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Abstract: Digital farming is a modern agricultural concept that aims to maximize the crop yield
while simultaneously minimizing the environmental impact of farming. Successful implementation
of digital farming requires development of sensors to detect and identify diseases and abiotic stresses
in plants, as well as to probe the nutrient content of seeds and identify plant varieties. Experimental
evidence of the suitability of Raman spectroscopy (RS) for confirmatory diagnostics of plant diseases
was previously provided by our team and other research groups. In this study, we investigate the
potential use of RS as a label-free, non-invasive and non-destructive analytical technique for the fast
and accurate identification of nutrient components in the grains from 15 different rice genotypes.
We demonstrate that spectroscopic analysis of intact rice seeds provides the accurate rice variety
identification in ~86% of samples. These results suggest that RS can be used for fully automated, fast
and accurate identification of seeds nutrient components.

Keywords: grain; Oryza sativa; nutrient content; Raman spectroscopy

1. Introduction

Digital agriculture is an emerging paradigm that aims to maximize crop yields while
simultaneously minimizing the environmental impact of farming. Crop yields can be
maximized by timely detection and identification of biotic stresses [1,2]. This information
can be used for site- and dose-specific applications of fungicides and pesticides to cease
the proliferation of pathogens and minimize crop losses associated with plant diseases.
Abiotic stresses, including drought and nutrient deficiencies, can cause even higher crop
losses than biotic stresses [3,4]. If detected early, water and fertilizers can be administrated
to mitigate crop losses caused by these stresses. Digital farming also requires advanced
methodologies for plant breeding and selection to develop a germplasm of crops that
includes varieties with higher drought or salinity tolerance as well as enhanced resistance
to pathogens. A major drawback of conventional phenotyping techniques is the long
period of time required to measure the effect of stress on plants [5,6]. Since destructive,
traditional wet lab methods take a long time to get the nutritional data of a germplasm
or breeding population, RS could be a good alternative for screening the germplasm or
breeding population quickly, helping the breeder in selection for crop improvement.

Raman spectroscopy (RS) is an analytical technique that can be used to detect plant
biotic and abiotic stresses, as well as to identify plant varieties and probe their nutritional
content [7–9]. For instance, Farber and co-workers demonstrated that RS could be used
to identify whether maize kernels were healthy or infected by Aspergillus flavus, A. niger,
Fusarium spp., or Diplodia spp. with 100% accuracy [10]. Recently, Sanchez and co-workers
demonstrated high accuracy of diagnostics of Huanglongbing (HLB) or citrus greening on
both orange and grapefruit trees using RS [11]. Moreover, the researchers demonstrated
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that spectra of HLB-infected plants are drastically different from plants that experienced
nutritional deficiencies. These results suggested that RS can be used to distinguish between
biotic and abiotic stresses. RS is a non-invasive, non-destructive and a chemical-free
technique. Thus, the direct cost of analysis is small [2]. Over the last decade, several
companies have developed hand-held spectrometers that could be used in field to probe
plant health in real time [10–12]. This eliminates the need for transportation of plant
material, further reducing the cost of analysis, simultaneously minimizing the potential
spread of pathogens. Experimental results reported by the our group [10,11,13–20] and
other research laboratories [12,21–24] show that hand-held Raman spectrometers could be
used for fast (one second spectral acquisition time) and nearly 100% accurate diagnostics
of biotic and abiotic stresses [10,11,13,16,19,20,25]. This innovative sensing approach is
based on detecting and identifying pathogen-induced changes in plant biochemistry. RS
can be used to distinguish between biotic and abiotic stresses [11], identify pathogens on
the species level [10] and reveal the cause of abiotic stresses [26]. Our group has shown that
RS can be used for non-invasive plant phenotyping [14,15,27]. We also found that RS can
differentiate between nematode-resistant and nematode-susceptible peanut varieties [15].
Our recent findings show that RS can be used to identify varieties of plant species based
on the unique spectroscopic signatures of their leaves and seeds [15,27,28]. Moreover, RS
enables non-invasive and non-destructive assessment of the nutrient content of seeds, that
is, carbohydrate, protein, fiber, oil, and unsaturated fatty acids in peanut seeds [15,27].

The question to ask is whether RS can identify the nutritional content of the intact grain.
To answer this question, we collected Raman spectra from intact seeds of 15 different rice
varieties. We employed chemometric tools to identify and differentiate these varieties. Our
findings suggest that Raman spectra acquired from the intact rice grain are dominated by
vibrational bands originating from starch and fiber. We performed detailed spectroscopic
analysis of these compounds to confirm these hypotheses. Finally, we investigated the
extent to which RS can be used to determine the nutritional content of intact corn kernels
in the corn cob. Our results suggest that more sophisticated spectroscopic approaches are
required to deliver the laser light through opaque and light-scattering husk material. This
obstacle can be partially overcome by spatially offset Raman spectroscopy (SORS). Our
results show that although SORS is not capable of probing the composition of intact corn
kernels through the intact husk, decent signal-to-noise spectra can be obtained through
two layers of husk material with 3–4 mm offset. These results further reflect the potential of
RS in assessment of the nutritional content of intact seeds and spectroscopic identification
of rice varieties.

2. Results and Discussion

Raman spectra collected from intact rice seeds exhibit vibrational bands that can
be assigned to carbohydrates (410–1259 cm−1), aliphatic (CH2 and CH2/CH3 vibrations)
(1339–1459 cm−1), and lignin (1601–1633 cm−1) (Table 1 and Figure 1). The vibrational
band at 1005 cm−1 can be assigned to both carotenoids and proteins. Therefore, this band
cannot be used for unambiguous interpretation of the nutritional content of rice seeds
and will be excluded from the band analysis. These findings suggest that spectroscopic
analysis of interact seeds can be used to probe the content of starch (410–1259 cm−1) and
fiber (1601–1633 cm−1).
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Figure 1. Raw (A) and area normalized (B) Raman spectra collected from intact seeds of 15 different rice genotypes. 
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Figure 1. Raw (A) and area normalized (B) Raman spectra collected from intact seeds of 15 different rice genotypes.

Table 1. Vibrational bands and their assignments for spectra collected form leaves and seeds
of peanuts.

Band Vibrational Mode Assignment

410–479

C-C-O and C-C-C deformations; related to
glycosidic ring skeletal deformations
δ(C-C-C) + τ(C-O) scissoring of C-C-C and
out-of-plane bending of C-O

Carbohydrates [29]

577–615 ν(C-O-C) Glycosidic Carbohydrates [29]

715–770 δ(C-C-O) Carbohydrates [29]

862–937 (C6–C5–O5–C1–O1) Carbohydrates [29]

1005 In-plane CH3 rocking of polyene
aromatic ring of phenylalanine Carotenoids [30]; protein
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Table 1. Cont.

Band Vibrational Mode Assignment

1049 ν(C-O) + ν(C-C) + δ(C-O-H) Cellulose, lignin [31]

1087 ν(C-O) + ν(C-C) + δ(C-O-H) Carbohydrates [29]

1126 ν(C-O) + ν(C-C) + δ(C-O-H) Carbohydrates [29]

1207 δ(C-C-H) Carbohydrates [29]

1259 Guaiacyl ring breathing, C-O stretching
(aromatic); -C=C-

Lignin [32], carbohydrates, [29]
unsaturated fatty acids [33]

1339 ν(C-O); δ(C-O-H) Aliphatic, [34] carbohydrates [29]

1381–1396 δCH2 bending Aliphatics [34]

1460 δ(CH2) + δ(CH3) Aliphatics [34]

1601–1627 ν(C-C) aromatic ring + σ(CH) Lignin [35,36]

To prove the accuracy of the band assignment, we collected the spectra from amylose
and amylopectin, two essential components of starch, as well as from the rice hull and
de-hulled, cleaned rice (Figure 2). We found that amylose and amylopectin had very
similar spectra. If normalized on the intensity of 479 cm−1, the spectrum of amylopectin
had slightly more intense 865 cm−1, 1054 cm−1 and 1460 cm−1 bands, whereas the intensity
of 1340, 1383 and 1397 cm−1 bands was found to be slightly lower than in the spectrum of
amylose. This experimental evidence confirmed that the observed 410–1459 vibrational
bands in the spectrum of the intact rice seeds originated from starch. Our findings also
demonstrated that RS could not be used for differentiation between amylose vs. amy-
lopectin in the grain. Thus, only total starch content could be probed in the intact rice
using RS.
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Figure 2. Raman spectra of amylose, amylopectin, intact rice grain and rice hull.

We have also found that the spectrum of the rice hull is dominated by two vibrational
bands at 1601–1630 cm−1 that originate from aromatic vibrations of polyphenols, the
building blocks of lignin. This finding suggests that fiber content in the intact grain cannot
be determined because this spectral region is obscured by the vibrations originating from
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the hull. Spectroscopic analysis of amylose, amylopectin, rice hulls and de-hulled rice
revealed that only amount of the starch can be determined in the intact rice.

Next, we used OPLS-DA to determine the extent to which RS can be used for the
quantitative identification of rice varieties based on their spectroscopic signatures. The
loading plot and confusion matrix were then generated using this model, which contained
nine predictive components (PCs) and 1087 (607–1693 cm−1) original wavenumbers from
the standard normal variate (SNV) pre-processed first derivative spectra. The nine PCs
explained a total of 33% variation between the classes. The model identified the oils peak
at 1440 cm−1, the protein peaks at 1000 cm−1 (PC1) and 1655 cm−1 (PC2), the fiber peak at
1601 cm−1 (PC2) as the strongest predictors of rice variety, which supports the conclusions
of our qualitative spectral analysis discussed above. The model also explained 55% of the
variation (R2X) in the spectra.

Our results demonstrated that RS can be used for highly accurate (86.2%) identification
of rice varieties through intact rice hulls (Table 2). This high accuracy can be explained by
the very low if any metabolic rates in the seeds as compared to actively growing plants.

Table 2. OPLS-DA confusion matrix of Raman spectra collected from seeds of 15 different varieties (1–15) of rice.

Genotype
Number

Members True Positive
Rate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 20 75% 15 0 1 4 0 0 0 0 0 0 0 0 0 0 0

2 21 81% 0 17 0 0 0 0 0 1 2 1 0 0 0 0 0

3 20 90% 1 0 18 0 0 0 0 0 0 1 0 0 0 0 0

4 13 85% 1 0 0 11 0 0 0 0 0 0 0 0 1 0 0

5 20 80% 0 0 3 0 16 0 0 0 0 1 0 0 0 0 0

6 21 76% 0 1 0 0 0 16 0 0 1 1 0 0 0 0 2

7 20 85% 0 0 0 0 0 0 17 0 0 2 0 1 0 0 0

8 20 85% 0 0 0 0 0 0 0 17 1 0 1 0 0 0 1

9 20 95% 0 1 0 0 0 0 0 0 19 0 0 0 0 0 0

10 20 90% 0 0 1 0 0 0 0 0 0 18 0 1 0 0 0

11 20 90% 0 0 0 0 0 0 0 0 2 0 18 0 0 0 0

12 16 87% 0 0 0 0 0 0 0 0 0 2 0 14 0 0 0

13 20 100% 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0

14 20 75% 0 0 0 1 0 1 0 0 2 0 0 0 0 15 1

15 20 100% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

Total 342 86.2%

Our group previously demonstrated that RS could be used for highly accurate iden-
tification of corn kernels and nutritional assessment of corn starch, fiber, protein and
carotenoids content [27]. The accuracy of these analyses was confirmed by Dumas Com-
bustion Analysis, Megazyme Assay and Near-Infrared (NIR) readings form the same corn
varieties. In this study, we investigated the extent to which RS could be used to access
the nutritional values of the intact corn kernels in the corn cob. We found that corn husk
both blocked and dispersed laser light preventing acquisition of spectra from the intact
corn kernels. Only vibrational bands that originated from phenolic compounds could be
observed in such spectra (Figure 3). We hypothesized that this problem could be overcome
by spatially offset Raman spectroscopy (SORS). In SORS, two types of spectra are collected
in a sequential order. The first type of spectra was collected when both excitation and
collection axes were spatially co-aligned. These were typical normal Raman spectra that
were discussed above. The second type of spectra was collected with spatial offsets between
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the excitation and collection optical axes. These spectra were called ‘offset Raman spectra’.
This spectral collection approach allowed for probing deeper layers of the analyzed sample.
First pioneered by Matousek group, SORS quickly became broadly utilized to detect ex-
plosives and illicit drugs in opaque bags and containers [37–39]. There is a growing body
of evidence suggesting that SORS can be used to probe brain biochemistry through the
intact skull [40]. Our group previously demonstrated that SORS could be used to probe
nutritional content of intact potato tubers though the opaque peal [41].
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Figure 3. Raman spectra of corn husk (black) and kernels (maroon), as well as offset Raman spectra
collected from the corn cob with two layers of husk material.

The use of SORS for analysis of the intact corn cob showed that SORS failed to read
the content of intact corn kernels (data not shown). We found that only if the husk were
partially peeled and two husk layers remained, SORS could reveal the vibrational signatures
of corn kernels (Figure 3). It should be noted that excellent signals from the underlying
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corn kernels were obtained at all offsets ranging from 3.0 to 4.0 mm. In the acquired
offset Raman spectra, we observed vibrational bands originating from carbohydrates and
carotenoids. Similar to the discussed above rice hull, we found that corn husk provides
strong signals of the fiber (1601–1632 cm−1). These signals obscure readings of the fiber
content of the intact corn kernels.

3. Materials and Methods
3.1. Raman Spectroscopy

Spectra from intact seeds of 15 different rice varieties (Figure 4) were collected using
a hand-held Resolve Agilent spectrometer (Agilent Technologies, Santa Clara, CA, USA)
equipped with 830 nm laser. The following experimental parameters were used for all
collected spectra: 1 s acquisition time, 1 accumulation, 495 mW power, surface scanning
mode, and baseline spectral subtraction by device software. Spectra from the corn cob were
acquired with the same settings as described for rice except that the instrument was in
through-barrier mode, the offset distance was changed from 0–5 mm, and 10 accumulations
were used instead of 1.
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3.2. Statistical Analysis

Orthogonal partial least-squares discriminant analysis (OPLS-DA): all collected Raman
spectra were imported into SIMCA 14 (Umetrics, Umea, Sweden) for statistical analysis
and scaled to unit variance to give all spectral regions equal importance. OPLS-DA was
performed to determine the number of predicting and orthogonal significant components
and identify spectral regions that best explain the separation between the classes.

4. Conclusions

This work demonstrated that RS can be used for identification of the intact rice. OPLS-
DA results show that rice seeds can be identified with on average 86.2% accuracy. This
work also revealed limitations of RS and SORS for nutrient analysis. We found that a thick
husk limited direct assessment of the nutritional content of corn kernels. This information
could be revealed only if only two layers of husk material obscured the kernels.

Author Contributions: C.F.: investigation, data curation, and methodology; A.S.M.F.I.: crop cultiva-
tion, and methodology; E.M.S.: methodology and supervision; M.J.T. methodology and supervision;
D.K.: methodology, funding acquisition, and supervision. All authors contributed to the article
and approved the submitted version. All authors have read and agreed to the published version of
the manuscript.
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