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Abstract: Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry method that
relies on manipulating ion motions to correlate precursor and fragment ion signals. 2D mass spectra
are obtained by performing a Fourier transform in both the precursor ion mass-to-charge ratio (m/z)
dimension and the fragment ion m/z dimension. The phase of the ion signals evolves linearly in the
precursor m/z dimension and quadratically in the fragment m/z dimension. This study demonstrates
that phase-corrected absorption mode 2D mass spectrometry improves signal-to-noise ratios by a
factor of 2 and resolving power by a factor of 2 in each dimension compared to magnitude mode.
Furthermore, phase correction leads to an easier differentiation between ion signals and artefacts,
and therefore easier data interpretation.

Keywords: mass spectrometry; two-dimensional; tandem mass spectrometry; phase correction;
absorption mode; data processing

1. Introduction

Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry method
that relies on manipulating ion motions to correlate precursor and fragment ion
signals [1–3]. Various 2D MS methods have been developed for quadrupolar ion traps,
linear ion traps, and Fourier transform ion cyclotron resonance mass spectrometry (FT-
ICR MS) [4–8]. In addition to precursor-fragment correlations, two-dimensional partial
correlation mass spectrometry (2D PC MS) has also been developed to explore correlations
between complementary fragment ion signals [9]. In 2D FT-ICR MS, the most frequently
used pulse sequence is the one proposed by Pfändler et al. to modulate ion radii in the
ICR cell before fragmentation [1–3,10,11]. The pulse sequence and data processing have
been optimized for analytical use [12–15]. 2D FT-ICR MS has been used for applications
ranging from small molecules and agrochemicals, to polymers, bottom-up and top-down
proteomics [16–24]. 2D MS has also been adapted for high-resolution analysis of precursor
ions over narrower mass-to-charge ratio (m/z) ranges [25].

Since 2D MS relies on Fourier transformation in both dimensions, one area in which its
performance can be improved is the phase correction for absorption mode mass spectrome-
try. Until now, 2D mass spectra have been shown in magnitude mode. In one-dimensional
FT-ICR MS, phase correction for absorption mode was proposed by Xian et al. and by
Qi et al. [26,27]. Automation for phase correction in one-dimensional FT-ICR MS was
achieved by Kilgour et al. [28–30]. Processing data sets in absorption mode has improved
the performance of one-dimensional FT-ICR MS by a factor of

√
2 ∼= 1.41 in signal-to-noise

and a factor of 2 in resolving power, resulting in more complete and reliable analytical in-
formation for complex samples [31–37]. In 2D MS, we can therefore expect an improvement
by a factor of

√
2×
√

2 = 2 in signal-to-noise and in resolving power in each dimension.
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A previous study has shown that the phase correction function is quadratic in the
horizontal fragment ion dimension and linear in the vertical precursor ion dimension [38].
Here, we demonstrate how to perform phase correction on a narrowband 2D mass spectrum
and we show how absorption mode 2D MS compares to magnitude mode.

2. Theory

The pulse sequence for 2D MS is shown in Scheme 1. The chirp pulses used for
the excitation are needed to excite a large range of frequencies for the fragment ions and
they induce a quadratic phase dependence, requiring a quadratic phase correction in the
fragment ion dimension [26,27,39]. In Scheme 1, the quadratic dependence of the phase of
ion signals on their resonant cyclotron frequencies is expressed through the parameters α
for fragment ions and β for precursor ions. In Bruker FT-ICR mass spectrometers, the initial
phase of each pulse in the pulse sequence rotates with the minimum frequency of the pulses
f min. Scheme 1 shows the initial phase of each pulse, which leads to a corresponding phase
offset for the signals of ions that are excited from the center of the ICR cell in that pulse.
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Scheme 1. Pulse sequence for two-dimensional mass spectrometry and evolution of phases for (a) precursor ion radii, (b)
fragment ion motion, (c) unfragmented precursor ion motion, (d) excitation pulses. (e) Duration of each segment of the
pulse sequence. The factor α (resp. β) is related to the moment that the swept frequency of the chirp reaches the cyclotron
frequency of the fragment (resp. unfragmented precursor).

During the first pulse, the precursor ions are excited from the center of the ICR cell to
higher radius and start accruing phase [38]. The initial phase of the first pulse is zero. At
the end of the first pulse, the precursor ions have been excited to a radius r0. The precursor
ions rotate during the encoding delay t1 at their own cyclotron frequency. The second pulse
has a starting phase of 2πf min(T1 + t1). The phase difference between the second pulse and
the precursor ion motion is 2πt1(f ICR − f min) where f ICR is the cyclotron frequency of the
ion, f min is the minimum frequency in the pulse, and t1 is the encoding delay. Therefore,
depending on the phase difference, precursors are excited to higher radii or de-excited
towards the center of the ICR cell. The frequency of the precursor ion radius modulation
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is f ICR − f min. At the end of the second pulse, the radius of the precursor ions can be
expressed as [2,11,40]:

r(t1) = r0

√
2(1 + cos 2π( fICR − fmin)(t1 − T1)) (1)

After the second pulse, a fragmentation period τm with a method that has a maximum
fragmentation efficiency at the center of the ICR cell (e.g., electron capture dissociation,
or ECD, and infrared multiphoton dissociation, or IRMPD) is applied to the precursor
ions [14,22]. Ions within the fragmentation zone are fragmented. The abundance of the
fragment ions is modulated with the same frequency as the radius of the precursors, i.e.,
f ICR–f min. The third pulse has a starting phase of 2πf min(2T1 + t1 + τm) and excites all
ions to high radius before detection. Fragment ions start accruing phase during the third
pulse [38].

In the horizontal dimension, the phase ϕp,h accrued by precursor ions that are not
fully de-excited to the center of the ICR cell at the end of the second pulse, can be expressed
with a quadratic phase dependence as:

ϕp,h( f1) = c′2 f 2
1 + c′1 f1 + c′0 + 2π f1t1

c′1 = c1 + T1 + τm + T2 + T3

(2)

in which c0
′, c1

′, and c2
′ are the parameters for the quadratic phase incurred during

excitation, f 1 is the cyclotron frequency of the ion, t1 is the encoding delay, T1 is the
duration of the second pulse, τm is the fragmentation period, T2 is the duration of the third
pulse, and T3 is the delay between excitation and detection [26,27,38].

The phase ϕf,h accrued by fragment ions and unfragmented precursor ions that have
been fully de-excited to the center of the ICR cell at the end of the second pulse, can be
expressed with a quadratic phase dependence as:

ϕ f ,h( f2) = c′′2 f 2
2 + c′′1 f2 + c′′0

c′′0 = c0 + 2π fmin(2T1 + t1 + τm)
(3)

in which c0
′′, c1

′′, and c2
′′ are the parameters for the quadratic phase incurred during

excitation, f 2 is the cyclotron frequency of the ion, t1 is the encoding delay, T1 is the
duration of the first and the second pulse, τm is the fragmentation period. As a rule,
in phase-sensitive Fourier transform mass spectrometry, a shift of origin induces a zero
order phase shift (c0

′′ in Equation (3)), a delay induces a first order phase rotation (c1
′′ in

Equation (3)), and a frequency-dependent excitation induces a second order phase rotation
(c2
′′ in Equation (3)).

In the vertical dimension, equation 1 shows that the phase ϕf,v for precursor ion signal
can be expressed with a linear phase dependence as:

ϕp, v( f1) = 2π( f1 − fmin)(t1 − T1) (4)

in which f 1 is the cyclotron frequency of the ion, t1 is the encoding delay, f min is the lowest
frequency in the pulse, and T1 is the duration of the second pulse.

Multiple studies have shown that, in the vertical dimension, for fragmentation meth-
ods that have a maximum efficiency at the center of the ICR cell, the phase ϕf,v of the
fragment ion signal is shifted by π [23,24,38]. The phase of the fragment ion signal can
therefore be expressed as:

ϕ f , v( f1) = 2π( f1 − fmin)(t1 − T1) + π (5)

in which f 1 is the cyclotron frequency of the precursor ion, t1 is the encoding delay, f min is
the lowest frequency in the pulse, and T1 is the duration of the second pulse.
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Because signals have a t1 amplitude modulation, a data set recorded in 2D mass
spectrometry experiments requires processing using hypercomplex Fourier transforma-
tion [39–43]. The resulting spectrum is a 4-quadrant data set:

S( f1, f2) = RR( f1, f2) + iRI( f1, f2) + jIR( f1, f2) + kI I( f1, f2) (6)

In which S is the signal in frequency domain, f 1 and f 2 are the frequencies, and i, j,
and k are constants following the rules:

i2 = j2 = −1; k2 = 1 (7)

i.j = j.i = k (8)

i.k = k.i = −j (9)

j.k = k.j = −i (10)

With these rules, phase corrections can be applied independently to S(f 1, f 2) along the
f 1 and f 2 axes:

S( f1, f2)eiϕ1 = S( f1, f2)(cos ϕ1 + i sin ϕ1) (11)

S( f1, f2)ejϕ2 = S( f1, f2)(cos ϕ2 + j sin ϕ2) (12)

The phase corrections in the horizontal dimension and in the vertical dimensions can
be applied independently from each other.

3. Experimental Methods
3.1. Sample Preparation

The sample used was an equimolar mixture of unmodified and modified (mono-, di-
and trimethylated) model peptides (C-terminal GK-biotinylated histone H3 sequences,
AnaSpec, Fremont, CA, USA) prepared with the same protocol as described in a previous
article [25]. The sequence of the histone peptides was ATKAARKSAP ATGGVKKPHR
YRPGGKbiotin.

3.2. Instrument Parameters

Both the standard tandem mass spectrum and the two-dimensional mass spectrum
were acquired on a 7 T Apex Ultra FT-ICR mass spectrometer (Bruker Daltonik GmbH,
Bremen, Germany) with an electrospray ion source operated in positive mode and direct
injection at a flow rate of 70 µL/hour. In both spectra, transients were acquired for
489.34 ms (512k datapoints) with an excitation pulse before detection with a frequency
range of 535,714.29–74,728.13 Hz (corresponding to m/z 202.22–1450). The excitation pulse
was made of 739 decrements of 624 Hz with 20 µs per frequency. The amplitude of the
excitation was 106 Vpp and the delay between excitation and detection was 3 ms.

For the standard tandem mass spectrum, ions were accumulated for 0.1 s in the first
hexapole and 0.1 s in the second hexapole. In the quadrupole, ions were isolated at m/z
491 with an isolation window of m/z 30, and in the collision cell, they were activated with
a 1.5 V collision energy before transfer to the Infinity ICR cell [44]. The fragmentation
method was ECD, using a hollow cathode [45]. The heater was set at 1.3 A, the lens at 20 V,
the bias at 1.7 V, and the irradiation lasted for 0.07 s.

The 2D mass spectrum was acquired in narrowband modulation mode [25]. The
acquisition lasted 20 min. The ions were accumulated for 0.2 s in the first hexapole and
0.2 s in the second hexapole. In the quadrupole, ions were isolated at m/z 491 with an
isolation window of m/z 10. In the collision cell, ions were activated with a 1.5 V collision
energy. The ECD cathode was heated at 1.4 A, the lens set at 20 V, the bias at 2.0 V, and the
ions were irradiated for 0.06 s. In the encoding sequence, the pulses had a frequency range
of 535,714.29–74,728.13 Hz (corresponding to m/z 202.22–1450), with 739 decrements of
624 Hz with 1.0 µs per frequency. The amplitude of the encoding pulses was 106 Vpp. The
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encoding delay incremented 1024 times by 50 µs, corresponding to a 10 kHz bandwidth,
with 1 scan per increment. The signal was folded over 14 times, leading to a frequency
range of 214,659.79–224,659.79 Hz (corresponding to m/z 482.177–504.602 for precursor ion
modulation) [25]. The parameters of the excitation-detection sequence were identical to the
parameters used for the standard tandem mass spectrum, with transients lasting 489.34 ms
(512k datapoints).

3.3. Data Processing

The standard one-dimensional tandem mass spectrum and the 2D mass spectrum were
processed and visualized using the Spectrometry Processing Innovative Kernel (SPIKE)
software developed by the University of Strasbourg (Strasbourg, France) and CASC4DE
(Illkirch-Graffenstaden, France) in the 64-bit Python 3.7 programming language on an
open-source platform distributed by the Python Software Foundation (Beaverton, OR,
USA) [46]. Processed data files were saved using the HDF5 file format. No denoising was
applied to either dataset [12,13,15].

The transient for the one-dimensional tandem mass spectrum was apodised with a
sine-bell window that was shifted, with a maximum of the bell at 15% of the transient,
zero-filled twice, and Fourier transformed. The resulting spectrum was phase-corrected
quadratically using a locally developed plugin to the SPIKE program (available at www.
github.com/spike-project, accessed on 17 April 2021).

The program used for the data processing of the 2D mass spectrum in phase-corrected
absorption mode is listed in the Appendix A. Each transient in the 2D data set was apodised
with a sine-bell window that was shifted, with a maximum of the bell at 15% of the
transient, zero-filled twice and Fourier transformed. The modulation induced by the
frequency generator was then removed by a complex rotation of the opposite frequency in
the vertical dimension along the t1 delay. The demodulation frequency was determined
to be 74,659.79 Hz. The exact demodulation frequency was offset by 68 Hz from the
lowest frequency entered in the Apex Control software (Bruker Daltonik GmbH, Bremen,
Germany). The correct demodulation frequency was measured by processing the 2D mass
spectrum with the nominal frequency entered in the software, which causes peak-splitting
on the autocorrelation line, and measuring the frequency difference between the split peaks.
Digital demodulation with the corrected frequency eliminated the peak-splitting [17]. The
parameters determined for the one-dimensional tandem mass spectrum for quadratic
phase correction were then applied to each row in the spectrum. The imaginary part of
each row of the data set was then removed to reduce the computer memory burden. Then,
each column of the data set was apodised with a slightly shifted sine-bell window (with a
maximum of the bell at 15% of the transient), zero-filled twice and Fourier transformed.
The theoretical linear phase correction determined above was applied on each column
without modification. The imaginary part of the signal in each column was dropped and
the dataset stored on disk.

The same 2D MS data set was processed in magnitude mode with identical apodisation
and digital demodulation. However, due to the limitations of computer memory, the data-
set was only zero-filled once in each dimension.

4. Results and Discussion

Figure 1 shows the result of quadratic phase correction with the SPIKE plugin for
the one-dimensional ECD tandem mass spectrum of the four histone peptides. Although
phase correction for FT-ICR mass spectra has been fully automated, this program requires
user optimization [28,29,32,33,47]. The phase correction method is based on initial phase
correction of small regions of the spectrum with linear phase functions, in a similar way to
the methods proposed by Xian et al. [26] and Qi et al. [27]. The coefficients of the overall
quadratic phase correction function are estimated by using the fact that these linear phase
functions are tangents of the overall quadratic phase function. The user can then optimize
the coefficients until the whole spectrum is properly phase-corrected.

www.github.com/spike-project
www.github.com/spike-project


Molecules 2021, 26, 3388 6 of 14

Molecules 2021, 26, x FOR PEER REVIEW 6 of 14 
 

 

quadratic phase correction function are estimated by using the fact that these linear phase 

functions are tangents of the overall quadratic phase function. The user can then optimize 

the coefficients until the whole spectrum is properly phase-corrected. 

 

Figure 1. Tandem mass spectrum of the [M + 6H]6+ histone peptides with ECD fragmentation in absorption mode (a) before 

phase correction and (b) after phase correction. Insert: zoom-in on the z244+ fragment ion isotopic distribution of the 

monomethylated histone peptide (K7 1m), comparison between magnitude mode and phase-corrected absorption mode 

(FWHM: full-width at half-maximum). 

Figure 1a shows the absorption mode mass spectrum before phase correction and 

Figure 1b shows the absorption mode mass spectrum after phase correction. Figure 1b 

shows that the signal for all the ions in the mass spectrum has been properly corrected. 

An insert shows a zoom-in on the isotopic distribution of the z244+ fragment of the 

monomethylated histone peptide and compares the phase-corrected absorption mode 

mass spectrum to the magnitude mode mass spectrum. Both the resolving power and the 

signal-to-noise ratio are almost double for the phase corrected absorption mode spectrum 

than for the magnitude mode spectrum, as predicted by theory [26,27]. 

The one-dimensional tandem mass spectrum was acquired with excitation pulse pa-

rameters and an excite-detect delay that was identical to the excitation pulse and the ex-

cite-detect delay of the 2D MS pulse sequence. Qi et al. have showed that the phase cor-

rection function is very stable with experimental conditions [48]. The phase correction 

function determined for the one-dimensional tandem mass spectrum can therefore also 

be used for the phase correction of the fragment ion signals in the 2D mass spectrum, 

which are, analytically, the most informative signals [38]. 

The only difference between the excitation pulse for the tandem mass spectrum and 

the 2D mass spectrum is the initial phase of the pulse, which is determined by the contin-

uous phase pulse generator. As is shown in Scheme 1, the phase shift of the excitation 

pulse in the 2D MS experiment is 2πfmin(2T1 + t1 + τm), in which fmin is the minimum fre-

quency in the pulse, T1 is the duration of the first pulse, τm the irradiation period, and t1 is 

the incremental delay. The term 2πfmin(2T1 + τm) is constant throughout the experiment 

(and can be corrected with a constant phase offset in the phase correction function), but 

2πfmint1 is different for each transient. 

Figure 1. Tandem mass spectrum of the [M + 6H]6+ histone peptides with ECD fragmentation in absorption mode (a)
before phase correction and (b) after phase correction. Insert: zoom-in on the z24

4+ fragment ion isotopic distribution of the
monomethylated histone peptide (K7 1m), comparison between magnitude mode and phase-corrected absorption mode
(FWHM: full-width at half-maximum).

Figure 1a shows the absorption mode mass spectrum before phase correction and
Figure 1b shows the absorption mode mass spectrum after phase correction. Figure 1b
shows that the signal for all the ions in the mass spectrum has been properly corrected. An
insert shows a zoom-in on the isotopic distribution of the z24

4+ fragment of the monomethy-
lated histone peptide and compares the phase-corrected absorption mode mass spectrum
to the magnitude mode mass spectrum. Both the resolving power and the signal-to-noise
ratio are almost double for the phase corrected absorption mode spectrum than for the
magnitude mode spectrum, as predicted by theory [26,27].

The one-dimensional tandem mass spectrum was acquired with excitation pulse
parameters and an excite-detect delay that was identical to the excitation pulse and the
excite-detect delay of the 2D MS pulse sequence. Qi et al. have showed that the phase
correction function is very stable with experimental conditions [48]. The phase correction
function determined for the one-dimensional tandem mass spectrum can therefore also be
used for the phase correction of the fragment ion signals in the 2D mass spectrum, which
are, analytically, the most informative signals [38].

The only difference between the excitation pulse for the tandem mass spectrum and the
2D mass spectrum is the initial phase of the pulse, which is determined by the continuous
phase pulse generator. As is shown in Scheme 1, the phase shift of the excitation pulse in
the 2D MS experiment is 2πf min(2T1 + t1 + τm), in which f min is the minimum frequency
in the pulse, T1 is the duration of the first pulse, τm the irradiation period, and t1 is the
incremental delay. The term 2πf min(2T1 + τm) is constant throughout the experiment (and
can be corrected with a constant phase offset in the phase correction function), but 2πf mint1
is different for each transient.
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Digital demodulation eliminates the phase contribution of 2πf mint1 in each transient.
In magnitude mode, digital demodulation is used to reduce the number of harmonics
visible in the 2D mass spectrum [11,17]. Here, by applying digital demodulation before the
quadratic phase correction in the horizontal dimension, we can eliminate the effect of the
continuous phase pulse generator on the phase of fragment ion signals.

Table 1 gives an overview of the theoretically and empirically calculated coefficients
for both phase correction functions used to calculate the absorption mode 2D mass spec-
trum (see Appendix A for the python code). The differences between the theoretical
and calculated values shows that an operator is still needed to obtain the optimal phase
correction function.

Table 1. Comparison between theoretically and empirically calculated coefficients for the phase
correction functions in the vertical dimension (linear phase correction function) and in the horizontal
dimension (quadratic phase correction function). The theoretical values are obtained from equation
28 of ref. [28], ignoring image charge effect, and ref [38]. Here, f min is the lowest frequency in
the excitation pulse and ∆f the frequency range in the excitation pulse, T1 is the duration of the
first encoding pulse, T2 the duration of the third excitation pulse and T3 is the delay between
excitation and detection, f N1 is the Nyquist frequency in the vertical precursor ion dimension and
f N2 is the Nyquist frequency in the horizontal fragment ion dimension (see Scheme 1).Zero order
coefficients are expressed in degrees, first and second order coefficients are expressed in turns over
the whole spectrum.

Coefficient Theory Theoretical Value Empirical Value

0 order (vertical) fminT1 88.2 59.9

1st order (vertical) fN1T1 7.44 7.8

0 order (horizontal) N/A N/A −9

1st order (horizontal) T2 fmin+T3∆ f
∆ f fN2 632 564

2nd order (horizontal) − T2
∆ f f 2

N2 4607 4595

Figure 2 focuses on the extracted fragment ion scan of the 1× 13C isotope of [M+6H]6+

ions of the monomethylated histone peptide (K7 1m). The fragment z24
4+ contains 24

out of the 26 residues of the peptide. Consequently, if the precursor ion contains exactly
one 13C, then the probability of z24

4+ retaining the 13C is very high [11,25,49–51]. In
Figure 2, the relative intensity of the 1 × 13C isotope of z24

4+ is much higher than the
relative intensity of the 12C isotope. We can also see a peak for the 2 × 13C isotope of
z24

4+, which is caused by scintillation noise from the fragment of the 2 × 13C isotope of
the precursor ion. The isotopic distribution shown in Figure 2 is a consequence of the
precursor ion signals being isotopically resolved in the vertical dimension. In the horizontal
dimension, the phase-corrected absorption mode has doubled the resolving power and
signal-to-noise ratio of the magnitude mode, as expected [26,27].
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6H]6+ ions of the monomethylated histone peptide (K7 1m) at m/z 489.453, zoom-in on fragment ion
z24

4+, comparison between absorption mode and magnitude mode.

Figure 3 shows the extracted precursor ion scan of the 12C isotope of the c6 fragment of
the histone peptides. Since the modifications are all on the 7th residue from the N-terminus,
all histone peptides in the sample have identical c6 fragments. This precursor ion scan is
therefore an appropriate column of the data set to test the linear phase correction function.
Equations (4) and (5) predict that the phase correction function has a slope of f NT1, in
which f N is the Nyquist frequency in the vertical dimension (i.e., 10 kHz in the present
experiment) and T1 is the duration of the first pulse (i.e., 739 µs). Therefore, the theoretical
first order phase correction should be of 7.39 turns over the whole spectrum. The resulting
spectrum is well-phased, but we observed that 7.8 turns give slightly better results (see
Appendix A). Figure 3 (left) shows that the linear phase correction function yields a well-
corrected spectrum in the vertical dimension. A comparison with the extracted precursor
ion scan from the magnitude mode spectrum (Figure 3 right) shows that the absorption
mode spectrum has doubled the resolving power and signal-to-noise ratio compared
to the magnitude mode spectrum, as is predicted [26,27]. However, as this experiment
was acquired in narrowband mode vertically, the frequency bandwidth is about twenty
times narrower than in broadband 2D mass spectra, which may lead to a different phase
correction [25].

The zoom-in on the isotopic distribution of the c6 fragment of the dimethylated histone
peptide (Figure 3 centre) shows that the peaks are baseline- resolved. The full-width at
half-maximum (FWHM) of the peaks is approximately 35 mDa (R = 14,000 at m/z 490),
which is sufficient to isotopically resolve the fragments of biomolecules up to 14 kDa.
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Figure 4a shows a zoom-in on the 2D mass spectrum in phase-corrected absorption
mode with only the positive values in the 2D mass spectrum. A similar 2D mass spectrum
of the same sample was analyzed in detail in a previous article [25]. We notice that all
isotopic distributions are isotopically resolved in both dimensions. An insert with a zoom-
in on the isotopic distribution of the c14

2+ fragment of the monomethylated histone peptide
shows that clearly. Figure 4a shows mostly fragment ion peaks with very few artefacts.
Figure 4b shows the negative values in the same region, which correspond to the 2ω
harmonic of the ion signal in the vertical dimension [14]. The modulation frequency of the
unmodified and the monomethylated peptides is between 146.34 and 147.34 kHz.

Since the frequency range is 10 kHz, this leads to 14 foldovers for these signals.
Because of the amplitude modulation of the signal in 2D MS and the real Fourier transform
used during processing along the vertical axis, every time a signal is folded over in the
2D mass spectrum, the phase is shifted by 180◦ (or π radians). In this experiment, the
signal has been folded over 14 times, and the phase is shifted by a multiple of 360◦. The
frequencies for the 2ω harmonic are between 292.68 and 294.68 kHz, so the signal has been
folded over 29 times. Because the signal has been folded over an odd number of times, the
2ω harmonic of each dissociation line is a decreasing hyperbola, but over an m/z 3 range,
it may appear linear [11]. The phase of the 2ω harmonic has been shifted by 29 times
180◦, and the peaks corresponding to the 2ω harmonic have negative intensities, which
simplifies data visualization and interpretation of the 2D mass spectrum.

The insert in Figure 4b shows the 2ω harmonic peaks for the isotopes for the z24
4+

fragment of the unmodified histone peptide with frequency-to-mass conversion that has
been adapted to the 2ω harmonics. An additional phase correction of −33◦ was applied to
the extracted precursor ion scans to correctly phase the 2ω harmonic peaks. As has been
discussed in a previous article, the harmonic signals in a 2D mass spectrum can be used to
increase the resolving power, just like they can in one-dimensional mass spectra [25,52–55].
Here, we almost double the resolving power from R = 14,000 to R = 27,000.
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Figure 5 shows the precursor ion scans for the 12C isotopes of all four histone peptides
on the autocorrelation line of the 2D mass spectrum. A comparison between equations
(2) and (4) shows that, in the horizontal fragment ion dimension, the phase of precursor
ion signals behaves differently from the phase of fragment ion signals, and that the phase
correction function for precursor ion signals depends on t1. Furthermore, as shown in
equations (2) and (3), in the vertical precursor ion dimension, the phase of precursor ion
signals is shifted by −180◦ compared to the phase of fragment ion signals [38]. Figure 5
confirms that, with phase correction functions that aim to correct the phases of fragment
ion signals, precursor ion peaks on the autocorrelation line have negative intensities, and
that their phase shifts with their cyclotron frequency (and their m/z ratio).
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5. Conclusions

In this study, we have for the first time obtained a phase-corrected absorption mode
two-dimensional mass spectrum by performing a quadratic phase correction in the horizon-
tal fragment ion dimension and a linear phase correction in the precursor ion dimension.
The resulting 2D mass spectrum shows the expected performance improvements in terms
of resolving power and signal-to-noise ratio [26,27,38]. An added benefit of phase cor-
rection is the clear differentiation between “ground state” ion signals and folded-over
harmonics, which, in our case, have negative intensities. This result can be expanded to
broadband 2D MS, for harmonics that have been folded over. Careful experimental design
can lead to good use of this effect.

Phase-corrected absorption mode narrowband 2D MS is shown here to enable isotopi-
cally resolved tandem mass spectrometry for biomolecules up to 14 kDa on a 7 T FT-ICR
mass spectrometer. This performance opens the way for the identification, location, and
relative quantification, of modifications such as citrullination or de-amidation in peptides
and proteins by two-dimensional mass spectrometry [25,56,57]. In future studies, phase
correction for 2D MS needs to be expanded to broadband 2D mass spectra and automated
for easy data processing.

Author Contributions: All authors have contributed to the manuscript equally. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Der Wissenschaftsfonds (Austrian Science Fund, FWF)
with the Lise Meitner Fellowship project M 2757-B. Open Access Funding by the Austrian Science
Fund (FWF).

Data Availability Statement: Data available for download at 10.5281/zenodo.4884410.



Molecules 2021, 26, 3388 12 of 14

Acknowledgments: The authors thank Sarah Heel, Michael Palasser, and Christopher A. Wootton
for helpful conversations. M.A.v.A. and K.B. thank Der Wissenschaftsfonds (Austrian Science Fund,
FWF) for the Lise Meitner Fellowship project M 2757-B.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples can be purchased from AnaSpec, Fremont, CA, USA.

Appendix A

Data processing for phase correction absorption mode 2D mass spectrum

# Import necessary modules
import spike
from spike.File import Apex
# Load 2D data set:
d = Apex.Import_2D(“histonepeptide_2D_000002.d”)
# Apodisation with a sine bell with a maximum at 15% of the transient, double zero-filling in #the
horizontal dimension, Fourier transform in the horizontal dimension
d.apod_sin(axis = 2, maxi = 0.15).chsize(d.size1,4*d.size2).rfft(axis = 2)
# Digital demodulation by multiplying every row by e−2π j fmint1 :
d.flipphase(0.0, 180*d.axis1.htoi(74659.79), axis = 1)
# Quadratic phase correction in the horizontal dimension with -9/360+564(f2/fN)+4595.7(f2/fN)2:*
d.phase(-9, 564.0, 4595.7, 0.0, axis = 2)
# Discard of the imaginary part of the data in the horizontal dimension
d.real(axis = 2)
# Apodisation with a sine bell with a maximum at 15% of the transient, double zero-filling in the
vertical dimension, Fourier transform in the vertical dimension
d.apod_sin(axis = 1, maxi = 0.15).chsize(4*d.size1,d.size2).rfft(axis = 1)
# Linear phase correction in the vertical dimension with 59.9/360+7.8(f1/fN):*
d.phase(59.9, 7.8, 0.0, 0.00, axis = 1)
# Discard of the imaginary part of the data in the vertical dimension
d.real(axis = 1)
# Offset of the frequencies for narrowband 2D mass spectrometry
offset = 74,659.79
d.axis1.offsetfreq = 14*d.axis1.specwidth + offset
d.axis1.leftpoint = 0

* In the phase function the first variable is the zero order correction, in degrees. The second
and third variable are resp. the first and second order corrections, and they are expressed
in number of turns throughout the spectrum.
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