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Abstract: The energy and structural parameters were obtained for all forms of the carbonyl complex
of osmium Os3(CO)12 with D3h and D3 symmetries using density functional theory (DFT) methods.
The calculations took into account various levels of relativistic effects, including those associated
with nonconservation of spatial parity. It was shown that the ground state of Os3(CO)12 corresponds
to the D3 symmetry and thus may be characterized either as left-twisted (D3S) or right-twisted
(D3R). The D3S↔D3R transitions occur through the D3h transition state with an activation barrier
of ~10−14 kJ/mol. Parity violation energy difference (PVED) between D3S and D3R states equals
to ~5 × 10−10 kJ/mol. An unusual three-center exchange interaction was found inside the {Os3}
fragment. It was found that the cooperative effects of the mutual influence of osmium atoms suppress
the chirality of the electron system in the cluster.

Keywords: structure of the Os3(CO)12 clusters; chirality; relativistic effects; parity violating energy
difference; quantum chemistry

1. Introduction

It is well known that enantiomerism is directly related to the origin of life on Earth.
Many essential biological and chemical processes are stereoselective, involving only one
enantiomer, which exists independently from its chiral counterpart. Separation of one
enantiomer from another is not only important for practical use, but also sparks much
interest as a fundamental problem, which constantly attracts research attention to the
spatial and electronic structure of enantiomers [1–3]. In particular, especially interesting
is how the parity violating weak nuclear forces may manifest in chiral molecules and
may be somehow responsible for the choice of which enantiomer would prevail in living
organisms [4–7].

Molecules with D3 symmetry are particularly interesting because they are charac-
terized either with left-handed (D3S) or with right-handed (D3R) torsion, which allows
these structures to be treated as chiral enantiomers. Previously, the detailed analysis of
the 1,4-diazabicyclo[2.2.2]octane (DABCO) molecule with D3S (left-twisted), D3R (right-
twisted), and D3h (untwisted) symmetries in gas phase and in Metal-organic Frameworks
(MOFs) was performed [8,9]. There were expectations that MOFs with a DABCO linker
may undergo a number of phase transitions related to enantiomers ordering [2,10], and that
cooperative effects in such systems may help the experimental search of molecular parity
violation effects [7,9,11]. However, the energy barrier between the D3S and D3R states of
DABCO appears to be very low (<100 J/mol in gas phase [8] and ~5 kJ/mol in MOF [9]),
which makes MOFs with DABCO difficult for experimental studies of such effects.

Similarly to the DABCO molecule, trinuclear transition metal cluster complexes may
also have D3 symmetry. A well-known carbonyl osmium complex Os3(CO)12 (Figure 1)
is widely used in synthesis in organometallic and inorganic chemistry [12–14]. It acts
as a catalyst for a wide range of reactions [15]. It was considered as a model system
for studies of mechanisms of photoinduced reactions [16–18] and vibrational and NMR
spectroscopy [19–21]. In crystal, which is reported to have a monoclinic space group P21/n,

Molecules 2021, 26, 3333. https://doi.org/10.3390/molecules26113333 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-3983-6596
https://orcid.org/0000-0001-7238-2544
https://orcid.org/0000-0001-7114-8676
https://orcid.org/0000-0002-8559-3313
https://doi.org/10.3390/molecules26113333
https://doi.org/10.3390/molecules26113333
https://doi.org/10.3390/molecules26113333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26113333
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26113333?type=check_update&version=1


Molecules 2021, 26, 3333 2 of 10

the Os3(CO)12 molecules show approximate (pseudo-) D3h symmetry, where the three
Os atoms form an almost equilateral triangle [22]. Previous detailed quantum chemical
studies of structure and interatomic interactions in the Os3(CO)12 cluster have shown that
in the gas phase, the ground state has the D3 symmetry, while the D3h symmetry refers to a
transition state. It was also found that there is another transition state with C2v symmetry
and higher energy, which, however, may occur at high temperatures [23–25].
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Figure 1. The structure of Os3(CO)12 cluster corresponding to the local minimum on PES.

In the present study, for the first time, the Os3(CO)12 cluster was considered as a
chiral compound. We investigated what exactly is responsible for the stabilization of the
twisted D3 structure compared to the untwisted D3h one. We also evaluated the impact of
relativistic effects on the structure and energetics of the Os3(CO)12 clusters, including the
parity violation energy shift due to the weak nuclear forces. We expected that due to the
cooperative effects, such trinuclear transition metal clusters may become a good family of
systems for the experimental molecular parity violation search.

2. Results and Discussion
2.1. Structure and Energetics of Os3(CO)12

The analysis of the interatomic distances in Os3(CO)12 (Table 1 and Table S1) shows
that the best agreement between calculated and experimental X-ray diffraction (XRD)
structures [22,26] was observed for the calculations with relativistic effects. Moreover, the
difference between scalar (SR) and spin–orbit (SO) relativistic methods is rather small.
However, they both are very different from the nonrelativistic (NR) level of theory. In
this case, the D3h is the local minimum without imaginary frequencies in vibrational
spectrum, while the D3 symmetry refers to just some point on potential energy surface
(PES) and is characterized with two imaginary frequencies. The energy difference between
the structures with D3 and D3h symmetries calculated at the relativistic level (SR and SO)
indicates that the D3 state is the local minimum on the potential energy surface. At both
SR and SO levels of theory, there are no imaginary frequencies for the structure with D3
symmetry, while D3h is a transition state with a single imaginary frequency. Gibbs free
energy differences between D3 and D3h structures are 13.8 kJ/mol and 10.5 kJ/mol for
SR and SO levels of theory, respectively (Figure 2). Previous calculations with relativistic
effective core potential (ECP) also indicated that the D3 state is a local minimum [25]. Thus,
it can be concluded that the D3 is the local minimum in the gas phase and the taking into
account the relativistic effects at least at ECP level is necessary for correct description of
the system.
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Table 1. Interatomic distances (Å), dihedral angles (º), energy differences (kJ/mol), and number of imaginary frequencies
(ni) for Os3(CO)12 clusters with D3 and D3h symmetries. Error estimates shown in parentheses for average (<x>) distances
or angles are the exterior estimates of the precision of the average value given by [Σ(<x> − x)2/(m2 − m)]1/2 (m is the
number of x values) [22]. The TPSSh + D4(EEQ)/TZ2P and MPW1PW91/SDD are the theoretical levels used for geometry
optimization (for details see Section 3). NR, SR, SO and ECP are the relativistic levels used in quantum chemical calculations.
The average experimental distances and angles were taken from X-ray diffraction (XRD) data [22,26].

TPSSh + D4(EEQ)/
TZ2P

TPSSh + D4(EEQ)/
TZ2P XRD [22] XRD [26] MPW1PW91

/SDD [25]

Symmetry D3 D3h Pseudo-D3h Pseudo-D3h D3 D3h

Relativity level NR SR SO NR SR SO ECP ECP

d(Os-Os) 2.808 2.869 2.869 2.801 2.883 2.884 <2.877>(3) <2.881>(4) 2.895 2.907

d(Os-Ceq) 1.968 1.916 1.914 1.966 1.915 1.914 <1.912>(7) <1.919>(36) 1.917 1.917

d(Os-Cax) 2.001 2.11 1.955 1.992 1.954 1.953 <1.946>(6) <1.973>(12) 1.953 1.95

∠C-Os-Os-C 37.2 29.3 29.2 0 0 0 <2.1>(5) <1.3>(1.3) 31.4 0

∠C3axes-Os-C 21.2 16.8 16.8 0 0 0 <1.2>(5) <0.7>(1.0) 18 0

∆E 0 0 0 −3.0 7.5 7.7 - - −2.3 0

∆G 0 0 0 −2.5 13.8 10.5 - - - -

ni 2 0 0 0 1 1 - - 0 1
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Figure 2. The barrier height for the D3S↔D3R enatiomerization through the D3h transition state
calculated at nonrelativistic (NR), scalar (SR) and spin-orbit (SO) relativistic levels of theory.

The main difference between experimental XRD data and relativistic calculations (for
both SR and SO methods) is found in the dihedral angles ∠C-Os-Os-C и∠C3axes-Os-C,
which characterize the degree of the twisting of the Os3(CO)12 structure. Such a difference
could be related to the packing effects in the solid state. In order to compare the packing
energy with the barrier between the cluster structures with D3S and D3R symmetries, the
periodic calculations were performed. The packing energy is ~ 44 kJ/mol per cluster, while
the barrier is ~10 kJ/mol. Thus, the packing effect is big enough to suppress the twisting of
the Os3(CO)12 clusters in the solid state.

The energy difference between D3 and D3h structures characterizes the barrier between
D3S and D3R enantiomers of Os3(CO)12 cluster. Without consideration of parity violating in-
teractions, D3S and D3R enantiomers have exactly the same energy and electronic structure.
The geometries of D3S and D3R enantiomers differ only by the sign of the Z coordinates of
the atoms (Table S1). Thus, any of the enantiomers can be used to analyze the interactions
in the cluster.

The barrier between D3S and D3R is low (~10–14 kJ/mol). Thus, similarly to the
DABCO molecule [1], at room temperature there should be a dynamical equilibrium
between D3S and D3R structures resulting in a quasi-D3h structure.
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2.2. Characterization of the Interactions in the Os3(CO)12 Cluster

The energy decomposition analysis (EDA) of the interactions between Os(CO)4 frag-
ments in the Os3(CO)12 cluster show that the orbital interactions’ contributions to stabiliza-
tion of the D3 structure are larger than for the D3h form (Table 2). On the contrary, the steric
interactions destabilize D3 compared to the D3h. The distortions of the Os(CO)4 fragments
in the clusters, as well as dispersion interactions, have only minor impacts on the energy
difference between structures with D3 and D3h symmetries and, in general, compensate
each other. Thus, the stronger orbital interactions between the Os(CO)4 fragments are the
main factors that are responsible for the stability of the D3 form.

Table 2. Results of energy decomposition analysis (EDA) for interactions between Os(CO)4 fragments
in D3 and D3h forms of Os3(CO)12 calculated at TPSSh + D4(EEQ) + SR/QZ4P//TPSSh + D4(EEQ) +
SR/TZ2P level of theory. The formation energies of the fragments (Efrag(Os(CO)4) as well as energies
of steric (ESteric), orbital (EOrbital), dispersion (EDisp) and total (EInt) interactions between fragments
are given in kJ/mol.

Efrag(Os(CO)4) ESteric EOrbital EDisp EInt

D3 −7838.3 520.1 −1191.6 −118.4 −789.9

D3h −7839.6 489.5 −1153.1 −114.2 −778.2

∆(D3−D3h) 1.3 30.5 −38.5 −4.2 −11.7

ELF analysis of the interactions in the osmium triangle showed the presence of the
three valence V(Os, Os) basins (Figure 3), which indicate the covalency of the interactions
between Os atoms in both D3 and D3h structures of Os3(CO)12 cluster. Also, both structures
are characterized with the single trisynaptic basin in the center of Os3 triangle. However,
this basin does not have common borders with any of the core basins (Figures S1 and S2).
It shares borders only with valence V(Os, Os) basins and, thus, this basin indicates the
electron exchange between V(Os, Os) basins. To our best knowledge, it is the first example
of such ELF topology. Formally, this basin should be classified as V(V(Os, Os)3). In the
list of the molecular orbitals, the HOMO-2 (Figure 4) could be the one responsible for
this V(V(Os, Os)3) basin. Note that the populations of the V(V(Os, Os)3) basins are very
small (0.03e and 0.01e for D3 and D3h structures, respectively), however it should provide
the exchange between V(Os, Os). This assumption is consistent with results of previous
QTAIM analysis about three center interactions in Os3(CO)12 cluster [23].

2.3. Chirality and Parity Violation in Os3(CO)12

Our calculations indicate that relativistic effects define the D3 symmetry of the ground
state of Os3(CO)12 molecule, which has the two variants: left-twisted D3S and right-twisted
D3R. The next level of relativistic effects would be the calculation of the contributions of
the nuclear weak forces to the energy of the system. These forces violate spatial parity
symmetry; thus, they make the energy of enantiomers slightly different. Experimental
evidence of such effect have been observed on nuclear and atomic levels [27]. However,
parity violation effects on molecular level have not been detected experimentally yet [7].
Thus, it is important to look for good candidates for experimental search of molecular
parity violation.

The major contribution to PVED comes from the nuclear-spin-independent part of the
parity-violating Hamiltonian [28]:

HSI
PV =

GF

2
√

2
∑Nnuc

n

(
QW(n)γ5ρn(r)

)
, (1)

where GF is the Fermi-coupling constant with a value of 2.22255 × 10−14 a.u.; γ5 is the fifth
Dirac gamma matrix, which refers to the electron chirality operator; ρn(r) is the normalized
nucleon density; Nnuc is the number of nuclei in the molecule; and QW(n) is the weak
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nuclear charge of nucleus n, which depends on the number of protons Z(n) and neutrons
N(n) in the nucleus. It is given by the expression:

QW(n) = Z(n)
(

1− 4 sin2 θW

)
− N(n) (2)

with θW being the Weinberg angle.
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Previous Density Functional Theory (DFT), Hartree-Fock method (HF), and Many
Body Perturbation Theory (MBPT) calculations for compounds of various six-row elements
showed rather low values of PVED: ~3 × 10−12 kJ/mol for Hg [9], ~6 × 10−11 kJ/mol
for Re and ~2 × 10−10 for Os [29], up to ~2 × 10−10 for Bi [30], and the largest would
be ~8 × 10−9 kJ/mol for the hypothetical analogue of hydrogen peroxide—Po2H2 [31].
However, some of those estimations were made using approximate two-component rela-
tivistic methods, while our previous work showed that results of two-component PVED
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calculations in some systems may differ from the four-component results by up to 30% [11].
Therefore, in this work we used only fully relativistic four-component methods for calcula-
tions of PVED.

We may try to estimate the characteristic PVED values for Os compounds. As weak
interactions are local and largely depend on the atomic number, the main contribution
would be from the heaviest nucleus in the molecule (in our case Os) and may be estimated
as follows [32]:

PVED ≈ GFα3Z4NKrη (3)

where α is the fine-structure constant, Z is the charge of the heaviest nucleus in the molecule,
N is the number of neutrons in the heaviest nucleus in the molecule, Kr is some enhance-
ment factor for relativistic effects (for the first row atoms Kr ~ 1, while for the heavier
period six elements Kr ~10), and η is the dimensionless molecular asymmetry factor. The
estimations of typical η in organic molecules fall in the range from ~10−9 [33] to ~10−2 [34].
Therefore, according to Equation (3), PVED in Os compounds may be preliminarily esti-
mated as ~8 × 10−16–~8 × 10−9 kJ/mol.

Especially interesting are the possible cooperative effects in trinuclear Os3(CO)12 clus-
ters. The contributions from the three Os atoms may just sum up, but also it may either
additionally increase or suppress the chirality of the system. To extract such effects, we may
compare the PVED values for Os3(CO)12 with some mononuclear reference system. We
chose the hypothetical OsOSSeTe complex, which is analogous to the osmium tetraoxide.
The results are shown in Table 3. The PVED values for Os3(CO)12 are closer to the upper
estimate for Os compounds. We can see that Generalized Gradient Approximation (GGA)
methods consistently give lesser values than HF, while hybrid and range-separated meth-
ods predictably give half-way values. This is supported by the electron chirality density
pictures (Figure 5). The most surprising is the strong dependence of PVED for OsOSSeTe
from the method used. This is due to the fact that contribution from the second heavy
atom Te is of the opposite sign and DFT GGA methods, for some reason, redistribute the
electron chirality in such a way that it becomes much higher on the Te atom. However,
even the largest PVED value for OsOSSeTe (HF) is an order of magnitude less than the
corresponding value for Os3(CO)12.

Table 3. PVED (kJ/mol) calculated with different methods: Hartree-Fock (HF) and DFT with functionals PBE [35], PBE0
[36], BLYP [37], B3LYP [38], CAMB3LYP [39].

HF PBE PBE0 BLYP B3LYP CAMB3LYP

Os3(CO)12 6.66 × 10−10 3.87 × 10−10 4.61 × 10−10 4.14 × 10−10 4.77 × 10−10 5.51 × 10−10

OsOSSeTe 4.08 × 10−11 5.11 × 10−14 2.23 × 10−13 3.40 × 10−14 1.17 × 10−13 1.35 × 10−12
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Another model for testing the cooperative effects is to calculate PVED for stretched
and contracted versions of the Os3(CO)12 cluster, where only the Os-Os distances change.
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We may expect the decrease of geometric chirality parameter η with the increase of the
Os-Os distances. However, the calculated PVED values actually grow with increase of the
Os-Os distances (Figure 6) for both HF and DFT PBE methods. This indicates that stronger
interaction between Os atoms rather suppresses the electron chirality in the system.
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3. Materials and Methods
Computational Details

Geometry optimization of the Os3(CO)12 cluster with D3 and D3h symmetries was
performed in ADF2020 program [40,41] with all-electron Slater’s type TZ2P basis set [42],
TPSSh [43] density functional, and Grimme D4(EEQ) [44] dispersion corrections. The
calculations were performed in the gas phase. In order to analyze the influence of the
relativistic effects on the geometry of the cluster, the calculations were performed without
relativistic approximation (NR), with scalar relativistic (SR), and with spin-orbit (SO) zero-
order regular approximation (ZORA) [45,46]. To minimize the basis set superposition error
(BSSE), the single point calculations at TPSSh + D4(EEQ) + SR/QZ4P level of theory were
performed for the energy decomposition analysis (EDA) [47] and electron localization func-
tion calculations (ELF) [48,49]. ELF analysis was performed in the dgrid-4.6 program [50]
on the discreet mesh with the step of 0.05 a.u.

The periodic calculation of the Os3(CO)12 cluster in the solid state were performed in
the BAND2020 program [51,52] with SCAN density functional [53], all-electron TZP basis
set, and SR ZORA approximation. The starting geometry for the periodic calculations was
taken from the experimental XRD structural data [22].

Calculations of parity-violating energy difference (PVED) between left- and right-
twisted structures of Os3(CO)12 in the gas phase were performed in Dirac-19 [32,54] with a
fully relativistic four-component Dirac–Coulomb Hamiltonian. An all-electron double-zeta
dyall.ae2z relativistic basis set [55], in combination with Hartree–Fock and various DFT
methods, was used. To highlight the cooperative effect of three Os atoms, we compared
the PVED for Os3(CO)12 with PVED for a hypothetical compound OsOSSeTe, where there
was only one Os atom. The structure of OsOSSeTe in the gas phase was also optimized in
ADF2020 at the TPSSh + D4(EEQ) + SR/QZ4P level of theory.

4. Conclusions

In our study, for the first time, the chirality of the Os3(CO)12 was investigated. With an
account of relativistic effects, the twisted structure with the D3 symmetry refers to the local
minimum on potential energy surface, while the nonchiral D3h structure refers to the tran-
sition state with a single imaginary frequency. The chiral D3 structure is, apparently, stabi-
lized by the relativistic effects. Moreover, the EDA analysis of the interactions in Os3(CO)12
showed that D3 structure has the stronger orbital interactions between Os(CO)4 fragments.
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The ELF topological analysis showed the unusual pattern of the basins. The trisynaptic
basin in the center of Os triangle has no borders with any of the core basins, apparently,
indicating the exchange between disynaptic V(Os, Os) basins.

We also estimated the PVED values for the Os3(CO)12 cluster. At present, the obtained
values are the largest predicted, with the exception of the hypothetical H2Po2 system [31].
Moreover, the study of cooperative effects in PVED of Os3(CO)12 clusters showed that the
stronger interaction between Os atoms rather reduces the electron chirality in the system.
Knowing that, we may hope to construct in future some molecular system with even
larger PVED.

Supplementary Materials: The following are available online, Table S1: Coordinates of the Os3(CO)12
cluster optimized with Non Relativistic (NR), Scalar Relativistic (SR) and Spin-Orbit (SO) approxima-
tions at TPSSh + D4(EEQ)/TZ2P level of theory, Figure S1: ELF basins for Os3CO12 clusters with
D3 (top) and D3h (bottom) symmetries, Figure S2: Critical points between V(Os, Os) and V(V(Os,
Os)3) basins.
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