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Abstract: The use of insects as a feasible and useful natural product resource is a novel and promis-
ing option in alternative medicine. Several components from insects and their larvae have been
found to inhibit molecular pathways in different stages of cancer. This study aimed to analyze the
effect of aqueous and alcoholic extracts of Vespa orientalis larvae on breast cancer MCF7 cells and
investigate the underlying mechanisms. Our results showed that individual treatment with 5%
aqueous or alcoholic larval extract inhibited MCF7 proliferation but had no cytotoxic effect on normal
Vero cells. The anticancer effect was mediated through (1) induction of apoptosis, as indicated by
increased expression of apoptotic genes (Bax, caspase3, and p53) and decreased expression of the
anti-apoptotic gene Bcl2; (2) suppression of intracellular reactive oxygen species; (3) elevation of
antioxidant enzymes (CAT, SOD, and GPx) and upregulation of the antioxidant regulator Nrf2 and its
downstream target HO-1; (4) inhibition of migration as revealed by in vitro wound healing assay and
downregulation of the migration-related gene MMP9 and upregulation of the anti-migratory gene
TIMP1; and (5) downregulation of inflammation-related genes (NFκB and IL8). The aqueous extract
exhibited the best anticancer effect with higher antioxidant activities but lower anti-inflammatory
properties than the alcoholic extract. HPLC analysis revealed the presence of several flavonoids and
phenolic compounds with highest concentrations for resveratrol and naringenin in aqueous extract
and rosmarinic acid in alcoholic extract. This is the first report to explain the intracellular pathway
by which flavonoids and phenolic compounds-rich extracts of Vespa orientalis larvae could induce
MCF7 cell viability loss through the initiation of apoptosis, activation of antioxidants, and inhibition
of migration and inflammation. Therefore, these extracts could be used as adjuvants for anticancer
drugs and as antioxidant and anti-inflammatory agents.
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1. Introduction

Despite remarkable advances in chemotherapy, the numerous side effects and non-
selective targeting of most of the currently used anticancer drugs restrict their therapeutic
potential [1,2]. Thus, discovering novel anticancer agents with superior inhibitory effect
and selective targeting to cancer cells is becoming an urgent need [3–5]. In recent years,
targeted therapy has been searching for natural and safe medicines to avoid the side effects
of anticancer drugs [6,7]. Extracts prepared from natural products and medicinal plants
have notable anti-inflammatory, antioxidant and anticancer potential [3–7]. Similarly, many
bioactive ingredients extracted from insects have demonstrated anticancer effects [8–11]. In-
sects and their larvae could be considered as a good source for many bioactive compounds;
however, their role has not been fully investigated [12]. Previous studies have reported
that some insect larvae, such as housefly larvae, possess anticancer, antioxidant, and an-
timicrobial properties [11,13–16]. Additionally, aqueous extracts and hydrolysates of some
insects such as house cricket, grasshopper, and silk moth contain some beneficial bioactive
peptides that have anti-inflammatory and antioxidant activities [17,18]. In addition to
these beneficial medicinal effects, insects are part of the common diet of at least two billion
people in the world, as they contain high amounts of proteins and micronutrients [19].
Consumption of antioxidant-rich nutrients helps in preventing oxidative stress-induced
diseases and cancer [5,20–23].

Oriental hornets (Vespa orientalis) are insects that belong to the family Vespidae, which
are distributed in the Middle East, Southwest Asia, Southern Europe, and Northeast Africa,
and live in colonies [24]. The fertilized queens hibernate in the winter [25,26], lay their
eggs during the fall [27], and the population of the colony peaks in the late summer
and initial fall [28]. These insects attack bee colonies to get nectar and protein, causing
notable loss to honey bee production [29,30]. Although their stings are highly painful to
humans and can cause allergy, they are used for the treatment of cold and gastritis in some
Indian tribes [26]. These tribes also consume various Vespa sp. due to their high protein
content [31]. Moreover, the aqueous extract of lesser banded hornet (V. affinis) has been
shown to exert antioxidant effects through activation of the antioxidant enzymes GST
and CAT [32]. Venom extracted from V. orientalis showed a potent antimicrobial effect
against a large variety of bacteria [33–35] and an anticancer effect [36–38]. One of the major
drawbacks of using insect venoms as an anticancer agent is their cytotoxic and neurotoxic
effects on normal cells [39,40]. Using insect larva and pupa could be a useful alternative.
However, to date, there have been no reports investigating the antioxidant and anticancer
effects of V. orientalis larval extracts.

Therefore, this study aimed to assess the anticancer effect of aqueous and alcoholic
extracts of V. orientalis larvae against MCF7 cells and to study the underlying mechanisms
through investigating apoptotic pathway, antioxidant status, migration, and inflammation.

2. Material and Methods
2.1. Preparation of V. orientalis Larval Extracts

Nests of V. orientalis were collected in the fall of 2019 from different localities in
the cities of Tanta and Kafrelsheikh, Egypt. The insects and nests were kept under con-
trolled conditions with respect to temperature, relative humidity, and photoperiods in the
Honey Bee Laboratory at Plant Protection Department, Faculty of Agriculture, Kafrelsheikh
University. A standard rearing method was used to obtain the larvae required for the
bioassay. The 3rd and 4th larvae instars were extracted using 5% water or ethyl alcohol
as previously described [32,41]. In brief, the collected larvae were first washed in distilled
water, and a mixture of 5 g larvae and 95 mL distilled water or pure ethyl alcohol was
centrifuged (8000 rpm/20 min/4 ◦C) to eliminate undesirable debris. The supernatant was
obtained and considered as 5% aqueous and alcoholic extracts and kept in the freezer until
further use.
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2.2. HPLC Analysis of Flavonoids and Phenolic Compounds

HPLC was used to analyze flavonoids and phenolic compounds in both aqueous and
alcoholic extracts, as previously described [42]. The HPLC (Agilent1260 infinity HPLC
Series, Agilent Technologies, Santa Clara, CA, USA) was equipped with a Quaternary
pump and Kinetex 5 µm EVO C18 (100 mm × 4.6 mm) column (Phenomenex, Torrance,
CA, USA) operated at 30 ◦C. The separation was achieved using a ternary linear elution
gradient with HPLC grade water 0.2% H3P04 (v/v), methanol, and acetonitrile. The injected
volume was 20 µL and the VWD detector was set at 284 nm.

2.3. DPPH Radical Scavenging Assay

A DPPH (2,2-diphenyl-1-picryl-hydrazil) radical scavenging assay was performed
as previously described [43]. A methanolic solution of DPPH reagent (1 mL, 0.004%)
was added to each larval extract (100 µL) dissolved in DMSO at different concentrations
(20, 40, 80, 160, and 320 µg/mL). Following 1 h incubation in the dark, a yellow color
developed, and the absorbance was recorded at 515 nm. Ascorbic acid was used as a
positive control. The IC50 value was calculated using GraphPad prism. The experiment
was repeated three times. The DPPH scavenging activity was calculated from this equation:
DPPH scavenging (%) = (A0 − A1)/A0 × 100, where A0 is the control absorbance and A1
is the sample absorbance.

2.4. MTT Cytotoxicity Assay

Human breast adenocarcinoma MCF7 cells and normal African green monkey kidney
Vero cells were obtained from VACSERA, Cairo. MTT assay was performed as previously
described [44]. Cells were seeded at a concentration of 1 × 104 cells per well. DMEM
medium, 10% FBS, 1% penicillin/streptomycin, and 2% L-glutamine (all supplemented
from Gibco, Waltham, MA, USA) were added to each well, and cells were incubated at
37 ◦C, in a humidified atmosphere of 95% air and 5% CO2 for 24 h until 80–90% confluence.
Serial dilutions (0, 12.5, 25, 50, 100, and 200 µg/mL) of each V. orientalis larval extract were
applied to cells. Following incubation for 1 day, 5 mg/mL of 3-(4,5-Dimethylthiazol-2-yl)-
2,5-diphenyltetr-azolium bromide (MTT, Invitrogen, Waltham, MA, USA) was added, and
cells were incubated for 4 h; then, the medium was removed and substituted with 100 µL
Dimethyl sulfoxide (DMSO, Sigma Aldrich, St. Louis, MO, USA). Finally, the absorbance
was measured at 570 nm.

2.5. Experimental Design

The cells were allocated into three groups. The untreated MCF7 cells were considered
control cells (Cnt), while in the other two groups, cells were treated with aqueous or alcoholic
larval extracts with doses equal to their IC50. Treatments were applied in triplicate at 70–80%
confluence. Cells were incubated in a CO2 incubator for 24 h at 37 ◦C and 95% humidity.

2.6. Estimation of Intracellular Reactive Oxygen Species

Intracellular reactive oxygen species (ROS) were determined using a fluorescent probe,
2′,7′-dichlorofluorescein diacetate (DCFDA), as previously described [45]. MCF7 cells
were treated with aqueous and alcoholic larval extracts with doses equal to their IC50 for
2 h followed by 25 µM H2O2 for 2 h. After PBS washing, DCFDA (5 µM) was added,
and the cells were incubated (37 ◦C/30 min) in the dark. Following washing in PBS, the
fluorescence intensity of DCFDA was measured in a fluorescence microplate reader. The
intracellular ROS levels were calculated as a % of the control.

2.7. Detection of Antioxidant Enzymes Activities

The activities of superoxide dismutase activity (SOD), catalase (CAT), glutathione
peroxidase (GPx) in MCF7 cells were assayed by colorimetric methods using commercially
available kits and following the manufacturer’s protocol (Biodiagnostics, Cairo, Egypt).
The antioxidant activities were presented as percentages of the control.
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2.8. In Vitro Scratch (Wound Healing) Assay

MCF7 cells were grown at a concentration of 2.5 × 105 cells/mL in 6-well plates in
DMEM until 75% confluence. A scratch was produced in the center of each well and
fresh media containing each extract at a concentration equal to IC50 were added. Images
were taken at two time intervals (0 h and 24 h), and MCF7 migration was calculated as
previously reported [46].

2.9. Gene Expression Analysis by qPCR

RNA samples were extracted from all cells using a procedure detailed previously [6].
Nanodrop and 1% gel electrophoresis were used to determine RNA concentration and
integrity, respectively. Following reverse transcription using RevertAid H Minus Reverse
Transcriptase, the expression of Bax, Bcl2, caspase 3, p53, NrF2, HO-1, MMP9, TIMP1, NFκB,
and IL8 genes was determined using 2X SYBR Green Master Mix and specific primers
(Table 1). All kits used in qPCR were purchased from Thermo Scientific, Waltham, MA,
USA. The qPCR mixture (25 µL) contained 2 µL cDNA, 1 µL from each primer and 12.5 µL
of Maxima SYBR Green Master Mix. The thermal cycling included 10 min at 95 ◦C followed
by 45 cycles of (95 ◦C for 15 s, 60 ◦C for 30 s and 72 for 30 s). The relative expression of
target genes was normalized with the housekeeping gene GAPDH and calculated using
the 2−∆∆Ct method [47].

Table 1. Primer sequences used in qPCR.

Gene Forward Primer (5′–3′) Reverse Primer (5′–3′)

Bax GGACGAACTGGACAGTAACATGG GCAAAGTAGAAAAGGGCGACAAC
Bcl2 TTGATGGGATCGTTGCCTTATGC CAGTCTACTTCCTCTGTGATGTTG
Cas3 GAAGCGAATCAATGGACTCTGG GACCGAGATGTCATTCCAGTGC
p53 TAACAGTTCCTGCATGGGCGGC AGGACAGGCACAAACACGCACC

NrF2 CAGCGACGGAAAGAGTATG TGGGCAACCTGGGAGTAG
HO-1 CGGGCCAGCAACAAAGTG AGTGTAAGGACCCATCGGAGAA

MMP9 GCCACTACTGTGCCTTTGAGTC CCCTCAGAGAATCGCCAGTACT
TIMP1 GGGCTTCACCAAGACCTACA TGCAGGGGATGGATAAACAG
NFκB ATGGCTTCTATGAGGCTGAG GTTGTTGTTGGTCTGGATGC

IL8 ACTGAGAGTGATTGAGAGTGGAC AACCCTCTGCACCCAGTTTTC
GAPDH GGTGAAGGTCGGAGTCAACG TGAAGGGGTCATTGATGGCAAC

2.10. Statistical Analysis

All data were expressed as mean ± standard error of the mean (SEM) of replicates
from independent experiments. The difference between the groups was evaluated by one-
way analysis of variance and Tukey’s Honest Significant Difference test using GraphPad
prism, 7.0 software. Values were considered statistically significant when p < 0.05.

3. Results
3.1. Larval Extract Had Numerous Flavonoids and Phenolic Compounds

HPLC chromatograms for the 5% aqueous larval extract revealed the presence of
numerous flavonoids (catechin, chlorogenic, rutin, quercetin, naringenin, myricetin) and
phenolic compounds (vanillic acid, caffeic acid, syringic acid, ferulic acid, o-coumaric
acid, resveratrol, and rosmarinic acid), as well as benzoic acid and p-hydroxybenzoic
acid (a phenolic derivative of benzoic acid), p-coumaric acid, benzoic acid, and cinnamic
acid. Resveratrol was the major phenolic compound (1.580 mg/kg at 19.74 min), while
naringenin was the major flavonoid (0.819 mg/kg at 22.56 min) (Table 2, Figure 1A).
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Table 2. Flavonoids and phenolic compounds composition of 5% aqueous and alcoholic larval extracts.

Compounds
Aqueous Larval Extract Alcoholic Larval Extract

Retention Time (min) Amount (mg/kg) Retention Time (min) Amount (mg/kg)

Catechol 5.40 - 5.40 -
p-Hydroxy benzoic acid 7.68 0.019 7.70 -

Catechin 8.92 0.011 8.88 0.873
Chlorogenic 9.30 - 9.30 -
Vanillic acid 9.88 0.114 9.70 0.679
Caffeic acid 10.15 0.020 9.93 0.675

Syringic acid 10.37 0.025 10.50 -
p-Coumaric acid 13.45 - 13.45 -

Benzoic acid 14.27 0.032 14.30 -
Ferulic acid 15.42 0.004 15.69 0.337

Rutin 16.79 0.375 16.70 -
Ellagic 16.90 - 17.08 0.920

o-Coumaric acid 17.43 0.029 17.40 -
Resveratrol 19.74 1.580 19.80 -

Cinnamic acid 20.20 - 20.20 -
Quercetin 21.20 0.350 21.60 -

Rosemarinic 21.81 0.679 21.83 34.031
Naringenin 22.56 0.819 22.40 -
Myricetin 23.58 0.396 23.48 -

Kampherol 24.70 - 24.70 -
Total 4.452 45.460
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On the other hand, the 5% alcoholic larval extract contained only catechin flavonoid
and fewer phenolic compounds (vanillic acid, caffeic acid, ferulic acid, ellagic acid, and
rosmarinic acid). However, the total phenolic compounds and flavonoids (45.460 mg/kg)
were higher than those of the 5% aqueous larval extract (4.452 mg/kg). The major phenolic
compound obtained from the alcoholic larval extract was rosmarinic acid (34.031 mg/kg at
21.83 min), which was responsible for this elevation (Table 2, Figure 1B). Looking at the
HPLC chromatograms displayed in Figure 1, other unknown higher peaks can be observed
that were not identified due to lack of available standards.

3.2. Larval Extract Had Potent Antioxidant Activities

The HPLC results indicated the presence of numerous flavonoids and phenolic com-
pounds, which all had antioxidant properties. This prompted us to confirm the in vitro
antioxidant activities of the two larval extracts using DPPH assay. As expected, 5% aqueous
and alcoholic larval extracts had potent free radical scavenging activity, with IC50 values of
52.67 ± 2.38 and 123.50 ± 4.62 µg/mL, respectively, relative to the standard ascorbic acid
(45.33 µg/mL) (Figure 2). This suggests that the 5% aqueous larval extract had better free
radical scavenging activity than the 5% alcoholic larval extract.
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3.3. Larval Extracts Inhibited MCF7 Viability

The results of MTT assay showed dose-dependent cytotoxic effects for 5% aqueous and
alcoholic larval extracts on MCF7, with IC50 values of 32.89± 1.84 and 61.48 ± 2.70 µg/mL,
respectively, as compared to control (untreated) cells (Figure 3). This suggests that the
aqueous larval extract had a more potent anticancer effect than the alcoholic larval extract.
However, the aqueous extract showed no cytotoxic effect on normal Vero cells up to
a concentration of 100 µg/mL, and only 1% cell viability inhibition was noticed at a
concentration of 200 µg/mL. The alcoholic extract also showed minimal inhibition of 0.50%,
1.5% and 4.5% at concentrations of 50, 100, and 200 µg/mL, respectively (Figure 3).
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show the effect of the two extracts on MCF7 and Vero viability and the obtained IC50 after 24 h. Data
were normalized to untreated control cells and expressed as the mean % viability ± SEM. Samples
on MCF7 and Vero were run in triplicate in three independent experiments, n = 5.

3.4. Larval Extracts Modulated the Expression of Apoptosis-Related Genes

The qPCR was applied to monitor the effect of treatments on the expression of the
apoptotic genes (Bax, caspase3, and p53) and the anti-apoptotic gene (Bcl2). Treatment with
each extract significantly upregulated the expression of the apoptotic genes and signifi-
cantly downregulated the expression of Bcl2 compared to the control cells (Figure 4). The
5% aqueous extract showed higher expression of Bax and caspase3 and lower expression of
Bcl2 than the 5% alcoholic extract. These results suggest that the cytotoxic effect of the two
extracts on MCF7 cells could be triggered by apoptosis. On the other hand, no significant
difference was observed in any of these apoptotic or anti-apoptotic genes among the three
groups in Vero cells (Figure S1). These results imply that the two larval extracts would not
induce apoptosis in normal Vero cells.
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as the mean fold change ± SEM. Samples were run in triplicate in three independent experiments, n = 5. Groups with
different letters are significantly different at p < 0.05. * indicates high significance with respect to control (p < 0.001).

3.5. Larval Extracts Inhibited Intracellular ROS and Induced Antioxidant Status

Given that V. orientalis larval extracts contained numerous flavonoids and phenolic
compounds and had potent total antioxidant activities, we postulated that these extracts
could trigger cancer cell death through decreasing oxidative stress and increasing antioxi-
dant enzyme activities. To assess this hypothesis, we evaluated the effect of these extracts
on the intracellular ROS and activities of antioxidant enzymes. Increased intracellular
ROS is a notable indicator of cellular oxidative stress. As was expected, cells treated with
each larval extract showed significantly lower intracellular ROS and significantly higher
levels of CAT, SOD, and GPx than control cells (Figure 5). Again, the 5% aqueous extract
exhibited lower intracellular ROS and higher levels of CAT, SOD, and GPx than the 5%
alcoholic extract.
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To confirm the antioxidant potential of the two extracts on a molecular basis, we
studied their effect on the expression of the antioxidant-regulator NrF2 and its downstream
target HO-1 using qPCR and found significant upregulation of the two genes in MCF7 cells
treated with each extract, with higher expression in 5% aqueous extract-treated cells than
in control cells (Figure 6).
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3.6. Larval Extracts Inhibited MCF7 Migration

The effect of larval extracts on MCF7 migration was evaluated using a scratch (wound-
healing) assay. Treatment with each larval extract significantly inhibited MCF7 migration
compared to the control (Figure 7). The rates of MCF7 migration after treatment with aque-
ous and alcoholic extracts were 34.68 ± 2.63% and 42.28 ± 3.14%, respectively, compared
to the control cells (60.38 ± 4.12%). To verify this anti-migratory effect on a molecular level,
qPCR was used to check changes in the relative expression of the migration-related MMP9
and the anti-migratory TIMP1 following treatment with each larval extract. The obtained
results revealed significant downregulation of MMP9 and upregulation of TIMP1 in cells
treated with each extract relative to control cells (Figure 7). No significant change in MMP9
or TIMP1 was noticed between the two extracts.
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3.7. Larval Extracts Reduced the Expression of Inflammation-Related Genes

The inflammatory genes NFκB and IL8 exhibited a significant downregulation after the
addition of each extract compared to the control cells (Figure 8). The most downregulated
effect was encountered in cells treated with the 5% alcoholic extract. These findings indicate
that these extracts have an anti-inflammatory effect against MCF7 cells, with the best effect
being for the 5% alcoholic extract.Molecules 2021, 26, x FOR PEER REVIEW 12 of 17 
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4. Discussion

There is growing interest in exploring the roles of the insects’ bioactive components,
especially those with antioxidant and anticancer properties. Previous studies have only
investigated the anticancer effect of Vespa sp. venom and its bioactive peptides [36–38].
However, the effect of the venom is not selective and can damage normal cells [39,40].
Aside from the venom, insect developmental stages (larvae and pupae) exhibit antioxidant
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and anticancer potential, with less toxicity for normal cells. Dutta et al. [32] reported an
antioxidant effect for V. affinis aqueous pupal extract. Moreover, the larval hemolymph of
M. domestica had antioxidant and cytotoxic properties against MCF7, but no cytotoxicity on
normal Vero cells [11]. To the best of our knowledge, this is the first study to report that 5%
V. orientalis larval extracts had an anticancer effect on MCF7 cells, and that this effect could
be mediated by, at least in part, the induction of apoptosis, activation of antioxidants, and
inhibition of migration and inflammation.

Previous studies have demonstrated cytotoxic effects for V. orientalis venom and
attributed this effect to a bioactive peptide called mastoparan, which causes membrane
destabilization and subsequent cell lysis [48,49]. Mastoparan also activates G-protein,
which subsequently initiates mitochondrial permeability and apoptosis [50]. However, little
is known about the effect of V. orientalis larval extracts on cancer cells. In the present study,
we studied this effect and reported a notable dose-dependent antiproliferative potential for
V. orientalis larval extracts on MCF7 with better influence for the aqueous extract which
showed lower IC50 (32.89 ± 1.84 µg/mL) than the alcoholic extract (61.48 ± 2.70 µg/mL).
This indicates a more potent anticancer effect for the aqueous larval extract. Unlike most
insect venoms, these extracts are less toxic on normal cells such as Vero cells, indicating a
high safety margin. This is in agreement with the safe consumption of many Vespa Sp. by
some tribes in India [31]. However, in vivo investigations on animal models of cancer are
required to validate their biosafety and choose the optimal doses.

Similar to V. orientalis venom and its ingredient mastoparan, the cytotoxic effect of
larval extracts was mediated through induction of apoptosis as indicated by significant
elevation of the three apoptotic genes Bax, caspase 3, and p53 and significant reduction of
the anti-apoptotic Bcl2 gene with best apoptotic effect for the aqueous extract. Extracts used
in the present study increased Bax, which induced the release of mitochondrial cytochrome
c into the cytoplasm, further activating caspase3 expression [51]. Thus, these extracts could
inhibit MCF7 proliferation via the initiation of the intrinsic pathway of apoptosis. However,
the extrinsic apoptotic pathway cannot be overlooked. Therefore, further investigations on
caspase 8 and Fas-L are needed. These results are in agreement with previous reports on
the potent anticancer effect of M. domestica larvae extract and hemolymph on CT26 and
MCF7 cancer cells [11,15] and C. albiceps larval extracts on a large variety of cancer cells
including MCF7 [52].

Disrupting redox homeostasis is a central phenotype of several pathological states.
Excessive oxidation harms different cellular components and is considered the hallmark for
many diseases [53]. Reactive oxygen species (ROS) induce oxidative stress, which degrades
proteins, lipids, and DNA [22,54,55]. The body prevents the over-release of free radicals and
subsequently restricts oxidative stress through the activation of endogenous antioxidant
enzymes (such as CAT, SOD, and GPx). Insects and their developmental stages (larvae and
pupae) possess a powerful endogenous antioxidant system with a predominant effect for
SOD [56,57]. Consistent with these findings, we also found that V. orientalis larval extracts
possessed potent total antioxidant properties, as revealed by the DPPH assay. This effect
was further proved on enzymatic and mRNA levels, and the results showed significant
elevation in activities of antioxidant enzymes and expression of NrF2 and HO-1 genes
following treatment with larval extracts. We also demonstrated a significant reduction
in intracellular ROS as an indicator for oxidative stress. Similarly, Dutta et al. [32] found
potent antioxidant properties for V. affinis aqueous pupal extract with higher SOD, CAT,
and GST activities in human plasma (in vitro) and lower intracellular ROS in monocytes. El-
Garawani et al. [11] also reported an antioxidant effect for M. domestica larval hemolymph
with higher levels of SOD, TAC, and GSH and lower lipoperoxidation marker MDA levels.
Several other studies also showed antioxidant effects for insect larval extracts such as
blowflies [58] and beetles [59]. Interestingly, the increased anticancer potential of the
aqueous extract was associated with a higher antioxidant status, which could be due to
the existence of the defense constituents in larvae. In support, antioxidants can hinder
tumorigenesis and growth and trigger apoptosis in cancer cells [11,23,60]. In general, the
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inhibitory effect on excessive ROS release and induction of antioxidant enzymes imply an
advantageous role of V. orientalis larval extracts against oxidative stress-dependent diseases
and cancer.

One of the main features of a potent anticancer drug is its ability to not only kill
cancer cells, but also to prevent metastasis. Most mortality from cancer may be related to
metastasis and the subsequent multiorgan dysfunction. Interestingly, V. orientalis larval
extracts inhibited MCF7 metastasis as noticed by the results of both wound healing assay
(which showed a humbled migration) and qPCR (reduced expression of the migration-
related gene MMP9 and increased expression of the anti-migration gene TIMP1). Unlike
apoptotic and antioxidant effects, which revealed a leading effect for aqueous extract,
no significant difference was noticed between the two extracts with respect to their anti-
migration potential. Consistent with our results, cantharidin, a toxin extracted from
beetles, also inhibited migration and invasion of human lung cancer cells through selective
prevention of the expression of some MMP members [10].

The results obtained from qPCR revealed an anti-inflammatory effect for the larval
extracts, as demonstrated by the downregulation of inflammation-related genes (NFκB and
IL8), but with a predominant effect for the alcoholic extract. Using a similar mechanism,
V. orientalis venom also possessed an anti-inflammatory effect [61]. Additionally, aqueous
extracts of the house cricket, grasshopper, and silk moth contain notable anti-inflammatory
and antioxidant activities [17,18]. Cancer cells induce inflammation via their ability to
release inflammatory cytokines into the tumor microenvironment [62,63]. Inflammation
plays an important role in cancer initiation and metastasis. When MCF7 is exposed
to cytokines for long period, they undergo epithelial-mesenchymal transition, thereby
facilitating cancer cell migration and metastasis. Hence, inhibition of cytokines such as
NFκB hinders breast cancer cell migration [46,64]. Taken together, we provide V. orientalis
larval extracts as novel inhibitors for chemotaxis-based migration of MCF7 cells.

HPLC analysis revealed the presence of several flavonoids and phenolic compounds,
with the highest concentrations being for resveratrol and naringenin in the aqueous extract
and rosmarinic acid in the alcoholic extract. In addition to other unknown higher peaks
which worth further investigation. Thus, we suggest that the anticancer and antioxidant
properties of these extracts could be attributed, at least in part, to these flavonoids and
phenolic compounds. High levels of resveratrol and naringenin in the aqueous extract
could explain its predominant anticancer and antioxidant potential relative to the alcoholic
extract. Resveratrol has an anticancer effect and can potentiate the chemotherapeutic
potential, reduce multidrug resistance, and limit metastasis when used in combination
with standard anticancer drugs (reviewed in [65]). Resveratrol also has potent antioxidant
properties that are mediated via activation of Nrf2 and its downstream target HO-1 in
rat PC12 cells and normal human breast epithelial MCF10F cells [66]. It also induces the
p53-dependent pathway in cancer cells [67]. Similarly, we also found that the resveratrol-
rich aqueous extract inhibited MCF7 proliferation, and this effect was accompanied by
higher expression of Nrf2, HO-1, and p53. Naringenin inhibits the viability of a large variety
of cancer cells and diminishes their migration and invasion [68]. It has been considered
to be a perfect surgical adjuvant treatment for breast cancer patients, as it can modulate
patient immunity and subsequently preventing tumor metastases after surgery [69]. Its
anti-metastasis effect was associated with AKT pathway inhibition and downregulation
of MMP2 and MMP9 [68]. On the other hand, the abundant amount of rosmarinic acid
in the alcoholic extract could justify its superior anti-inflammatory effect. Rosmarinic
acid possesses anti-inflammatory and anticancer properties against several cancer cell
lines [70]. It can also cease the migration of MDA-MB-231BO human breast cancer cells
from the breast to the bone through inhibition of NFκB ligand (RANKL), osteoprotegerin,
and IL8 expression [71]. Due to its potent anti-inflammatory effect, rosmarinic acid has
been used in the treatment of inflammatory diseases such as arthritis, colitis, rhinitis, and
acute pancreatitis through inhibition of cytokines including NFκB, IL1b, and IL8 [72]. In
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parallel, we also reported that the rosmarinic acid enriched alcoholic extract minimized
MCF7 growth, and this effect was associated with the downregulation of NFκB, and IL8.

This study provides new details regarding the anticancer effect of V. orientalis larval
extracts against only one type of breast cancer cells (MCF7). However, it is worth confirming
whether this effect also exists on other breast cancer cell lines to show that the observed
effects are not only related to certain features in MCF7. Similarly, the effect of V. orientalis
larval extract needs to be verified on animal models of breast cancer. Therefore, further
in vitro and in vivo investigations are required to provide more mechanistic details in
that regard.

5. Conclusions

Cancer cells maintain their viability via inhibition of apoptosis, initiation of inflam-
mation, and migration. Stimulating apoptosis and targeting inflammation and migration
can inhibit the proliferation of cancer cells and limit tumor progression. To the best of our
knowledge, this is the first study to report that treatment with different V. orientalis larva
extracts could inhibit MCF7 proliferation through induction of apoptosis, activation of
antioxidant status, and inhibition of migration and inflammation. The aqueous extract
showed the most potent anticancer effect, with a higher antioxidant effect but lower anti-
inflammatory properties than the alcoholic extract. Thus, V. orientalis larval extracts could
be useful in the future as adjuvants for breast anticancer drugs and as antioxidant and
anti-inflammatory agents in the treatment of oxidative stress and inflammation-related
diseases. However, further in vivo preclinical studies are required to verify this effect
in animal models and check whether these extracts could be clinically relevant and safe
for patients.

Supplementary Materials: The following are available online. Figure S1: Expression of Bax, caspase3
(Cas3), p53, and Bcl2 genes in Vero cells following treatment with 5% aqueous and alcoholic larval
extracts as detected by qPCR. Data were normalized to the housekeeping gene (GAPDH) and expressed
as the mean fold change ± SEM. Samples ran in triplicates in 3 independent experiments, n = 5.
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