flow
and transportation phenomena near a vertical wall. Several new analyses outlining the
usefulness of fractional operators for flow and heat transfer challenges are documented
in [29–37].

An extensive literature review discloses that most of the investigations are conducted
for nanoparticles of spherical shapes, which not only unable to completely evaluate all the
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necessary attributes of nanofluids but also limited in terms of practical significance and
implications. Keeping a view of these disadvantages, the current study aims to explore
the impacts of multiple shapes of nanoparticles. More precisely, brick, cylinder, blade,
and platelet shapes of nanoparticles are considered for this work. The literature also com-
municates that majority of researchers are interested in copper, CNTs, alumina, and titania
nanoparticles. However, there exist many other nanoparticles that possess the ability to
enrich the thermal characteristics of conventional fluids effectively. Thus, in this work,
MoS2 nanoparticles are chosen due to their momentous and imperative applications in
various fields, particularly in 2D electronic instruments like field-effect transistors and
semiconductors. MoS2 has a layered structure like graphene with sufficiently large band
gaps. Moreover, the improved thermophysical features of MoS2 based nanofluids such
as augmented specific heat capacitance and thermal conductance, low friction, enhanced
lubrication tendency, and robustness make them vitally effective for diverse mechanical
applications [38,39]. Realizing these valuable advantages, the current fractional analysis
aims to investigate MoS2 based sodium alginate nanofluid in a channel frame. Non-integer
order PDEs are presented in the form of Caputo-Fabrizio and Atangana-Baleanu fractional
operators to describe transportation and heat transfer phenomena. These fractional mod-
els are separately solved by utilizing the Laplace transform and a detailed comparative
study is conducted to anticipate which operator is more effective for the current problem.
Subject to magnetic and radiation effects, a dynamical analysis of considered nanofluid is
performed for three different flow situations in a permeable medium. Various parameters
and quantities of physical interest are studied through tabulated data and several graphical
illustrations of flow patterns and the temperature field.

2. Statement and Mathematical Modeling

Consider magnetohydrodynamic (MHD) convectional flow of sodium alginate based
nanofluid between two parallel upward walls (vertical channel) saturated in a permeable
material. The left wall is located at the origin and the right wall is situated at a distance d as
portrayed in Figure 1. A magnetic field and radiative flux are acting on the channel along
the horizontal axis (labeled as ζ∗) whereas, these effects are assumed insignificant in the
vertical direction (labeled as η∗). Depending on the movement of the left wall, the transport
phenomenon is observed for three different physical situations. The base fluid sodium
alginate contains MoS2 nanoparticles of multiple shapes and there exists a state of thermal
equilibrium between them. Due to the low Reynolds number, the induced magnetic field is
sufficiently small such that it can be neglected. Moreover, polarization effects indicate no
contribution to flow dynamics therefore, the electrical field is not yielded externally. Since
the flow is along the η∗−axis and transient effects are incorporated in the model, velocity
and temperature functions depend on time τ∗ and space coordinate ζ∗.

The usual Boussinesq approximation [40] is applied to develop the flow equation
while the Rosseland approximation [41] is used to deal with radiative heat flux during
modeling of the energy equation. These equations are provided as [42,43]

ρ̌n f
∂ω∗(ζ∗, τ∗)

∂τ∗
=

(
1 +

1
β

)
µ̌n f

∂2ω∗(ζ∗, τ∗)

∂ζ∗2
+ g(ρ̌β̌1)n f

(
>∗(ζ∗, τ∗)−>∗d

)
−σ̌n f B2

0ω∗(ζ∗, τ∗)−
(

1 +
1
β

)
µ̌n f φp

Kp
ω∗(ζ∗, τ∗), (1)

(ρ̌Čp)n f
∂>∗(ζ∗, τ∗)

∂τ∗
= ǩn f

∂2>∗(ζ∗, τ∗)

∂ζ∗2
− ∂qr

∂ζ∗
, (2)[

qr = −
4σ1

3k1

∂>∗4
∂ζ∗

, >∗4 ≈ (4>∗3d )>∗ − 3>∗4d

]
. (3)
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Figure 1. Geometrical model of the considered problem.

Here ω∗(ζ∗, τ∗) denotes the velocity function and >∗(ζ∗, τ∗) represents the tempera-
ture of nanofluid. β is known as Casson parameter, σ1 is Stefan-Boltzmann constant, B0
accounts for the strength of magnetic influence, >∗d is initial temperature, g characterizes
gravity effects, permeability and porosity of the material are symbolized with Kp and
φp respectively, and mean absorption is denoted by k1. The employed conditions are
mathematically expressed as

ω∗(ζ∗, 0) = 0, >∗(ζ∗, 0) = >∗d ,
∂ω∗(ζ∗, 0)

∂τ∗
= 0, (4)

ω∗(0, τ∗) = ω0 f (τ∗), >∗(0, τ∗) = >∗w, (5)

ω∗(d, τ∗) = 0, >∗(d, τ∗) = >∗w. (6)

There exist some thermo-physical quantities in modeled Equations (1)–(3), which
dependent on particular features of carrier fluid sodium alginate and MoS2 nanoparticles.
These quantities are important in determining the overall thermal efficiency and flow
pattern of the resulted nanofluid. For precise anticipation of these quantities, particular
mathematical expressions are proposed in the literature. Viewing the usefulness of the
Hamilton and Crosser model [44], it is employed in this work to compute viscosity (µ̌n f )
and thermal conductivity (ǩn f ) of nanofluid in the following manner

µ̌n f = µ̌sa(1 + ǎφ2 + b̌φ), (7)
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ǩn f = ǩsa

 (j− 1)ǩsa − φ(j− 1)
(

ǩsa − ǩms

)
+ ǩms

(j− 1)ǩsa + φ
(

ǩsa − ǩms

)
+ ǩms

. (8)

Throughout this manuscript, the subscripts n f , sa, and ms are utilized to indicate
characteristics of nanofluid, sodium alginate, and molybdenum-disulfide nanoparticles
respectively. In the above equations, φ is used to characterize the volume proportion of
nanoparticles. The shape constants are denoted with ǎ and b̌ in Equation (7). On the other
end, j is the shape factor in Equation (8), and it is represented as j = 3/ψ, where ψ is
the quotient of surface areas of the sphere and real nanoparticles. Table 1 conveys the
operational values of ǎ, b̌, and ψ.

Table 1. Numerical values of ǎ, b̌, and ψ for considered shapes [29].

Model Blade Platelet Cylinder Brick

ǎ 123.3 612.6 909.4 471.4
b̌ 14.6 37.1 13.5 1.9
ψ 0.36 0.52 0.62 0.81

The relations for other properties of nanofluids such as density (ρ̌n f ), electrical con-
ductance (σ̌n f ), heat capacity ((ρ̌Čp)n f ), and thermal expansion ((ρ̌β̌1)n f ) are provided
as [45]

ρ̌n f = φρ̌ms + (1− φ)ρ̌sa,

σ̌n f = σ̌sa +
3φσ̌sa(σ̌ms − σ̌sa)

σ̌ms + 2σ̌sa + φ(σ̌sa − σ̌ms)
,

(ρ̌Čp)n f = φ(Čpρ̌)ms + (1− φ)(Čpρ̌)sa,

(ρ̌β̌1)n f = φ(β̌1ρ̌)ms + (1− φ)(β̌1ρ̌)sa.

Table 2 communicates the operational values for physical and thermal quantities of
NaAlg and MoS2.

Table 2. Values for thermo-physical quantities of NaAlg and MoS2 [29,46].

Quantities
Carrier Fluid Nanoparticles

NaAlg MoS2

β̌1 × 10−5 0.99 2.84
Čp 4175 397.21
ρ̌ 989 5.06 × 103

ǩ 0.6376 904.4
σ̌× 10−4 2.6 2.09

Equations (1)–(3) are treated with the following new set of unit-less quantities to
acquire a dimensionless version of the model

ζ =
1
d

ζ∗, ω =
d

νsa
ω∗, ϑ =

>∗ −>∗d
>∗w −>∗d

, τ =
νsa

d2 τ∗. (9)

The governing equations and associated conditions are presented in a unit-free form as
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ň4
∂ω(ζ, τ)

∂τ
= ň8

∂2ω(ζ, τ)

∂ζ2 + Gr0ϑ(ζ, τ)−M0ω(ζ, τ)− 1
K0

ω(ζ, τ), (10)

∂ϑ(ζ, τ)

∂τ
= ň3

∂2ϑ(ζ, τ)

∂ζ2 , (11)

ω(ζ, 0) = 0, ϑ(ζ, 0) = 0,
∂ω(ζ, 0)

∂τ
= 0, (12)

ω(0, τ) = f (τ), ϑ(0, τ) = 1, (13)

ω(1, τ) = 0, ϑ(1, τ) = 1, (14)

where

ň1 =
(j− 1)ǩsa − φ(j− 1)

(
ǩsa − ǩms

)
+ ǩms

(j− 1)ǩsa + φ
(

ǩsa − ǩms

)
+ ǩms

, ň2 = (1− φ) +
φ(ρ̌Čp)ms

(ρ̌Čp)sa
,

ň3 =
ň1

ň2

1
Pr0

, ň4 = (1− φ) +
φρ̌ms

ρ̌sa
, ň5 = (1 + ǎφ2 + b̌φ),

ň6 = (1− φ) +
φ(ρ̌β̌1)ms

(ρ̌β̌1)sa
, ň7 = 1 +

3φ(σ̌2 − 1)
(σ̌2 + 2)− (σ̌2 − 1)φ

,

ň8 = ň5

(
1 +

1
β̌1

)
, Pr =

(
µ̌Čp

ǩ

)
sa

, Pr0 =
ň1Pr

ň1 + Nr
,

Nr =
16σ2>3

∞

3k2ǩsa
, M =

σ̌B0d2

ρ̌ν̌
, M0 = ň7M, σ̌2 =

σ̌ms

σ̌sa
,

1
K

=
φpd2

Kp
, Gr0 = ň6Gr, Gr1 =

Gr0

ň8
,

1
K0

= ň5

(
1 +

1
β̌1

)
1
K

, Gr =
gβ̌1(>w −>d)d3

ν̌2 , (15)

where M, Nr, and K, are the parameters of magnetic, radiation, and porosity respectively.
Pr and Gr are called Prandtl and Grashof number respectively, and ňi(i = 1, . . . , 8) are
some constants.

3. Fractional Models and Analytic Solutions

This section aims to formulate two different fractional models in terms of Atangana-
Baleanu and Caputo-Fabrizio fractional operators. Before developing these models, it is
necessary to define these operators and their Laplace transform as the solution finding
methodology involves the employment of the Laplace transformation (LT) technique.
The fractional operators named Atangana-Baleanu and Caputo-Fabrizio for an arbitrary
function V(ζ, τ) and non-integer order Γ ∈ (0, 1) are respectively given as [22,23]

ABDΓ
τ{V(ζ, τ)} = 1

1− Γ

τ∫
0

∂V(ζ, s)
∂s

EΓ

(
−Γ

(τ − s)Γ

1− Γ

)
ds, (16)

CFDΓ
τ{V(ζ, τ)} = 1

1− Γ

τ∫
0

∂V(ζ, s)
∂s

exp
(
−Γ

τ − s
1− Γ

)
ds, (17)

where EΓ is the generalized Mittag-Leffler function. The LT of Equations (16) and (17) is
computed as



Molecules 2021, 26, 3711 8 of 33

ABL
{

DΓ
τ V(ζ, τ)

}
(q) =

qΓL{V(ζ, τ)} − q(1−Γ)V(ζ, 0)
Γ + (1− Γ)qΓ , (18)

CFL
{

DΓ
τ V(ζ, τ)

}
(q) =

qL{V(ζ, τ)} −V(ζ, 0)
Γ + (1− Γ)q

. (19)

3.1. Temperature Field
3.1.1. Atangana-Baleanu Fractional Operator

The non-integer order energy equation is obtained by incorporating the Atangana-
Baleanu operator at the place of ordinary time derivative in Equation (11) as

ABDΓ
τ{ϑ(ζ, τ)} = ň3

∂2ϑ(ζ, τ)

∂ζ2 . (20)

On implementation of the LT, Equation (20) adopts the following form

d2ϑ̄(ζ, q)
dζ2 − qΓϑ̄(ζ, q)

ň3{qΓ(1− Γ) + Γ} = 0, (21)

Simplifying Equation (21) and applying the LT on corresponding boundary condi-
tions (13) and (14) yield the following system

d2ϑ̄(ζ, q)
dζ2 − qΓ ȟ0ϑ̄(ζ, q)

ň3{qΓ + f̌0}
= 0, (22)

ϑ̄(0, q) =
1
q

, ϑ̄(1, q) =
1
q

, (23)

where

ȟ0 =
1

1− Γ
and f̌0 =

Γ
1− Γ

.

On solving the system presented in Equations (22) and (23), the solution is calculated as

ϑ̄(ζ, q) =
1− exp

(
−
√

R
)

2
(

sinh(
√

R)
)

q
exp

(√
Rζ
)
+

exp
(√

R
)
− 1

2
(

sinh(
√

R)
)

q
exp

(
−
√

Rζ
)

, (24)

where

R =
ȟ0qΓ

ň3{qΓ + f̌0}
.

The heat flow rate at the interface is quantified in terms of Nusselt number as

Nu = −ň1
∂ϑ(ζ, τ)

∂ζ

∣∣∣∣
ζ=0

. (25)

Computing the gradient of temperature function by utilizing Equation (24) and substi-
tuting it in Equation (25) return the final expression of Nusselt number as

Nu = −ň1
√

R

1− exp
(
−
√

R
)

2
(

sinh(
√

R)
)

q

−
 exp

(√
R
)
− 1

2
(

sinh(
√

R)
)

q

. (26)
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3.1.2. Caputo-Fabrizio Fractional Operator

In this section, a mathematical relation for energy function is computed to develop the
temperature field in terms of the Caputo-Fabrizio operator. For this purpose, the ordinary
time derivative in Equation (11) is substituted with the Caputo-Fabrizio time derivative as

CFDΓ
τ{ϑ(ζ, τ)} = ň3

∂2ϑ(ζ, τ)

∂ζ2 . (27)

Application of the LT on Equation (27) gives

d2ϑ̄(ζ, q)
dζ2 − qϑ̄(ζ, q)

ň3{q(1− Γ) + Γ} = 0, (28)

The above equation is simplified and presented in the following way

d2ϑ̄(ζ, q)
dζ2 − qȟ0ϑ̄(ζ, q)

ň3{q + f̌0}
= 0, (29)

The solution of Equation (29) is established in the presence of boundary conditions
given in Equation (23) as

ϑ̄(ζ, q) =
1− exp

(
−
√

S
)

2
(

sinh(
√

S)
)

q
exp

(√
Sζ
)
+

exp
(√

S
)
− 1

2
(

sinh(
√

S)
)

q
exp

(
−
√

Sζ
)

, (30)

where

S =
ȟ0q

ň3{q + f̌0}
.

In this case, Nusselt number is obtained as

Nu = −ň1
√

S

1− exp
(
−
√

S
)

2
(

sinh(
√

S)
)

q

−
 exp

(√
S
)
− 1

2
(

sinh(
√

S)
)

q

. (31)

3.2. Velocity Field
3.2.1. Atangana-Baleanu Fractional Operator

The non-integer order unit-free form of flow Equation (10) is presented as

ň4

[
ABDΓ

τ

{
ω(ζ, τ)

}]
= ň8

∂2ω(ζ, τ)

∂ζ2 + Gr0ϑ(ζ, τ)−M0ω(ζ, τ)− 1
K0

ω(ζ, τ). (32)

On employment of the LT, Equation (32) takes the following form

ň4

[
qΓ{ω̄(ζ, q)}

qΓ(1− Γ) + Γ

]
= ň8

d2ω̄(ζ, q)
dζ2 + Gr0ϑ̄(ζ, q)−M0ω̄(ζ, q)− 1

K0
ω̄(ζ, q). (33)

Equation (33) is modified to obtain a suitable expression for finding the solution.
The resulted expression is given as

d2ω̄(ζ, q)
dζ2 − ň9ω̄(ζ, q) = −Gr1ϑ̄(ζ, q), (34)

where
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ň9 =
ň4

ň8

qΓ č1 + č2

(qΓ + f̌0)ȟ0
, č1 = K0(ȟ0 + M0) + 1, č2 = M0K0ȟ0 + f̌0.

Substitution of Equation (24) in Equation (34) returns

d2ω̄(ζ, q)
dζ2 − ň9ω̄(ζ, q) = −Gr1

1− exp
(
−
√

R
)

2
(

sinh(
√

R)
)

q
exp

(√
Rζ
)

− Gr1

 exp
(√

R
)
− 1

2
(

sinh(
√

R)
)

q
exp

(
−
√

Rζ
). (35)

The Laplace transformed version of flow boundary conditions given in Equations (13)
and (14) is

ω̄(0, q) = f̄ (q), ω̄(1, q) = 0. (36)

Equation (35) is solved with the help of boundary conditions presented in Equation (36)
and the solution is provided as

ω̄(ζ, q) =
−
(

A3 + A4 + A5
)

2 sinh
(√

ň9
) exp

(√
ň9ζ
)
+

(
A3 + A4 + A6

)
2 sinh

(√
ň9
) exp

(
−
√

ň9ζ
)

−
{

Gr1

R− ň9

}1− exp
(
−
√

R
)

2
(

sinh(
√

R)
)

q
exp

(√
Rζ
)

−
{

Gr1

R− ň9

} exp
(√

R
)
− 1

2
(

sinh(
√

R)
)

q
exp

(
−
√

Rζ
)

. (37)

Equation (37) is further simplified as

ω̄(ζ, q) =
−
(

A3 + A4 + A5
)

2 sinh
(√

ň9
) exp

(√
ň9ζ
)

+

(
A3 + A4 + A5

)
2 sinh

(√
ň9
) exp

(
−
√

ň9ζ
)

− A1 exp
(√

Rζ
)
− A2 exp

(
−
√

Rζ
)

, (38)

where

A1 =
Gr1R1

R− ň9
, A2 =

Gr1R2

R− ň9
, A3 = A1 exp

(√
R
)

, A4 = A2 exp
(
−
√

R
)

,

A5 =
(

f̄ (q)− A1 − A2
)

exp
(
−
√

ň9

)
, A6 =

(
f̄ (q)− A1 − A2

)
exp

(√
ň9

)
,

R1 =
1− exp

(
−
√

R
)

2
(

sinh(
√

R)
)

q
, R2 =

exp
(√

R
)
− 1

2
(

sinh(
√

R)
)

q
.

Shear stress at the interface is measured in the form of skin friction coefficient as

C f = ň5

(
β + 1

β

)
∂ω(ζ, τ)

∂ζ

∣∣∣∣
ζ=0

. (39)
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The gradient of velocity function is derived through Equation (38) and substituted in
Equation (39) to acquire the final form of skin friction coefficient as

C f = ň5

(
β + 1

β

)[√
ň9

{
−
(

A3 + A4 + A5
)

2 sinh
(√

ň9
) −

(
A3 + A4 + A6

)
2 sinh

(√
ň9
) }

+
√

R
(

A1 − A2

)]
. (40)

3.2.2. Caputo-Fabrizio Fractional Operator

The fractional form of flow Equation (10) in terms of Caputo-Fabrizio time derivative is

ň4

[
CFDΓ

τ

{
ω(ζ, τ)

}]
= ň8

∂2ω(ζ, τ)

∂ζ2 + Gr0ϑ(ζ, τ)−M0ω(ζ, τ)− 1
K0

ω(ζ, τ), (41)

On application of the LT in the light of Equation (19), we obtain

ň4

[
q{ω̄(ζ, q)}

q(1− Γ) + Γ

]
= ň8

d2ω̄(ζ, q)
dζ2 + Gr0ϑ̄(ζ, q)−M0ω̄(ζ, q)− 1

K0
ω̄(ζ, q), (42)

Further simplification of Equation (42) yields

d2ω̄(ζ, q)
dζ2 − ň9ω̄(ζ, q) = −Gr1ϑ̄(ζ, q), (43)

where

m̌9 =
ň4

ň8

qč1 + č2

(q + f̌0)ȟ0
, č1 = K0(ȟ0 + M0) + 1, č2 = M0K0ȟ0 + f̌0.

Plugging Equation (30) in Equation (43) gives

d2ω̄(ζ, q)
dζ2 − m̌9ω̄(ζ, q) = −Gr1

1− exp
(
−
√

S
)

2
(

sinh(
√

S)
)

q
exp

(√
Sζ
)

− Gr1

 exp
(√

S
)
− 1

2
(

sinh(
√

S)
)

q
exp

(
−
√

Sζ
). (44)

The solution of Equation (44) with respect to conditions given in Equation (36) is
developed as

ω̄(ζ, q) =
−
(

B3 + B4 + B5
)

2 sinh
(√

m̌9
) exp

(√
m̌9ζ

)
+

(
B3 + B4 + B6

)
2 sinh

(√
m̌9
) exp

(
−
√

m̌9ζ
)

−
{

Gr1

S− m̌9

}1− exp
(
−
√

S
)

2
(

sinh(
√

S)
)

q
exp

(√
Sζ
)

−
{

Gr1

S− m̌9

} exp
(√

S
)
− 1

2
(

sinh(
√

S)
)

q
exp

(
−
√

Sζ
)

. (45)

Equation (45) is rearranged as follows
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ω̄(ζ, q) =
−
(

B3 + B4 + B5
)

2 sinh
(√

m̌9
) exp

(√
m̌9ζ

)
+

(
B3 + B4 + B5)

2 sinh
(√

m̌9
) exp

(
−
√

m̌9ζ
)

− B1 exp
(√

Sζ
)
− B2 exp

(
−
√

Sζ
)

, (46)

where

B1 =
Gr1S1

R− m̌9
, B2 =

Gr1S2

R− m̌9
, B3 = A1 exp

(√
S
)

, B4 = B2 exp
(
−
√

S
)

,

B5 =
(

f̄ (q)− B1 − B2
)

exp
(
−
√

m̌9

)
, B6 =

(
f̄ (q)− B1 − B2

)
exp

(√
m̌9

)
,

S1 =
1− exp

(
−
√

S
)

2
(

sinh(
√

S)
)

q
, S2 =

exp
(√

S
)
− 1

2
(

sinh(
√

S)
)

q
.

The skin friction coefficient for this case is determined as

C f = ň5

(
β + 1

β

)[√
S
(

B1 − B2

)√
m̌9 +

{
−
(

B3 + B4 + B5
)

2 sinh
(√

m̌9
) −

(
B3 + B4 + B6

)
2 sinh

(√
m̌9
) }]. (47)

The temperature and velocity expressions in Equations (24), (30), (38) and (46) for
two different fractional models involve multiple complex functions of Laplace frequency
“q”. Thus, the present form of these expressions is not optimal for inverting them in
real-time coordinate analytically. Generally, these situations occur in the case of fractional
models because the application of the Laplace transform on non-integer order equations
yields much complicated relations as compared to conventional models. When such
complexities appear in engineering problems, the use of numerical Laplace transform
is the most powerful strategy for dealing with them. In this work, the solutions are
transmuted back to the principal domain by operating the well-known Zakian’s Laplace
inversion algorithm [47]. The objectives of certifying the developed solutions and ensuring
reliability are achieved by the dint of Stehfest’s [48] and Durbin’s algorithms [49]. The same
methodology is followed to obtain the tabulated values of Nusselt number and skin
friction coefficient.

4. Results and Discussion

In this work, the evaluation of thermal and physical features of sodium alginate due
to the addition of MoS2 nanoparticles is studied. This purpose is served via fractional
modeling of the problem and results are compared for Atangana-Baleanu and Caputo-
Fabrizio operators based models. Semi-exact solutions for these two fractional models are
computed by jointly employing the Laplace transform and Zakian’s numerical inversion
method. Realizing the importance of shape effects, it is considered that nanoparticles have
four different shapes (brick, blade, cylinder, and platelet). Moreover, the under observation
nanofluid encounters the influence of a porous medium, magnetic field, and thermal radia-
tion. The process of heat transfer and flow of nanofluid are taking place in a micro-channel
comprised of parallel vertical walls. The aim of this section is to conduct a detailed analysis
regarding thermal performance and flow behavior of considered nanofluid. In this respect,
several graphical demonstrations are provided for both fractional models. Additionally,
Nusselt number and skin friction are also examined through a comprehensive tabular study.

Figures 2 and 3 communicate the profiles of energy and velocity distributions for
AB and CF operators based models. Furthermore, the impacts of shape factor are also
studied through these figures. It is observed that nanofluid possesses the minimum energy
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function for brick shaped nanoparticles and this function attains the highest value when
nanoparticles of blade shapes are dispersed. Mainly, this variation is caused by shape
factor j. In the physical sense, thermal conductivity of nanofluid changes because j has a
particular value for a specific shape of nanoparticles (as expressed in Equation (8)). Hence,
corresponding to change of shapes, the thermal profile of nanofluid indicates a noteworthy
variation, which highlights that shape factor plays a significant contribution in the develop-
ment of temperature field. Furthermore, the CF model yields higher temperature profile as
compared to that of AB model. Now, moving towards transport phenomenon, the flow of
nanofluid is investigated for three different physical situations. Figures 2b and 3b are for
the case when the left wall shows oscillatory motion ( f (t) = cos(Ωt)), Figures 2c and 3c
are for the constant motion ( f (t) = 1), and Figures 2d and 3d are for the condition when
the wall moves with single acceleration ( f (t) = t). It is perceived that the addition of
platelet shaped nanoparticles causes a substantial retardation in the flow velocity. Whereas,
the swiftest flow of nanofluid is observed for brick shapes nanoparticles. The primary
factor behind this behavior is modification of viscosity due to shape constants ǎ and b̌.
Every shape of nanoparticles specifies fixed values of ǎ and b̌, which lead to defining the
viscosity of nanofluid. An interesting fact is witnessed here that the velocity function
exhibits the highest profile when the left wall indicates a constant motion. The whole
discussion about Figures 2 and 3 can be summarized in the following way that the values
of flow and temperature functions are maximum for brick and blade shapes of nanopar-
ticles respectively. The experimental investigation of Timofeeva et al. [50] supports the
aforementioned results. They observed that the flow velocity of nanofluids is maximum
when the dispersed nanoparticles are of brick shape because the flow resistive capacity of
nanofluids is minimum in this case. Furthermore, an investigation on different shapes of
MoS2 nanoparticles was conducted by Khan [51] and the results of this study show a per-
fect agreement with the present work. He analyzed that nanofluid with blade and platelet
shape MoS2 nanoparticles indicate higher thermal profiles as compared to cylinder and
brick shape nanoparticles. The total concentration of nanoparticles in base fluid is denoted
by φ. Figure 4 is developed to analyze the behavior of temperature and flow functions
when this concentration is increased to 4% (φ = 0.04). The respective figure is prepared
for AB model and the same analysis is carried out for CF model through Figure 5. It is
realized that temperature and flow functions behave in reverse manners. More precisely,
the thermal curve is elevated for larger values of φ whereas, the flow curve is declined. One
of the vital features of nanoparticles is that they enhance the thermal properties of ordinary
fluids. Heat capacitance and thermal conductivity are examples of these properties. So,
in the current case, when MoS2 nanoparticles are added in base fluid sodium alginate,
the potential of resulted nanofluid to conduct the heat is much greater as compared to
that of pure sodium alginate. Therefore, the thermal curve of nanofluid is higher than the
curve of pure fluid (φ = 0.0). On the other end, these nanoparticles also affect the physical
characteristics of conventional fluids such as viscosity and density. In general, the addition
of nanoparticles produce more viscous nanofluids. Similarly, it is seen that pure sodium
alginate has greater velocity as equated to velocity of MoS2 based nanofluid. It is also clear
that effects of φ variation are significant when the wall moves with single acceleration.
Moreover, it is important to discuss here the experimental work of Colla et al. [52]. They
performed experimental studies to anticipate and analyze the modifications in the host
fluid’s viscosity because of the addition of nanoparticles. They reported a significant rise in
thermal conductivity and viscosity of consequent nanofluid due to an enhancement in the
loading range of nanoparticles. This conclusion also endorses the opposite behaviors of
thermal and flow profiles of the nanofluid considered in the under observation problem.
These results highlight the useful applications of nanofluids for thermal management of
devices, lubrication, and cooling of advanced industrial operational systems.
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Figure 2. Temperature and velocity patterns of AB model for various shapes of nanoparticles.
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The suitability of fractional models for describing the practical physical processes
is discussed with the assistance of Figures 6 and 7. These figures portray the profiles of
temperature and velocity distributions for multiple values of non-integer order/fractional
parameter (Γ). It is spotted that Γ tends to raise the temperature profile of nanofluid and
maximum value of temperature function is witnessed for Γ = 1.0, which is the classical
model. Likewise, velocity is also an increasing function of Γ for the cases of oscillatory
and constant motion of the left channel wall. However, for the single acceleration flow
condition, the behavior of velocity function is completely opposite and flow curve follows a
dropping trend. This inverse behavior is primarily caused by the time difference. For single
acceleration condition, the value of time is τ = 0.2 and for other presented cases, this value
is τ = 2.0. In terms of physical argument, the momentum boundary layer gets attenuated
for small value of time, which leads to declining the flow profile when the motion of wall is
directly varied with time. But, corresponding to the time advancement, the boundary layer
expands and a speedy flow of nanofluid is observed. Besides, the flow and energy functions
execute similar trends for both AB and CF models. Here, it is significant to emphasize
memory capturing and self-similar properties of fractional operators. Figures 6 and 7
suggest that as compared to conventional models, the dynamics of intricate processes are
effectively described by fractional models because a fractional derivative is a useful tool to
capture the memory effects. In addition, it is observed that a small modification in fractional-
order leads to a significant variation in the results of the fractional model thus, an adequate
agreement between theoretical calculations and experimental data can be established by
appropriately adjusting the order of fractional derivative. Based on the aforementioned
observations, it can be concluded that using fractional derivatives for modeling the flow
problems is an efficient strategy to precisely anticipate the rheology and material properties
of nanofluids. The participation of radiative heat flux for the development of momentum
and thermal boundary layers is of vital importance. The consequences of incorporating
the radiation phenomenon in the considered model are elucidated with the support of
Figures 8 and 9. It is described that the energy function reveals a notable rise for elevating
values of radiation parameter Nr. From the physical frame of reference, a weak thermal
radiation causes the channel to drop the temperature of nanofluid because the gradient
of temperature at the solid-nanofluid interface is not able to manage the sufficient heat
transfer rate. As a result, the current temperature level is not maintained and the channel
begins to release the energy. On the contrary, the thermal curve accepts an elevation
as Nr attains higher values. For this situation, a substantial escalation in the value of
Rosseland absorption coefficient (k1) takes place subject to constant magnitudes of ǩn f

and >∗3∞ . Due to this escalation, the radiative heat flux ( ∂qr
∂ζ∗ ) exhibits a dominant role

and the process of heat flow through radiation occurs at a relatively quicker rate. As a
consequence, the energy level of nanofluid particles is boosted and the curve associated
with temperature distribution is escalated. The thermal curves in Figures 8a and 9a are
perfect graphical illustrations of this explanation. The graphs of velocity solutions depict
that the transportation process is also influenced by thermal radiation. For three different
velocity conditions, the flow of nanofluid is shown to be upsurged as the magnitude of
Nr increases. The extra amount of heat transferred to nanofluid as a result of a strong
radiation phenomenon is responsible for this outcome. The molecules rapidly collide each
other because of their higher kinetic energy and these collisions minimize the effectiveness
of coherent attraction. The ability of nanofluid to withstand flow favoring forces tends
to be minor as a consequence of this physical mechanism. Thus, the flow of nanofluid is
accelerated. It is clear form the plots that variation in temperature profile due to alteration
of Nr is more significant than the variation in the velocity profiles because the parameter Nr
primarily appears in the heat equation and partial coupling of velocity and heat equations
transfers it to velocity solution as well.
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Figure 6. Temperature and velocity patterns of AB model for variation of Γ.
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Figure 7. Temperature and velocity patterns of CF model for variation of Γ.
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Figure 8. Temperature and velocity patterns of AB model for variation of Nr.
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The behavior of velocity patters corresponding to the variation of Casson parameter
(β) for AB and CF models is portrayed in Figures 10 and 11. In the physical sense, parameter
β explains the plasticity nature of Casson-type nanofluids. It is remarked that the flow of
nanofluid is decelerated for growing magnitudes of β because the plasticity effects become
dominant when β increases and cause an attenuation in the boundary layer. Moreover,
corresponding to a larger value of β, the considered nanofluid becomes thicker and its
ability to resist the deformation enhances significantly. As a consequence, the viscous
effects suppress the influence of flow-favoring factors and a decline in the velocity of
nanofluid takes place. Resultantly, the flow function exhibits a decay in the corresponding
curve. It is essential to state that non-Newtonian features of fluid disappear for a sufficiently
large magnitude of β and it acts as a Newtonian fluid. This finding also discloses that
the velocity boundary layer of Casson fluid is thicker as equated to that of viscous fluid.
Furthermore, the consequences of varying the value of β are not uniform for three different
flow conditions. Figures 12 and 13 are featured to characterize the contribution of Grashof
number Gr in the establishment of flow patterns. For the flows involving free convection,
Gr is studied to quantify the effects of viscous and buoyancy forces. An increment in Gr
specifies supplementary heating of the channel, which leads to several changes in the flow
region. For instance, there is a considerable variation in particular weights of neighboring
layers of nanofluid. Moreover, it eventuates a change in the density and reduction of
internal friction. The figures report an improvement in the speed of nanofluid subject to
enhanced magnitude of Gr. From a physical viewpoint, the larger value of Gr induces
a substantial difference in the density and convection current arises in the flow region
as a consequence. The occurrence of these currents specify that the buoyancy force is
established and strengthened. Meanwhile, viscous forces have insufficient strength as
compared to buoyancy force and they are unable to effectively control the surge. Hence,
the flow of nanofluid is accelerated and respective figures communicate uplifted profiles.

Figures 14 and 15 are produced to highlight the effectiveness of nesting the channel in
a permeable medium. This analysis is conducted by modifying the porosity parameter (K)
while all other quantities remain constant. It is discerned that as the porosity of the medium
increases, the flow of nanofluid takes place at higher velocity. The preceding outcome is the
result of a number of causes. The primary one is the development of momentum regime
because of insignificant resistive influence of nanofluid. Secondly, the capacity of a porous
material to carry forward the considered nanofluid is improved due to augmented diameter
of porous holes. A drastic dwindling in the strength of dragging force is another reason
for observed behavior of velocity function w(ζ, τ). The impacts of porosity parameter on
flow profile are identical for both fractional models. In this modern era of the development,
efficiency and functionality of various industrial devices such as MHD pumps, generators,
motors, and sensors depend on the interaction between the magnetic field and electrically
conducting nanofluids. Therefore, it is necessary to conduct comprehensive studies on
MHD flows to evaluate various aspects of such flows. A fundamental problem in this
respect is the inspection of magnetic effects on boundary layers formed on different moving
and static fluid conduits, for example, cylinders or channels. Thus, the role of a magnetic
field in determining the behavior of boundary layer is investigated for the present problem
and outcomes are imparted through Figures 16 and 17. It is perceived that the boundary
layer shrinks and the motion of nanofluid retards when the dominance of magnetic field
enhances. In this work, the strength of the magnetic field is symbolized with magnetic
parameter M. The influence of Lorentz force on velocity distribution of nanofluid is the
primary physical explanation for this decrease in flow velocity. The Lorentz force, generally
considered as a force of resitive nature is induced due to the occurrence of the intense
magnetic impacts. Due to this force, nanofluid encounters dragging effects in an anti-flow
direction and experiences much significant resistance. The dropping profile of the velocity
function in Figures 16 and 17 for different flow situations endorse the aforementioned
physical arguments. It is visualized in Figure 18 that the AB operator based fractional
temperature and velocity field solutions developed through Zakian’s algorithm show a
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complete accordance with those anticipated through Durbin’s and Stehfest’s algorithms.
Figure 19 reveals that the same observation is also true for the CF operator based solutions.
Hence, it can be concluded that solutions are authentic and reliable.

For investigations incorporating energy transfer during the transportation of nanoflu-
ids inside a specific geometrical framework, Nusselt number (Nu) and skin friction co-
efficient (C f ) are two important quantities of physical interest to analyze the rate of heat
transfer and shear stress. Table 3 is supplied to compare numerical outcomes of the afore-
mentioned quantities for AB and CF fractional models. This table is prepared for nine
values of fractional parameter (Γ) ranging from 0.1 to 0.9. Furthermore, mathematical re-
sults for C f are also compared for three different flow situations to observe the dominance
of shear stress. Nu and C f exhibit totally opposite behavior subject to progression of Γ.
More precisely, the value of Nu keeps reducing as Γ enhances and the maximum value oc-
curs for Γ = 0.1. On the other side, C f indicates an increasing trend for growing magnitude
of Γ and the least value appears for Γ = 0.1. In addition, the strength of shear stress is weak
for single acceleration motion of the left wall as compared to those of constant and periodic
motion of the wall respectively. For both fractional models, the behavior of Nu and C f is
identical, however, the AB model produces greater values of Nu and lower values of C f .
Based on this finding, it can be remarked that the dynamics of transport phenomenon and
hear transfer is adequately explicated by the AB model. The significant variation in Nu and
C f because of Γ describes that fractional models provide more accurate and general results
such that the findings of classical models can be traced and a perfect accordance with
experimental evaluations can be established through a suitable alteration of the non-integer
order of fractional operators. One of the main purposes of engineering nanofluids through
fusion of traditional fluids and nanoparticles is to develop thermally efficient fluids so
that the aim of faster cooling of conduits can be served effectively. Table 4 is furnished to
anticipate the enhancement percentage of Nusselt number. It expresses that the distribution
of MoS2 nanoparticles is highly effective to improve the thermal performance of sodium
alginate. It results to augment the heat transfer rate up to 9.5%, which shows that the
considered nanofluid is more efficient than pure base fluid to achieve the purpose of rapid
cooling. In Table 5, the numerical values of Nu for various shapes of nanoparticles are
compared under the variation of volume concentration (φ). It is noticed that the tendency
of blade shaped particles to augment the heat transfer rate is greater than platelet, cylinder,
and brick shaped particles respectively. Thus, the maximum outcome of Nu against every
value of φ is perceived for blade shape. On the basis of experimental work, Hamilton and
Crosser [44] also communicated that various shapes of nanoparticles influence the heat
transfer rate and thermal conductance of conventional fluids and produce a significant
improvement in these characteristics. One of the major challenges of such studies is the
minimization of shear stress. There occurs several technical complications when fluids are
operated in industrial processes if the dominance of shear stress is significant. For example,
the pumping of fluid requires more power. Thus, the use of practical techniques to control
the shear stress is a principal task. For the under observation problem, efficacy of the AB
model is higher than the CF model to accomplish this objective. Furthermore, a parametric
study in this regard is carried out with the support of Table 6. The respective table suggests
that the interaction of nanofluid with a much stronger magnetic field leads to reducing the
shear stress. The decreasing value of C f for higher concentration of nanoparticles indicates
that replacing conventional fluids with nanofluids for industrial applications is another
useful technique to limit the shear stress. Besides this, lower magnitudes of parameters β,
K, and Gr provide the desired results.
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Figure 10. Velocity patterns for variation of β.
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Figure 11. Velocity patterns for variation of β.
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Figure 12. Velocity patterns for variation of Gr.
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Figure 13. Velocity patterns for variation of Gr.
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Figure 14. Velocity patterns of AB model for variation of K.
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Figure 15. Velocity patterns of CF model for variation of K.
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Figure 16. Velocity patterns of AB model for variation of M.
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Figure 17. Velocity patterns of CF model for variation of M.
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Figure 18. Validation of temperature and velocity fields developed through AB model.
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Figure 19. Validation of temperature and velocity fields developed through CF model.
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Table 3. Comparative numerical analysis of C f and Nu for fractional parameter Γ.

Γ

Atangana-Baleanu Caputo-Fabrizio

C f
Nu

C f
Nuf (t) = cos(Ωt) f (t) = 1 f (t) = t f (t) = cos(Ωt) f (t) = 1 f (t) = t

0.1 −1.2508 −2.5543 −7.7980 2.7619 −1.1688 −2.4604 −7.7295 2.5794
0.2 −1.2180 −2.5161 −7.7665 2.6876 −1.0627 −2.3379 −7.6356 2.3420
0.3 −1.1635 −2.4526 −7.7140 2.5641 −0.9437 −2.1996 −7.5252 2.0749
0.4 −1.0864 −2.3626 −7.6390 2.3891 −0.8136 −2.0475 −7.3974 1.7816
0.5 −0.9849 −2.2439 −7.5380 2.1589 −0.6769 −1.8862 −7.2523 1.4715
0.6 −0.8577 −2.0943 −7.4058 1.8692 −0.5416 −1.7246 −7.0925 1.1624
0.7 −0.7051 −1.9134 −7.2365 1.5201 −0.4192 −1.5757 −6.9256 0.8793
0.8 −0.5327 −1.7064 −7.0260 1.1223 −0.3186 −1.4500 −6.7647 0.6419
0.9 −0.3518 −1.4852 −6.7788 0.6980 −0.2392 −1.3480 −6.6252 0.4437

Table 4. Numerical analysis of percentage enhancement in Nusselt number due to volume fraction
of nanoparticles.

φ Γ τ Nr Nu Enhancement %

0.00 0.5 2.0 0.2 2.0274 -
0.01 0.5 2.0 0.2 2.0829 2.7375
0.02 0.5 2.0 0.2 2.1331 5.2136
0.03 0.5 2.0 0.2 2.1786 7.4578
0.04 0.5 2.0 0.2 2.2199 9.4949

Table 5. Numerical analysis of Nusselt number enhancement for different shapes of nanoparticles.

φ
Nu Nu Nu Nu

Brick Blade Cylinder Platelet

0.00 2.0274 2.0274 2.0274 2.0274
0.01 2.0488 2.0829 2.0571 2.0638
0.02 2.0691 2.1331 2.0851 2.0978
0.03 2.0885 2.1786 2.1114 2.1294
0.04 2.1069 2.2199 2.1361 2.1589

Table 6. Numerical analysis of associated parameter’s impact on skin friction.

K Gr β φ M C f

0.9 7.0 2.0 0.02 3.0 f (t) = cos(Ωt) f (t) = 1 f (t) = t

0.3 - - - - −1.3887 −4.2225 −11.1185
0.5 - - - - −0.7267 −3.0890 −9.0613
0.9 - - - - −0.2333 −2.2439 −7.5380

- 2.0 - - - −2.8273 −4.3216 −9.6157
- 4.0 - - - −2.0904 −3.4905 −8.7846
- 6.0 - - - −1.3534 −2.6595 −7.9535

- - 0.4 - - −4.6609 −7.5958 −18.3955
- - 0.8 - - −2.3391 −4.2315 −11.6004
- - 2.0 - - −0.9849 −2.2439 −7.5380

- - - 0.02 - −0.9849 −2.2439 −7.5380
- - - 0.03 - −1.6940 −3.3523 −10.1517
- - - 0.04 - −2.6144 −4.7440 −13.3267

- - - - 2.0 −0.4537 −1.9039 −6.9275
- - - - 3.4 −0.7084 −2.3763 −7.7760
- - - - 5.0 −0.7261 −2.8866 −8.6957
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5. Conclusions

The major purpose of this article is to analyze the thermal conduct of a Casson-type
nanofluid, flowing inside a channel, which observes the influence of permeable media.
The consequences of nanoparticles’ shape factor on heat transfer during MHD convective
flow of NaAlg based nanofluid are investigated for three different flow situations. The com-
putational analysis is conducted by modeling the problem in terms of Atangana-Baleanu
and Caputo-Fabrizio fractional operators. The governing equations of these models are
transformed to the Laplace domain first, then Zakian’s reversal technique is employed
to obtain the semi-analytic solutions. A graphical comparison is performed to evaluate
that which fractional operator is more adequate and explains the observed phenomena
effectively. To emphasize the importance of flow conditions, solutions for oscillatory, con-
stant, and time-dependent boundary conditions are presented graphically. In addition,
the role of other associated physical mechanisms is discussed with suitable physical justi-
fication. The outcomes of numerical simulations of skin friction coefficient and Nusselt
number are expressed in tabular forms to analyze the behavior of shear stress and heat
transportation ability of the considered nanofluid. Some primary findings of this analysis
are summarized as

• Molybdenum-disulfide nanoparticles produce a 9.5% enhancement in the thermal
efficiency of sodium alginate, which enhances its usefulness for practical applications.

• Nanofluid flows with maximum velocity when the wall exhibits a constant motion.
• The Lorentz force appearing because of magnetic effects tends to retard the flow

of nanofluid.
• The fractional model formulated in the form of the Atangana-Baleanu operator is

more effective than the model prepared by applying the Caputo-Fabrizio operator.
• The fractional model outperforms the usual model in terms of achieving goals of

diminished skin friction and augmented heat transfer rate.
• Suspending MoS2 nanoparticles of blade shapes causes maximum improvement in

thermal features of the base fluid. However, the percentage enhancement in heat
transfer rate due to the distribution of cylindrical, brick, and platelet shapes is 5.4%,
3.9%, and 6.5% respectively.

• The existence of a dominant magnetic field and a greater concentration of nanoparti-
cles in the base fluid are favorable factors to restrict skin friction.

• The lowest skin friction is observed when the motion of the left wall directly depends
on time.

• The fractional parameter produces an elevation in the profile of the temperature function.
• The augmented thermal properties and lubrication features of the MoS2 nanofluid

signify its role in mechanical applications.
• The porous medium and radiative flux adequately contribute to the development of

boundary layer flow.

6. Future Research Work

• This problem can be extended for different kinds of hybrid nanofluids.
• This model can be used for other geometrical configurations.
• This work can be modified for two and three-dimensional problems.
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