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Abstract: A new 11 amino acid linear peptide named roseabol A (1) and the known compound
13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) were isolated from the fungus Clonostachys rosea.
Combined NMR and MS analysis revealed that roseabol A (1) contained amino acid residues charac-
teristic of the peptaibol family of peptides such as isovaline, x-aminoisobutyric acid, hydroxyproline,
leucinol, and an N-terminal isovaleric acid moiety. The amino acid sequence was established by a
combination of NMR studies and tandem MS fragmentation analyses, and the absolute configurations
of the constituent amino acids of 1 were determined by the advanced Marfey’s method. Compound
2 showed inhibitory activity against Merkel cell carcinoma, a rare and difficult-to-treat type of skin
cancer, with an ICs value of 16.5 M.
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1. Introduction

Peptaibols are a class of linear polypeptides produced by fungi. Metabolites in this
class are 5 to 20 amino acids in length and contain several types of nonproteinogenic
amino acid residues such as isovaline, ethylnorvaline, hydroxyproline, and multiple copies
of a-aminoisobutyric acid [1,2]. The N-terminus is usually acetylated, whereas the C-
terminal amino acid is amide-linked to a 1,2-amino alcohol. While the majority (>50%)
of peptaibols have been isolated from different species of Trichoderma [1,2], other fungal
genera including Apiocrea [3], Sepedonium [4], Clonostachys [5], and Paecilomyces [6] are also
known to produce this type of nonribosomal peptide metabolites. Peptaibols are reported
to exhibit various biological activities such as antimicrobial [7], antimycoplasmic [8], and
inhibition of B-amyloid aggregation, which is associated with Alzheimer’s disease [9].

Merkel cell carcinoma (MCC) is a rare but highly aggressive neuroendocrine skin
cancer. Although MCC is much less common than other skin cancers such as basal cell
carcinoma, squamous cell carcinoma, and melanoma, the incidence of MCC has been
increasing rapidly, having quadrupled in the past few decades. This trend is expected to
continue, with the projected annual incidence reaching approximately 3250 cases per year
in the USA by 2025 [10]. Merkel cell carcinoma tends to grow quickly and spread beyond
the skin, making it a difficult cancer to detect and treat soon enough to achieve favorable
patient outcomes. The treatment of advanced MCC often utilizes immune checkpoint
inhibitors such as avelumab or pembrolizumab [11]. Despite relatively high response
rates to these agents, less than half of patients achieve durable benefit; thus, alternative
treatments are urgently needed.
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Concurrent with ongoing NCI natural product discovery efforts [12,13], an organic
extract of a fungal isolate identified as Clonostachys rosea showed significant activity in a cell-
based assay for inhibition of Merkel cell carcinoma cell growth and survival. Fractionation
of the extract provided a new peptaibol that was named roseabol A (1) (Figure 1) and the
linoleic acid oxidation product, 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) [14].
Based on NMR and MS-MS analyses, it was established that roseabol A (1) contained
11 amino acid residues, including those characteristic of peptaibols such as isovaline, &-
aminoisobutyric acid, hydroxyproline, and leucenol, as well as an N-terminal isovaleric
acid moiety. Compound 2 was identified by comparison of its spectroscopic data with
published data, and it was found to reduce the viability of MCC cells with an ICsg value of
16.5 uM. Herein, we report the isolation, structure elucidation, and biological evaluation of
compounds 1 and 2.
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Figure 1. Structures of roseabol A (1) and 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2).

2. Results and Discussion
2.1. Isolation of the Clonostachys rosea Metabolites

The active extract of C. rosea was subjected to diol column chromatography using a
step gradient elution with 100% hexane, CH,Cl,, EtOAc, acetone, and MeOH. The fraction
that eluted with CH,Cl, was further separated by C;g HPLC using a MeCN-H,O gradient
to afford 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) (0.5 mg). The fraction that
eluted with MeOH was subjected to repeated C13 HPLC using a MeCN-H,O gradient to
yield roseabol A (1) (1.2 mg).

2.2. Structural Characterization of Roseabol A (1): Composition and Amino Acid Sequence

The molecular formula of roseabol A (1) was deduced to be C58H104N1,014 by HRES-
IMS in conjunction with NMR analyses. The NMR spectra were recorded in DMSO-d;;, as
the signals showed well-redispersed resonances and unambiguous 2D-NMR correlations
compared to other solvents that were examined (acetone-dg and CD3OH). The presence of
a large number of amide NH protons (dy1 8.67-6.77) and carbonyl carbons (6c 176.1-169.3)
in the 'H- and '*C-NMR spectra of 1, respectively, indicated characteristic signals of a
peptide (Table 1). Analysis of 2D-NMR (HSQC, COSY, HSQC-TOCSY, HMBC, and ROESY)
data led to the assignment of seven common amino acids in 1 consisting of two serine
(Ser), one glutamine (Glu), two leucine (Leu), and two valine (Val) residues, as well as one
modified amino acid residue hydroxyproline (Hyp). Three nonproteinogenic amino acid
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residues identified as a-aminoisobutyric acid (Aib), isovaline (Iva), and leucinol (Leuol)
were also identified. The Aib moiety was readily deduced due to the presence of a quater-
nary a-carbon (dc 56.1) that exhibited HMBC correlations from two singlet methyl groups
H3-3 (613 1.44) and H3-4 (651 1.37). NMR resonances of the Iva residue were characterized
by the presence of a methyl triplet dt; 0.76 (3H, t, | = 7.4 Hz) and pronounced shielding of
the associated methyl carbon C-4 (éc 7.6) [15], which were indicative of an isolated ethyl
group. These data along with HMBC correlations from H3-4 (dy 0.76) and H3-5 (011 1.29)
to the quaternary carbon C-2 (é¢c 58.6) supported the assignment of an Iva residue. The
C-terminal Leuol moiety was established by COSY correlations between NH (éy 7.28)/H-1
(0q1 3.77), H-1/Hj-2 (6y 1.28), H-1/Hj-6 (6 3.17), and Hy-2/H-3 (6 1.45). HMBC cor-
relations from two methyl doublets H3-4 (6y3 0.79) and H3-5 (d11 0.77) to the C-3 carbon
(6c 58.6) and from the a-methine H-1 to two B-methylene carbons C-2 (6c 39.7) and C-6
(6¢c 63.8) provided further evidence for a Leuol residue. In a similar manner, the N-terminal
isovaleric acid substituent was confirmed by COSY correlations between H,-2/H-3 and
H-3/Hj3-4 and Hj3-5, as well as HMBC correlations from H3-4 and H3-5 to C-3 (d¢c 25.3)
and from Hj-2 to C-1 (¢ 173.1). The C-terminus of peptaibols typically consists of an
amide-linked amino alcohol such as phenylalaninol, or in some cases leucinol, isoleucinol,
valinol, or tryptophanol, while the N-terminal residue is usually acetylated [15-18]. To
the best of our knowledge, roseabol A (1) is the first example of a fungal peptaibol that is
acylated with an N-terminal isovaleric acid group.

Table 1. 'H-NMR (600 MHz) and 3C-NMR Data (150 MHz) of roseabol A (1) in DMSO-d,,

Position dc, Type on, (J in Hz) Position ¢, Type on, (J in Hz)
Leuol 3 37.0, CH; (x) 2.13, m
1 48.8, CH 3.77, m B) 1.62, m
2 39.7, CH; 1.56, m 4 69.0, CH 4.25,brs
1.28, m 5 56.4, CH; (o) 3.64,br d (11.8)
3 23.4,CH 1.45, m B) 3.24,brd (11.8)
4 21.9,CHj; 0.79, d (6.4) Aib
5 20.8, CHj3 0.77,d (6.4) 1 173.2,C
6 63.8, CHj, 3.28, m 2 56.1, C
3.17, m 3 23.1, CH; 1.44,s
NH 7.28,d (8.9) 4 25.5, CHj 1.37,s
Ser; NH 7.90, s
1 169.3, C Val;
2 55.5, CH 4.18,dd (9.8, 6.5) 1 172.0,C
3 61.6, CH, 3.58, brd (5.6) 2 58.3, CH 413, m
NH 7.62,d (7.9) 3 294,CH 2.15, m
Gln 4 17.8, CH3 0.87,d (6.7)
1 171.0,C 5 19.2, CHj3 0.94,d (6.7)
2 52.8, CH 414, m NH 7.38,d (7.8)
3 27.5,CH, 1.90, m Val,
1.76, m 1 1715,C
4 31.5,CH,; 213, m 2 60.4, CH 3.92,t(6.5)
2.07, m 3 29.1,CH 214, m
5 173.7,C 4 18.8, CH3 0.86, d (6.5)
2-NH 7.47,d (6.8) 5 19.0, CHj3 0.94,d (6.5)
5-NH, 6.77,s NH 791,d (7.8)
7.24,s Ser,
Leuy 1 171.4,C
1 172.2,C 2 57.8, CH 4.04, m
2 51.2,CH 424, m 3 60.7, CHj, 3.70, m
3 39.2, CH; 1.77, m 3.66, m
1.28, m NH 847, m
4 24.4,CH 1.60, m Iva
5 22.3,CHj; 0.87,d (6.6) 1 176.1, C
6 22.2,CHj; 0.77,d (6.6) 2 58.6, C
NH 7.35,d (7.8) 3 27.1, CHj 1.92, m




Molecules 2021, 26, 3594

40f9

Table 1. Cont.

Position dc, Type oy, (J in Hz) Position dc, Type oy, (J in Hz)
Leup 1.69, m
1 172.8,C 4 7.6, CHj 0.76, t (7.4)
2 52.5,CH 4.00, m 5 22.1,CHj 1.29,s
3 38.8, CH, 1.86, m NH 8.67,s
1.54, m Isovaleric acid
4 24.0,CH 1.58, m 1 173.1,C
5 22.8, CHjy 0.87,d (6.6) 2 44.4, CH, 211, m
6 22.3,CHj 0.77,d (6.6) 2.07, m
NH 7.79,d (7.8) 3 25.3,CH 1.99, m
Hyp 4 22.4,CHj 0.79, d (6.7)
1 173.3,C 5 24.1, CHjy 0.84,d (6.7)
2 61.3, CH 4.36,t (8.6)
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The amino acid sequence of roseabol A (1) was assembled from a combination of inter-
residue ROESY and HMBC correlations (Figure 2). The sequence of isovaleric acid-Iva—Ser,—
Valp—Val;—-Aib—-Hyp-Leuy-Leu;-GIn-Ser;-Leuol was assigned from HMBC correlations
between the Leuol NH (éy 7.28)/Ser; C-1 (¢ 169.3), Ser; NH (dy 7.62)/GIn C-1 (5¢ 171.0),
GIn NH (61 7.47)/Leu; C-1 (6c 172.2), Leuy NH (éyg 7.35)/Leu, C-1 (5¢ 172.8), Leu, NH
(61 7.79)/Hyp C-1 (6¢ 173.3), Hyp H-2 (65 4.36)/ Aib C-1 (6c 173.2), Aib NH (6y 7.90)/Valy
C-1 (6¢ 172.0), Val; NH (dy 7.38)/Val, C-1 (5¢ 171.5), Val, NH (6y 7.91)/Ser, C-1 (6¢ 171.4),
Ser, NH (6y 8.47)/Iva C-1 (6¢ 176.1), and Iva NH (dy 8.67)/isovaleric acid C-1 (6¢ 173.1).
The connectivity of the amino acid residues was also confirmed by ROESY data with the
following correlations observed: Leuol NH/Ser; H-2 (6 4.18), Sery NH/GIn H-2 (6 4.14),
GIn NH/Leu; H-2 (01 4.24), Leuy NH/Leu, H-2 (61 4.00), Leuy NH/Hyp H-2 (dy 4.36),
Aib NH/Valy H-2 (éy 4.13), Val; NH/Val, H-2 (61 3.92), Val, NH/Ser; H-2 (6 4.04), and
Iva NH/isovaleric acid Hp-2 (d¢1 2.11).

Sery Val, Val, Aib  Hyp Leu, Leuy GIn

Figure 2. Key HSQC-TOCSY, HMBC, and ROESY correlations for roseabol A (1).

The sequence of roseabol A (1) deduced from the NMR experiments was also sup-
ported by ESI-MS/MS collision-induced dissociation analysis. The fragmentation of 1
provided two ions at m/z 554.3616 (CpyH4gN507) and m/z 672.4314 (C31H58N7Og), which
were derived from cleavage of the bond between Aib and Hyp to form ys and bs seg-
ments [1]. Further analysis of the ESI-MS/MS data revealed a series of a- and b-type
fragments (m/z 1021, 894, 469, 441, 370, 271, and 156) and x- and y-type fragments (m/z 982,
333, 248, and 118), which were in good agreement with the sequential loss of the assigned
amino acid residues of 1 from the C-terminus and N-terminus, respectively (Figure 3 and
Figure 510). Thus, the planar structure of roseabol A (1) was elucidated.
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Figure 3. ESI MS/MS fragmentation of roseabol A (1).

2.3. Assignment of the Relative and Absolute Configuration of Roeseabol A (1)

The relative configuration of the Hyp unit was determined from ROESY correlations
between the a-proton H-2 (é1y 4.36) and both H-3« (dy 2.13) and H-5« (dy1 3.64), whereas
the hydroxy methine proton H-4 (g 4.25) had ROESY correlations to H-38 (6 1.62)
and H-58 (dy 3.24). Thus, the relative stereochemistry was assigned to be trans with the
configurations of C-2 as S * and C-4 as R * (Figure 4).

2R N
ROESY

Figure 4. ROESY correlations of trans-4-OH-proline.

The absolute configurations of the amino acid constituents of roseabol A (1) were de-
termined by acid hydrolysis and application of the advanced Marfey’s method [19,20]. The
resulting amino acids were derivatized with 1-fluoro-2, 4-dinitrophenyl-5-L-leucinamide
(FDLA) and analyzed by LC-MS using ion-selective monitoring. Comparison of the re-
tention times of the L- and D-DLA derivatives generated from the hydrolysate of 1 with
similar derivatives of appropriate amino acid standards allowed assignment of the absolute
configuration. When the molecular ion at m/z = 412 was monitored in the positive ion
mode, the DLA-containing products from three amino acid moieties Val, Leuol, and Iva
were detected. However, these products were well resolved as the L-DLA derivatives of
L- and D-Val eluted at 24.9 and 29.1 min, L- and D-Leuol at 27.2 and 31.5 min, and L- and
D-Iva at 26.1 and 27.7 min, respectively (Figure S11). The results from 1 indicated that the
two Val residues and Leuol had L-configurations while Iva had a D-configuration. In a
similar manner, the absolute configurations of L-Ser, L-Gln, L-Leu, and trans-D-Hyp in 1
were established (Figures 512-514). Thus, the absolute configurations at all 11 stereogenic
centers in roseabol A (1) were unambiguously established.
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2.4. Characterization of 13-Oxo-Trans-9,10-Epoxy-11(E)-Octadecenoic Acid (2)

The linoleic acid oxidation product 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid
(2) was identified by analysis of its spectroscopic (NMR) and spectrometric (HRMS) data
and through comparisons with literature data [14,21]. The epoxide protons of 2 were
assigned a trans-configuration based on the shielding effect observed for their NMR signals
relative to the corresponding cis-epoxide product.

2.5. Assessment of Activity Against Merkel Cell Carcinoma

Compounds 1 and 2 were tested for cytotoxic activity against two Merkel cell car-
cinoma cell lines; MCC26, which is free of the Merkel cell polyomavirus (MCPyV), and
MKL-1, which is positive for the virus. Approximately 80% of clinical Merkel cell carci-
nomas show clonal integration of MCPyV in their DNA [22]. The keratinocyte cell line
HaCaT was also included in the assay system as a noncancerous control cell line. Com-
pound 2 showed cytotoxic activity towards MKL-1 cells (ICsy of 16.5 uM) and MCC26 cells
(IC50 = 25.6 uM) but was not toxic to the HaCaT control cells (Figure S16). The new metabo-
lite roseabol A (1), while expanding and diversifying the known chemical space of the
peptaibol family of peptides, was inactive against all three cell lines. The inhibitory activity
that 2 exhibits toward the MCC cell lines suggests it may have some utility as a molecular
probe to help define targetable processes important for the initiation, maintenance, and
progression of Merkel cell carcinoma.

3. Materials and Methods
3.1. General Experimental Procedures

Optical rotation measurements were made on a Rudolph research analytical AU-
TOPOL IV automatic polarimeter (Rudolph Research Analytical, Hackettstown, NJ, USA),
IR spectra were recorded with a Bruker ALPHA II FT-IR spectrometer (Bruker, Billerica,
MA, USA), and UV spectra were measured with a Thermo Scientific Nanodrop 2000C
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The ECD spectrum was
obtained on a JASCO J-1500 circular dichroism spectrometer (Jasco, Easton, MD, USA).
High-performance liquid chromatography (HPLC) was performed using a Varian ProStar
215 solvent delivery module equipped with a Varian ProStar 320 UV-Vis detector (Agilent
Technologies, Santa Clara, CA, USA), operating under Star 6.41 chromatography worksta-
tion software (Agilent Technologies, Santa Clara, CA, USA). NMR spectra were obtained
with a Bruker Avance III NMR spectrometer (Bruker, Billerica, MA, USA) equipped with
a 3 mm cryogenic probe and operating at 600 MHz for 'H and 150 MHz for '3C. Spectra
were calibrated to residual solvent signals at dyy 2.50 and ¢ 39.5 in DMSO-dg. All 2D-NMR
experiments were acquired with nonuniform sampling (NUS) set to 50% or 25%. HRES-
IMS data were acquired on an Agilent Technologies 6530 Accurate-Mass Q-TOF LC/MS
instrument (Agilent Technologies, Santa Clara, CA, USA).

3.2. Fungal Isolation, Culture, and Extraction

The Clonostachys rosea isolate (MI14762 TV8-1) was obtained from a soil sample collected
from Macomb, MI, USA, and submitted to the Citizen Science Soil Collection Program
at the University of Oklahoma. Copies of the fungus are permanently maintained under
cryogenic storage conditions in the University of Oklahoma Citizen Science Soil Collection
Program Repository. The region spanning ITS1-5.85-ITS2 of the genomic DNA was
sequenced (GenBank accession number MW466525). Based on comparisons of the resulting
sequence to sequences deposited in GenBank, the fungus exhibited a 100% identity match
with multiple Clonstachys rosea isolates and was identified as a member of this species.
The fungus was grown on Cheerios breakfast cereal supplemented with 0.3% sucrose and
0.005% chloramphenicol in three large mycobags (Unicorn Bags, Plano, TX, USA) for four
weeks at room temperature. The fungal biomass was extracted overnight in ethyl acetate.
The resulting organic extract was twice subjected to partitioning with water (1:1, vol:vol).
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The ethyl acetate layer was retained and the organic solvent was evaporated in vacuo,
yielding approximately 18 g of deep red organic-soluble material.

3.3. Compound Isolation

A 6.4 g aliquot of the fungal extract was subjected to diol reversed-phase flash chro-
matography using step gradient elution with 100% hexane (fraction A, 368 mg), 100%
CH,Cl; (fraction B, 504 mg), 100% EtOAc (fraction C, 2.2 g), 100% acetone (fraction D, 2.1
g), and 100% MeOH (fraction E, 372.2 mg). The active fraction B was separated by prepar-
ative reversed-phase HPLC using a Dynamax C18 column (Agilent Technologies, Santa
Clara, CA, USA), 21.4 mm x 250 mm, 9.0 mL/min, CH3CN-H,O gradient (20:80-100:0),
detection at 254 nm, yielding 11 peaks rich in secondary metabolites. Purification of subfrac-
tion 7 was accomplished by semipreparative HPLC on a Luna C18 column (Phenomenex,
Torrance, CA, USA), 10 mm X 250 mm, 3.0 mL/min, MeCN-H,O gradient (40:60-100:0),
detection at 254 nm, and further purified by analytical HPLC using a Luna C18 column
(Phenomenex, Torrance, CA, USA), 4.6 mm x 250 mm, 0.9 mL/min, MeCN-H,O gradi-
ent (50:50-100:0), detection at 254 nm, to yield compound 2 (0.5 mg) as an amorphous
solid. The active fraction E was separated by preparative reversed-phase HPLC on a
Dynamax C18 column (Agilent Technologies, Santa Clara, CA, USA), 21.4 mm X 250 mm,
9 mL/min, MeCN-H,O gradient (40:60-100:0), detection at 220 nm, yielding 9 peaks rich
in secondary metabolites. Further purification of subfraction 9 by analytical HPLC using
a Luna C18 column (Phenomenex, Torrance, CA, USA), 4.6 mm x 250 mm, 0.9 mL/min,
MeCN-H,O gradient (42:58-100:0), detection at 220 nm, afforded 1.2 mg of roseabol A (1)
as an amorphous solid.

Roseabol A (1): white, amorphous solid; [«]25D +7.7 (c 0.5, MeOH); UV (MeOH) Apax
(log €) 195 (3.57) ; CD (c 3.3 x 10~* M, MeOH) Amax (De) 194 (+30.79), 206 (—40.01), 224
(—13.69) nm; IR (film) vmax 3286, 2935, 1650, 1540, 1440, 1384, 1201, 1058 cm~!; 'H- and
I3C-NMR, Table 1; HRESIMS m/z 1225.7774 [M + H]* (caled for CsgH105N12016, 1225.7770).

3.4. Acid Hydrolysis of Roseabol A (1) and LC-MS Analysis of Marfey’s Derivatives

Two 0.1 mg aliquots of 1 were individually dissolved in degassed 6 N HCl (0.6 mL)
and heated in sealed glass vials at 110 °C for 17 h. The hydrolysates were evaporated to
dryness and dissolved in H,O (50 pL); to this solution was added 20 L of 1 N NaHCOs3
and 100 pL of a 1% solution in acetone of either 1-fluoro-2,4-dinitrophenyl-5-L-leucinamide
(L-FDLA) or a racemic mixture of D/L-FDLA [19,20]. The reaction mixtures were heated to
40 °C for 40 min and then cooled to room temperature, neutralized with 2 N HCI (20 uL),
and evaporated to dryness. The residue was dissolved in CH3CN/H,O (1:1) and then
analyzed by LC-MS on a Poroshell 120 EC-C18 column (Agilent Technologies, Santa Clara,
CA, USA), 4.6 x 150 mm, 1.0 mL/min, CH3CN-H,O gradient (5:95-100:0), containing
0.1% formic acid in 60 min. An Agilent 6130 Quadrupole mass spectrometer (Agilent
Technologies, Santa Clara, CA, USA) was used for ESIMS detection (positive and negative
ion mode). FDLA derivatives were detected by absorption at 340 nm, and assignment was
secured by ion-selective monitoring. The retention times (fg) of the D/L-DLA mixtures
(with the L-DLA fR underlined) were as follows:

Roseabol A (1): L-Val (24.9), D-Val (29.1), m/z 412 [M + H]*; L-Iva (26.1), D-Iva (27.7),
m/z 412 [M + HJ*; L-Leuol (27.2), D-Leuol (31.5), m/z 412 [M + H]*; trans-L-Hyp (18.8),
trans-D-Hyp (19.1), m/z 426 [M + H]*; L-Leu (26.7), D-Leu (31.3), m/z 426 [M + H]*; L-Ser
(20.8), D-Ser (21.3), m/z 400 [M + H]*; L-GIn (21.8), D-GIn (22.7), m/z 440 [M — H] .

3.5. Merkel Cell Carcinoma Assay

The purified compounds were assessed for growth inhibition/cytotoxicity against
two Merkel cell carcinoma cell lines, MCC26 (MCPyV —) and MKL-1 (MCPyV+), as well as
an immortalized human keratinocyte cell line (HaCaT). Briefly, cells were plated in 384-
well clear tissue culture plates with 2500 cells/well (MCC26, HaCaT) or 15,000 cells/well
(MKL1) in DME/10% FBS (MCC26, MKL1) or RPMI/10% FBS (HaCaT). The plated cells
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were allowed to grow overnight, followed by addition of the test compound. DMSO
solutions of the compounds were diluted in growth medium prior to addition and assessed
in a 10-point (1:2) dilution series, top concentration 40 uM. After 3 days, relative cell
numbers were assessed using the XTT metabolic growth assay [23]. The resulting signal
was normalized to that of the vehicle control (DMSO) for each cell line. ICsy values were
estimated from dose-response curves using 4-parameter logistic analysis (SigmaPlot, San
Jose, CA, USA).

4. Conclusions

A new 11-residue peptide named roseabol A (1) was isolated and characterized from
the fungus Clonostachys rosea. Studies of secondary metabolite production by various
Clonostachys isolates have only been sparsely reported in the chemical literature. There
is one prior report of a peptaibol [5], as well as two N-methylated cyclic peptides [24]
and a series of polyketide derivatives [25] that have been described from this fungal
genus. Roseabol A (1) is only the second member of the peptaibol family of peptides to
be discovered from a Clonostachys isolate. The oxidized linoleic acid derivative 13-oxo-
trans-9,10-epoxy-11(E)-octadecenoic acid (2) was also obtained from the C. rosea extract.
Compound 2 is an epoxyketooctadecenoic acid derivative that is known to stimulate
corticosterone production [26] and activate the antioxidant response element [27]. It has
also been the focus of recent synthetic efforts [21]. Compound 2 showed selective cytotoxic
activity towards the Merkel cell carcinoma cell line MKL-1, which is positive for the
Merkel cell polyomavirus (MCPyV+), and was less effective against the MCPyV— MCC26
cell line. Roseabol A (1) was inactive against both Merkel cell carcinoma cell lines. The
differential response seen between the virus-positive and virus-negative cell lines suggests
that 2, or a related structural analog, could have value as a biological probe to investigate
virus-associated aspects of Merkel cell carcinoma.

Supplementary Materials: The following are available online. Figures $1-58: 'H,'3C-NMR, edited
HSQC, 'H-1H COSY, HSQC-TOCSY, HMBC, ROESY NMR spectra of compound 1, Figures S9 and S10:
HR-ESI MS data and MS/MS fragmentations for 1, Figures S11-514: Advanced Marfey’s analysis for
1, Figure S15: ECD spectrum of 1, Figure S16: Merkel cell carcinoma cytotoxic activity of compound 2.
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