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Abstract: This work entailed the development, optimization, validation, and application of a novel
analytical approach, using the bar adsorptive microextraction technique (BAµE), for the determina-
tion of the six most common tricyclic antidepressants (TCAs; amitriptyline, mianserin, trimipramine,
imipramine, mirtazapine and dosulepin) in urine matrices. To achieve this goal, we employed,
for the first time, new generation microextraction devices coated with convenient sorbent phases,
polymers and novel activated carbons prepared from biomaterial waste, in combination with large-
volume-injection gas chromatography-mass spectrometry operating in selected-ion monitoring mode
(LVI-GC-MS(SIM)). Preliminary assays on sorbent coatings, showed that the polymeric phases present
a much more effective performance, as the tested biosorbents exhibited low efficiency for application
in microextraction techniques. By using BAµE coated with C18 polymer, under optimized exper-
imental conditions, the detection limits achieved for the six TCAs ranged from 0.2 to 1.6 µg L−1

and, weighted linear regressions resulted in remarkable linearity (r2 > 0.9960) between 10.0 and
1000.0 µg L−1. The developed analytical methodology (BAµE(C18)/LVI-GC-MS(SIM)) provided
suitable matrix effects (90.2–112.9%, RSD ≤ 13.9%), high recovery yields (92.3–111.5%, RSD ≤ 12.3%)
and a remarkable overall process efficiency (ranging from 84.9% to 124.3%, RSD ≤ 13.9%). The
developed and validated methodology was successfully applied for screening the six TCAs in real
urine matrices. The proposed analytical methodology proved to be an eco-user-friendly approach to
monitor trace levels of TCAs in complex urine matrices and an outstanding analytical alternative in
comparison with other microextraction-based techniques.

Keywords: tricyclic antidepressants; urine samples; bar adsorptive microextraction (BAµE); novel
sorbent phases; biomaterials waste; flotation sampling technology; GC-MS

1. Introduction

According to the World Health Organization, depression is a common mental dis-
order, being one of the biggest causes of incapacity around the world. Depression can
be characterized by a vast number of symptoms, including but not limited to sadness,
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low self-esteem, difficulty to sleep, loss of appetite, fatigue, low concentration, and poor
decision making. In the most severe cases it can even lead to suicide. Antidepressants
are an effective way of treatment, which allows the patients to live a normal life. The first
commercially available antidepressant, introduced in 1955, was imipramine, a tricyclic
antidepressant (TCA) still widely used today [1–3]. However, these compounds have
narrow therapeutic range (between 50 and 300 µg L−1 in plasma). When concentration
exceeds 500 µg L−1, toxic effects, such as high body temperature, sleepiness, confusion,
cardiac arrest, among others, can happen and, when it rises to 1000 µg L−1, death may also
occur. Therefore, it is essential to develop sensible, accurate and simple analytical methods
together with suitable sample preparation approaches for the determination of these phar-
maceutical compounds in forensic matrices [4–6]. Nevertheless, when dealing with very
complex matrices like biological matrices, a sample preparation step is always a must. In
the past decades there has been a concern in making sample preparation more eco-friendly,
leading to new strategies that include several innovative concepts, namely, miniaturization,
simplification, much higher selectivity and sensitivity, the elimination of toxic organic
solvents, and reduction the sample amount. Apart from other microextraction approaches
such as solid-phase microextraction (SPME) or stir bar sorptive extraction (SBSE) [7–13],
bar adsorptive microextraction (BAµE), which was introduced in the last decade, presents
several advantages and has shown great simplicity and versatility by allowing the choice of
sorbent coating for each particular type of application. Materials such as activated carbons
(ACs) prepared from several sources, alumina, silica, cork, polystyrene divinylbenzene
(PS-DVB), modified pyrrolidine, silica-based polymers, and nanomaterials, such as carbon
nanotubes, and multi-walled carbon nanotubes have been used, demonstrating great per-
formance as sorbent phases for BAµE technique [14–19]. Nevertheless, the preparation and
application of new materials with specific sorption characteristics is still very important for
particular applications, especially those from ecological sources, such as biomaterial waste.
In addition, the BAµE devices can be lab-made, the experimental procedure is easy to
implement and cost-effective, requires low sample volume and negligible amounts (100 µL)
of organic solvent during the back-extraction step, presents remarkable performance, high
enrichment factors and analytical limits at the trace level. Recently, new generation BAµE
devices were introduced aiming to improve the overall procedure, promoting a better
interfacing with the instrumental systems, as well as an alternative option for the routine
work. The novel devices are smaller and more flexible, prepared with cylindrical nylon
supports coated with suitable adhesive films where the sorbents are fixed [10,14,20–23].

In the present work, a new analytical strategy is proposed for trace determination
of amitriptyline (AMT), mianserin (MIA), trimipramine (TRI), imipramine (IMP), mir-
tazapine (MIR) and dothiepin (DOT) (Figure 1) in urine matrices, using state-of-the-art
BAµE devices, coated with several phases, in combination with large-volume-injection
gas chromatography-mass spectrometry operating in the selected-ion monitoring mode
(LVI-GC-MS(SIM)). It is also our goal to test, compare and discuss the selectivity and
performance of several novel sorbents, having particular characteristics, prepared from
biomaterials waste. The development, optimization, validation, and application in urine
samples is also addressed.
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Figure 1. Chemical structures of the six TCAs studied in the present work. 
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fit the compounds under study. A mix solution of six TCAs was analyzed by GC-MS op-
erating in the full-scan mode acquisition, which allowed to obtain the target ions (base 
peaks) and quantifier ions, also in accordance with the literature (Table 1) [24–27]. The 
obtained chromatogram by LVI-GC-MS(SIM) showed symmetrical peak shapes in less 
than 20 min of running time. The instrumental analytical thresholds were evaluated 
through the LODs and LOQs, corresponding to S/N of 3:1 and 10:1, in which 0.50 μg L−1 
and 1.65 μg L−1 were achieved, respectively. The instrumental linearity was also assessed 
with eleven concentration levels ranging from 2.4 to 2500.0 μg L−1. Linear regressions 
showed plots with good linearity with determination coefficients (r2) higher than 0.9958. 

Table 1. Target ions (base peaks in bold) and quantifier ions for each TCA studied by LVI-GC-
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Figure 1. Chemical structures of the six TCAs studied in the present work.

2. Results and Discussion
2.1. LVI-GC-MS(SIM) Optimization

The initial step of this work was establishing the instrumental conditions that better
fit the compounds under study. A mix solution of six TCAs was analyzed by GC-MS
operating in the full-scan mode acquisition, which allowed to obtain the target ions (base
peaks) and quantifier ions, also in accordance with the literature (Table 1) [24–27]. The
obtained chromatogram by LVI-GC-MS(SIM) showed symmetrical peak shapes in less than
20 min of running time. The instrumental analytical thresholds were evaluated through
the LODs and LOQs, corresponding to S/N of 3:1 and 10:1, in which 0.50 µg L−1 and
1.65 µg L−1 were achieved, respectively. The instrumental linearity was also assessed with
eleven concentration levels ranging from 2.4 to 2500.0 µg L−1. Linear regressions showed
plots with good linearity with determination coefficients (r2) higher than 0.9958.

Table 1. Target ions (base peaks in bold) and quantifier ions for each TCA studied by LVI-GC-
MS(SIM), under optimized instrumental conditions.

TCAs Ions
(m/z)

Retention Time
(min)

AMT 58/202/215 12.91

MIA 193/220/264 13.13

TRI 58/249/294 13.22

IMP 58/234/280 13.28

MIR 195/208/265 13.77

DOT 58/202/295 15.96
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2.2. Optimization of the BAµE-µLD Efficiency

The first task in the BAµE optimization process is the selection of the most suitable sor-
bent phase for the target analytes involved. Afterwards, several experimental parameters
were studied using one-variable-at-a-time (OVAT) strategy, both for microextraction and
back-extraction stages, including the desorption solvent and time, stirring rate, matrix pH,
organic modifier, ionic strength, equilibrium time, and sample dilution effect, according to
previous reports [8,23,28–36]. Although OVAT does not allow the identification of possible
interactions between variables and requires many assays, this strategy is easy to imple-
ment in this type of optimizations since the number of variables is low and no relevant
interactions are expected in compliance with our expertise [8,37].

2.2.1. Selection of Sorbent Coatings and Back-Extraction Conditions

As usual in the BAµE technique, we started by selecting the best sorbent for the six
TCAs and, for the present study, we proposed to test new and conventional sorbents. Thus,
four new ACs (AC1, AC2, AC3 and AC4) prepared from biomaterials waste, as well as
six commercial polymers (SX, HLB, C18, SDVB, SCN and DVBM) were assayed under the
following experimental conditions; extraction stage: 5 mL of ultrapure water spiked with
100 µL of TCAs mix solution (500.0 µg L−1), pH 5.5, 3 h (990 rpm); back-extraction stage:
90 µL of MeOH, 30 min under ultrasonic treatment (42 ± 2.5 kHz, 100 W).

In a first approach, it was evaluated the adsorptive properties of the four new ACs
prepared from coconut fiber (AC1), coffee residue (AC2), sugarcane chaff (AC3) and
sugarcane bagasse (AC4) wastes, for the six target analytes. These biomaterials have already
been successfully tested to remove metal ions from aqueous solutions [38] and proven
to be ideal sorbents in environmental applications, namely for water cleaning treatment.
Preliminary assays from these new AC phases showed that the recoveries yields were
maximized at 12% for the six target TCAs (data not shown). Although these biomaterials
have shown remarkable performance for adsorption of metal ions from aqueous media,
based on the exploratory data obtained for organic compounds, we postulated that the
observed lack of efficiency can be attributed to the back-extraction stage, despite the
highly probable efficiency of the previous microextraction stage. Therefore, to evaluate
this hypothesis, additional experiments were carried out to verify the ability of the ACs
to extract the six TCAs from the aqueous medium. For this purpose, we used similar
conditions for microextraction, although assaying a solution of ultrapure water (5 mL) plus
25 µL of the TCAs mix solution (100.0 mg L−1) and 16 h of equilibration time. Subsequently,
a portion of the aqueous sample resulted from the microextraction stage was removed and
extracted with dichloromethane (50:50, v:v), followed by ultrasonic treatment (42 ± 2.5 kHz,
100 W, 5 min) and analysis of the organic phase by LVI-GC-MS(SIM). The results obtained
and depicted in Figure 2 shows, apart from the AC3 sorbent, that all the remaining carbon-
based coatings (AC1, AC2 and AC4) presented remarkable microextraction efficiencies,
since the resulting aqueous media do not present levels of TCAs higher than 15%. In this
sense, we found that the proposed back-extraction stage conditions would not be able to
efficiently remove the adsorbed TCAs, due to the very strong interactions established with
the surface of these novel biosorbents, leading to low overall recovery yields. It should be
emphasized that the analytical process of the BAµE technique is always characterized by a
two-stage balancing process (adsorption-desorption equilibrium), in which the adsorption
phenomena must be sufficiently effective during the microextraction stage, but not too
strong that could compromise the effectiveness of the subsequent back-extraction stage.
Like this, from the preliminary data achieved, we can deduce that the four biosorbents
tested herein seem very effective from the adsorption point of view, ideal for removal
processes (e.g., water decontamination, etc.), yet presenting great limitations as coating
phases for microextraction-based techniques.
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Figure 2. Remaining TCAs present in the aqueous matrix after the microextraction stage using the
four different ACs prepared from biomaterials waste.

This finding may also be associated due to the large surface area and small pore size
(<20 Å) presented by the four ACs under study, which may promote strong interactions
with the target compounds and may hinder the back-extraction stage. For this reason, we
decided to discard these biomaterial sorbents and assayed the six commercial polymeric
phases (SX, HLB, C18, SDVB, SCN and DVBM), since they seem to be more suitable for the
chemical structures of the target molecules involved. Figure 3 present assays performed
by using these six polymer-based coatings, showing the efficiency achieved for the six
TCAs, under similar experimental conditions, where the best selectivity is obtained for
C18 and SCN phases. Although these polymers are structurally very different, the results
obtained were expected, once the C18 polymer has a long aliphatic chain promoting strong
hydrophobic interactions with the aliphatic chains present in the molecular structures of the
target TCAs. On the other hand, the SCN polymer can promote dipole-dipole interactions
through the cyano group and the electronegative elements (N and/or S) present in the
chemical moieties of the six TCAs. Even so, we decided to evaluate the influence of the
stripping solvent involved during the desorption step for all six polymer-based coatings. In
general, the most common solvents used for the back-extraction stage in BAµE technique
are MeOH (Figure 3a), ACN and mixtures of both (Figure 3b) [8,18]. In this sense, the
data achieved showed that the use of an equivalent volume of MeOH and ACN presented
the best performance, which allowed the selection of three polymeric phases, i.e., SX,
C18 and SCN, the former promoting interactions through the N-vinylpyrrolidone group,
demonstrating the great influence of the solvent involved during the back-extraction stage.

Even so, to speed up the back-extraction process, ultrasonic treatment was also im-
plemented by using 15, 30, and 45 min of sonification time. The results obtained (data not
shown) lead us to quit using the SCN phase once it showed the worst efficiency among the
other two sorbent coatings. Therefore, the SX and C18 sorbents were selected for further
assays and it has been found that at least 15 and 30 min are respectively needed to fully
desorb the six TCAs from the microextraction devices.
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Figure 3. Effect of MeOH (a) and MeOH:ACN mix (b) stripping solvents on the back-extraction of
the six TCAs from the different polymer phases by BAµE-µLD/LVI-GC-MS(SIM). The error bars
represent the standard deviation of three replicates.

2.2.2. Microextraction Parameters

In this section, the first parameter optimized was the effect of the agitation stirring,
in which three different speeds were tested, i.e., 750, 990, and 1250 rpm. From the results
achieved (data not shown), it was observed that the best results occurred when 990 rpm
are used, in line with previous reports [29–36] and having been selected for further assays.

Afterwards, the solution pH was also adjusted in order to promote partially or com-
pletely non-ionized TCAs, which may condition the the recovery yields through reverse-
phase interactions [8,29,39]. The pKa values for the six TCAs under study vary between 6
and 10, noticing that at pH 12, all of them are in the non-ionized form. Figure 4a,b show the
results obtained from assays performed at several pH values (2.0, 5.5, 8.0 and 12.0), where
the best data are attained by using the C18 coating at pH 12.0, once the six target TCAs
become non-ionized [40]. However, when using the SX phase, the recovery yields did
not vary significantly with pH variation. This observation can be attributed to additional
chemical interactions promoted by the latter sorbent phase, other than reverse-phase type,
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e.g., dipole-dipole. For this reason, the optimization was pursued using only C18 polymer
at pH 12.
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The next optimization step was to study the effect of the medium polarity on the
recovery yields for the six TCAs, varying the content (0 to 20%) of an organic modifier
(MeOH). It is usually employed to minimize the possible adsorption of the analytes to the
glass walls of the sampling flask (“wall-effect”), which generally occurs for compounds
with log KO/W higher than 4. However, it can also lead to a solubility increment of the
analytes in the aqueous media, hindering the microextraction process [8,28]. As expected,
and once the six TCAs present log KO/W lower than 5, the best results were attained
without MeOH addition.

Afterwards, the matrix ionic strength was evaluated by increasing amounts of NaCl
(0 to 20%). An inert salt is usually added to the aqueous matrix to promote the “salting-
out” effect, reducing the target compounds solubility in water. Commonly, for analytes
presenting a log KO/W higher than 3.5, the addition of an inert salt does not improve the
recovery yields through the BAµE approach. This can be caused by several reasons; it can
caused by the “oil-effect” phenomena, promoting the migration of non-polar compounds
to the surface of the aqueous media, minimizing the contact between the analytes and
the microextraction device; it can enhance the viscosity by decreasing the equilibrium
kinetics; and the polymeric surface area can be blocked through the salt ions. Nevertheless,
discrepancies are sometimes observed, and therefore, this parameter should be always
evaluated [8,28]. Figure 4c depicts the obtained results, where the highest recovery yields
were obtained by using 5% of NaCl. A possible explanation to this finding is that there is a
maximum efficiency until that value, where the “salting-out” effect takes place, i.e., the
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available water to dissolve the analytes is reduced with the consequent increment on the
recovery yields. However, above 5% of NaCl, the “salting-in” effect can also occur, where
the analytes can interact with the salt ions through electrostatic interactions and decreasing
the recovery, in agreement with previous reports [41].

The equilibrium time was the next parameter to be optimized, since in equilibrium
conditions the maximum sensitivity and precision are achieved [8]. In Figure 4d, it is
possible to observe that the best results are achieved when the equilibrium time lasts for 16
h, in agreement with previous reports, where a comparable behavior was observed [23].
Even so, despite the substantial time involved, the analytical process can be performed
overnight without any special requirement. It is noteworthy that 16 h are needed to achieve
maximum recovery yields, although we can greatly reduce the equilibrium time and still
obtain efficiencies of about 65% by using only 1 h.

Finally, the effect of the sample dilution was also studied and, as expected, by keeping
the amount of the sorbent phase fixed and decreasing the sample volume, the recovery
yields increase due to the increase in the concentration factor. Thus, with a larger sample
volume, an instrumental response should increase due to the greater enrichment of the
extracted analytes, with the consequence of an increase in the equilibrium time [8,42–44].
In this sense, the variation of the sample volume was evaluated for five different levels
(1.5, 5.0, 10.0, 25.0 and 40.0 mL), with the results (data not shown) showing that the best
response was obtained with the use of only 5 mL of aqueous solution.

From the beginning, the BAµE devices used in this work were prepared with PP
subtracts. Nevertheless, to make them more compatible with the instrumental systems,
as well as to improve the routine work, new generation devices were already proposed
using nylon subtracts [23]. They are much smaller, more flexible, user-friendly, allows the
back-extraction stage in an only single step and compatible with the injection operation
of the conventional instrumental systems. So far, these devices had only been combined
with HPLC systems. In this work, we decided to combine, for the first time, the new
generation BAµE devices with a GC-MS system. For this purpose we decided to compare
the performance of the conventional devices with the new generation ones, as depicted in
Figure 5. From the data obtained, very similar performances are achieved between both
devices. Therefore, given the advantages of the nylon subtracts, these were adopted for the
validation and application sections.
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At the end of the optimization procedure, the attained recovery yields were between
80.5 and 99.6% for the six target TCAs (RSD < 12.1%), under the following experimental
conditions; extraction stage: 5 mL of ultrapure water spiked with 100 µL of TCAs mix
solution (500.0 µg L−1), pH 12, 5% NaCl, 3 h (990 rpm); back-extraction stage: 90 µL
MeOH/ACN (50:50), 30 min under ultrasonic treatment (42 ± 2.5 kHz, 100 W).
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2.3. Validation of the Proposed Methodology

After the optimization section, we proceeded to the validation of the proposed method-
ology (BAµE(C18)-µLD/LVI-GC-MS(SIM)) using blank urine matrices. In a first approach,
the analytical thresholds were determined through the LODs where values in between
0.20 and 1.56 µg L−1, were achieved. The linearity range was assessed between 10.0 and
1000.0 µg L−1 (nine concentration levels). This range was chosen once it included the
therapeutic, toxic and lethal concentration values for TCAs [45]. For the calibration plots,
we started by plotting a conventional linear regression, which showed good linearity
(r2 ≥ 0.9914), and according to the lack-of-fit test (at the confidence level 95%), it presented
a good fit for the present study, i.e., the Fcalc was always below the Ftab. Nevertheless,
by studying the data dispersion, the relative residues were too high (>15%), and it was
clearly visible a tendency in the residue plots, which showed heterogeneous profiles. As
a result, heteroscedasticity was observed for all TCA plots, which might be caused by
the large range of the concentrations considered. For this reason, ordinary least-squares
linear regression method was not fit for the attained data, since it results in large errors,
in particular for the lower concentrations. Given the evidence of heteroscedasticity, a
weighted linear regression method was adopted, once it is the simplest and most effective
way to compensate the data dispersion observed, especially for the lower concentration
levels. The quality of the fit of weighted regressions can be evaluated by calculating the
sum of percentage relative error (%RE). The appropriate weighting factor can be calculated
from the inverse of the variance. Nevertheless, this is impractical, once it requires several
determinations for each calibration point and a new calibration plot must be done every
time that the methodology is applied. Therefore, an empirical weight based on concentra-
tions (variable x) and responses (variable y) were used. Six weighting factors were tested,
1/y1/2, 1/y, 1/y2, 1/x1/2, 1/x and 1/x2. The data achieved shows that a weighting factor
of 1/y resulted in the lowest %RE across the whole range. The weighting factor should
be used in the calculation of the regression equation parameters as described in previous
works [45–48].

As stated before, the LLOQ was defined as the lowest concentration value in which it
is possible to quantify any analyte with precision and accuracy, i.e., it is the concentration in
which the RSD and %RE are lower than 20%. Table 2 summarizes the validation parameters,
namely the LODs, LLOQs, calibration equations and the r2 values achieved.

Table 2. LODs, LLOQs, calibration equations and r2 achieved for the six TCAs through BAµE(C18)-
µLD/LVI-GC-MS(SIM) methodology, under optimized experimental conditions.

TCAs LODs
(µg L−1)

LLOQs
(µg L−1) Calibration Equations r2

AMT

0.20

10.00

y = 34.4780 x − 0.0174 0.9974

MIA y = 7.3701 x − 0.0026 0.9974

TRI y = 13.0250 x − 0.0033 0.9988

IMP y = 3.5938 x − 0.0027 0.9960

MIR 0.39 y = 11.2264 x − 0.0026 0.9982

DOT 1.56 y = 29.1992 x − 0.0094 0.9978

As previously mentioned, accuracy and precision were calculated for inter and intra-
day at four spiking levels, as summarized in Table 3. The intraday accuracy and precision
values were between −12.0 and 14.2%, and ranging from 0.4 to 15.8%, respectively. The
interday accuracy and precision ranged from −8.2 to 20.0%, and between 2.1 and 19.9%,
respectively. These data show that the proposed analytical approach presented suitable
levels of accuracy and precision for trace level analysis of TCAs in urine matrices.
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Table 3. Inter and intraday accuracy and precision levels obtained for the six TCAs at four different
concentrations by BAµE(C18)-µLD/LVI-GC-MS(SIM) methodology, under optimized experimen-
tal conditions.

TCAs
Spiking Level

(µg L−1)
Intraday Interday

Accuracy (%) ± Precision (%) Accuracy (%) ± Precision (%)

AMT

10.0 5.1 ± 8.2 20.0 ± 15.0
50.0 −5.5 ± 4.6 −5.0 ± 8.9

500.0 1.7 ± 4.8 2.9 ± 12.2
1000.0 4.8 ± 8.8 −4.4 ± 11.8

MIA

10.0 −6.6 ± 4.3 −2.8 ± 16.7
50.0 −0.5 ± 11.1 0.1 ± 13.2

500.0 4.8 ± 8.6 1.9 ± 11.8
1000.0 −0.1 ± 8.9 2.5 ± 13.2

TRI

10.0 0.9 ± 6.8 13.1 ± 18.1
50.0 −1.7 ± 6.1 11.0 ± 13.8

500.0 5.7 ± 4.8 13.0 ± 9.2
1000.0 −4.1 ± 13.7 5.8 ± 11.7

IMP

10.0 −8.4 ± 9.0 14.8 ± 17.6
50.0 6.7 ± 12.8 2.4 ± 14.5

500.0 −1.2 ± 6.3 14.2 ± 14.9
1000.0 −0.5 ± 11.2 −4.3 ± 10.1

MIR

10.0 1.3 ± 15.8 15.9 ± 19.9
50.0 13.3 ± 0.9 14.5 ± 2.1

500.0 6.5 ± 6.0 13.0 ± 12.1
1000.0 −0.7 ± 7.3 11.1 ± 13.8

DOT

10.0 8.1 ± 0.4 14.1 ± 9.4
50.0 14.2 ± 2.5 1.0 ± 13.5

500.0 −8.2 ± 10.3 −4.5 ± 14.5
1000.0 −12.0 ± 7.2 −8.2 ± 10.1

Matrix effects, average recovery yields and process efficiency were also performed at
two different concentration levels (25 and 750 µg L−1), as presented in Table 4.

Table 4. Matrix effects, recovery yields and process efficiency obtained for the six TCAs at two
different concentrations by BAµE(C18)-µLD/LVI-GC-MS(SIM) methodology, under optimized exper-
imental conditions.

TCAs Spiking Level
(µg L−1)

Matrix Effects
(%) ± RSD (%)

Recovery Yields
(%) ± RSD (%)

Process Efficiency
(%) ± RSD (%)

AMT
25.0 90.2 ± 6.6 95.3 ± 9.6 86.0 ± 7.5

750.0 93.7 ± 12.5 107.9 ± 6.9 101.1 ± 12.9

MIA
25.0 100.1 ± 9.8 95.3 ± 7.2 95.4 ± 8.6

750.0 111.5 ± 11.2 111.5 ± 7.7 124.3 ± 11.7

TRI
25.0 102.1 ± 8.4 103.3 ± 9.3 105.5 ± 12.0

750.0 99.3 ± 8.2 109.0 ± 5.0 108.2 ± 7.9

IMP
25.0 91.9 ± 4.1 92.3 ± 11.1 84.9 ± 10.4

750.0 109.3 ± 13.9 106.5 ± 10.0 116.5 ± 12.6

MIR
25.0 95.6 ± 10.9 108.5 ± 12.3 103.6 ± 12.0

750.0 112.9 ± 14.4 99.0 ± 9.9 111.7 ± 13.9

DOT
25.0 91.3 ± 4.4 99.6 ± 8.9 90.9 ± 8.4

750.0 99.4 ± 11.6 103.7 ± 7.5 103.1 ± 13.9
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Matrix effects were found to be in between 90.2 and 112.9% (RSD < 14.4%). Results
above 100% show ionic enrichment and below, ionic suppression; 100% is the ideal, al-
though it is impossible to eliminate matrix effects [49–51]. The average recovery yields
achieved were between 92.3 and 111.5% (RSD < 12.4%). Finally, the process efficiency
ranged from 84.9 to 124.3% (RSD < 13.9%). These data proved that the developed method-
ology is well suited to determine trace levels of TCAs in urine matrices.

2.4. Application to Real Urine Samples

To test the applicability of the present methodology to real matrices, fifty-two urine
samples from anonymous donors were analyzed, using GC-MS operating in the full-
scan mode acquisition, to ensure possible positive identifications. Figure 6 depicts a
chromatogram from a urine sample spiked at the 100.0 µg L−1 for the six TCAs (a) and a
positive sample (b) for AMT with an amount of 158.87 ± 1.93 µg L−1, which is well above
the therapeutic levels [52]. The figures of merit presented show that good selectivity and
sensitivity are achieved by the proposed methodology.
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and a positive anonymous donor without spiking (b) analyzed through BAµE(C18)-µLD/LVI-GC-
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2.5. Performance Comparison with Other Microextraction Techniques

In the present contribution, we decided to compare the developed methodology with
other microextraction techniques dedicated for the analysis of TCAs in urine samples
already reported in the literature [6,27,52–55], as summarized in Table 5.

Table 5. Comparison between the present study and others analytical approaches already reported in the literature for each six TCAs
determination in urine and water matrices.

Analytical Method TCAs Recovery
Yields (%)

RSD
(%)

LOD
(µg L−1)

LOQ
(µg L−1)

Linear Range
(µg L−1) r2 Ref.

BAµE-µLD/LVI-GC-
MS(SIM)

AMT, MIA, TRI,
IMP, MIR, DOT ~100.0 <9.6 0.20 10.0

(LLOQ) 10.0–1000.0 0.9974 This
study

MSPE/HPLC-UV AMT, IMP 98.5–99.5
(RR) [6]

SPE/GC-MS AMT, MIA, TRI,
MIR, DOT 64.4–99.8 6.0–20.6 1.0–2.5 - 1.0–320.0 0.9963–

0.9996 [27]

SI-HLLE-DSPE-DLLME-
SFO/HPLC-UV AMT, IMP 69.0–84.0 3.0–4.0 0.2–0.3 0.7–1.1

(LOQ) 0.7–1000.0 0.9960–
0.9970 [52]

DLLME/HPLC-UV TRI 112.0 6.1 0.6 - 2.0–100.0 0.9946 [53]

HF-LPME/HPLC-UV AMT, IMP, - 6.8 - - - [54]

DLLME/GC-MS AMT, IMP 88.2–103.6 7.4–7.9 0.5 2.0 2.0–100.0 0.9990 [55]

DLLME: Dispersive liquid-liquid microextraction GC: Gas chromatography; HF-LPME: Hollow fiber-liquid phase microextraction; HPLC:
High performance liquid chromatography; MS: Mass spectrometry; MSPE: Magnetic solid-phase extraction; RR: Relative recovery; SI-HLLE-
DSPE-DLLME-SFO: Salt induced-homogenous liquid-liquid extraction, dispersive solid phase extraction, and dispersive liquid–liquid
microextraction based on the solidification of floating organic droplet; SPE: Solid-phase extraction; Ultraviolet.
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First, the obtained recovery yields and precision levels are much better or alike other
analytical approaches, both in water and urine matrices. The attained analytical thresholds
(LODs and LLOQs) compares favorably with the other proposed analytical methods.
Unlike other methodologies already reported, the present work has the great advantage of
encompassing therapeutic, toxic and lethal concentrations in its linear range. In short, the
methodology proposed herein can be considered an alternative for the determination of
the six TCAs involved in urine samples.

3. Materials and Methods
3.1. Chemicals and Standards

Methanol (MeOH, 99.9%), acetonitrile (ACN, 99.9%), formic acid (99%), acetic acid
(99.5%) and dichloromethane (99.9%) were purchased from Carlo Erba (Barcelona, Spain).
Sodium hydroxide (NaOH, 98.0%) was obtained from AnalaR BDH Chemicals (Leices-
tershire, UK). Phosphoric acid (85.0%) and disodium phosphate (99%) were purchased
from Panreac (Barcelona, Spain). Diphenylamine (DIF, 98.0%) used as internal standard
(IS) was purchased from Sigma-Aldrich (Saint Louis, MO, USA). Hydrochloric acid (HCl,
37%) was purchased from Sigma-Aldrich (Vienna, Austria). Ultra-pure water was obtained
from Milli-Q water purification systems from Merck Millipore (Burlington, MA, USA).
Six pharmaceutical tablets commercially available in the Portuguese market were used
to prepare the standard solutions: ADT produced by Generis (Amadora, Portugal) con-
taining 10 mg of amitriptyline hydrochloride (AMT); Tolvon produced by Merck Sharp
& Dohme (Paço de Arcos, Portugal) containing 30 mg of mianserin hydrochloride (MIA);
Surmontil produced by Laboratórios Vitória (Amadora, Portugal) containing 35 mg of
trimipramine (TRI); Tofranil produced by Amdipharm (Dublin, Ireland) containing 10 mg
of imipramine hydrochloride (IMP); Mirtazapina Alter produced by Alter (Alter do Chão,
Portugal) containing 15 mg of mirtazapine (MIR); Protiadene produced by Teofarma (Pavia,
Italy) containing 75 mg of dothiepin hydrochloride (DOT). Stock solution were prepared
according to previously described protocols [56,57], where each tablet was individually
meshed and dissolved in 10 mL of MeOH giving different concentrations according to the
pill initial dosage. Then, the solutions were sonicated (42 ± 2.5 kHz, 100 W, Branson 3510,
Switzerland) for 15 min, centrifuged at 3000 rpm for 10 min. Diphenylamine stock solutions
were prepared by dissolving in MeOH to give a final concentration of 1000 mg L−1, stored
at −20 ◦C in glass flasks and renewed every month.

3.2. Sorbent Phases

The sorbent phases used for coating the BAµE devices were from several ACs and
polymers. The novel four ACs were prepared from biomaterials waste, characterized,
and provided by the Industrial Biotechnology Laboratory from Tiradentes University
(Aracaju, Sergipe, Brazil). AC1 was obtained from coconut fiber (pHPZC 6.3, 1130 m2 g−1

(BET) surface area, <20 Å pore size); AC2 was obtained from coffee residue (pHPZC 7.3,
1308 m2 g−1 (BET) surface area, <20 Å pore size); AC3 was obtained from sugarcane chaff
(pHPZC 5.9, 1185 m2 g−1 (BET) surface area, <20 Å pore size); and AC4 was obtained
from sugarcane bagasse (pHPZC 6.9, 791 m2 g−1 (BET) surface area, <20 Å pore size).
The polymeric sorbents used were Strata-X (SX) (polymer containing N-vinylpyrrolidone;
33 µm particle size, 85 Å pore size, 800 m2 g−1 surface area), Strata-CN (SCN) (reversed
phase polymer containing ciano; particle size 55 µm, 70 Å pore size, surface area 500 m2 g−1)
and Strata SDB-L (SDVB) (reversed phase styrene-divinylbenzene polymer; particle size
100 µm, 260 Å pore size, 500 m2 g−1 surface area) from Phenomenex (Torrance, CA, USA);
Oasis HLB (HLB) (reversed phase N-vinylpyrrolidone-divinylbenzene co-polymer; 30 µm
particle size, 80 Å pore size, 830 m2 g−1 surface area and pH stability at 0–14) from Waters
(Milford, MA, USA); ENVI-18 (C18) (reversed phase octadecyl silica polymer; 45 µm
particle size, 60 Å pore size, 475 m2 g−1 surface area) from Supelco (Darmstadt, Germany);
LiChrolut EN (DVBM) (reversed phase ethylvinylbenzene-divinylbenzene co-polymer;
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particle size 40–120 µm, 60 Å pore size, surface area 1200 m2 g−1) from Merck Millipore
(Darmstadt, Germany).

3.3. Urine Matrices

Urine samples were obtained from the Joaquim Chaves Saúde clinic (Algés, Portugal)
and provided in total anonymity without any information from the donors. Additional
urine control samples were provided for the validation process from healthy volunteers
who guaranteed not to have consumed any of the TCAs under study. Upon arrival at the
laboratory, the samples were frozen (−20 ◦C) until use.

3.4. Experimental Set-Up
3.4.1. Preparation of the BAµE Devices

The BAµE devices were lab-made prepared. For the optimization assays, the devices
were made with polypropylene (PP) cylindrical subtracts, produced in similar way to
previous works [30,31]. PP subtracts with 10 × 3 mm were coated with a suitable adhesive
film, and then coated with powdered sorbents. To evaluate the similarity between the
conventional used PP devices and the new generation of BAµE devices, nylon cylindrical
subtracts were used. The nylon subtracts having 10 × 1 mm were coated with a suitable
adhesive film, and then coated with powdered sorbents [23]. Before being used, and to
remove potential impurities, the devices were cleaned with ultrapure water under magnetic
stirring and dried in a clean Kimwipe [23,30,31].

3.4.2. Optimization Assays

For the optimization assays, 5 mL of ultrapure water (pH 5.5) were added to a sam-
pling glass flask and spiked with 100 µL of a mix solution of all six TCAs (500.0 µg L−1),
resulting in a final concentration of 10.0 µg L−1. Afterwards, a conventional Teflon mag-
netic stirring bar and a BAµE device were introduced in the same flask. The microextraction
process was performed through floating sampling technology using a multi-point agitation
plate (Variomag HþP Labortechnik AG Multipoint 15, Oberschleissheim, Germany) at
room temperature (25 ◦C). After microextraction, the BAµE devices were removed from
the glass flasks with clean tweezers and a clean Kimwipe. For the back-extraction stage,
the BAµE devices were placed into glass vial inserts having 90 µL of an organic solvent
following by ultrasonic treatment (42 ± 2.5 kHz, 100 W) at room temperature (25 ◦C).
Afterwards, 10 µL of a DIF solution (IS; 10,000.0 µg L−1) were introduced to the glass vial
inserts, resulting in a final concentration of 1000.0 µg L−1. In the case of the PP devices and
after the back-extraction stage, these are removed from the vial before being sealed and
proceeding to the instrumental analysis. In the case of the nylon devices this step is not
required. Blank assays without spiking were also performed. Unless specified, each assay
was done in triplicate. Several parameters were studied to optimize the extraction efficiency
following an OVAT strategy. In this approach all variables are fixed, except one, and the
extraction efficiency is studied at several levels of this parameter. The selected parameters
for the optimization process were desorption solvent (MeOH, ACN, and MeOH/ACN
(50/50%, v/v) and time (15, 30, and 45 min), stirring speed (750, 990, and 1250 rpm),
pH (2.0, 5.5, 8.0, and 12.0), organic modifier (MeOH: 0, 5, 10, 15, and 20%), matrix ionic
strength (NaCl: 0, 5, 10, 15, and 20%), equilibrium time (1, 2, 3, 5, and 16 h) and sample
dilution effect using different volumes (1.5, 5.0, 10.0, 25.0, and 40.0 mL), in accordance with
previous reports [23,29–36].

3.4.3. Pre-Treatment of Biological Samples

After thawing at room temperature (25 ◦C), the samples were subjected to an alkaline
hydrolysis step to eliminate most of the interfering compounds from the urine samples, e.g.,
carbamide, uric acid, or calcium salts, etc. This process is similar to a previous described
hydrolysis method [53]. In this case, 200 µL of NaOH 10 mol L−1 was added to 1 mL of
urine and the solution was placed in an automatic evaporator (Laborota 4000 Efficient,
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Heidolph, Schwabach, Germany) at 60 ◦C for 10 min. Afterwards, the samples were
centrifuged for 10 min at 2000 rpm, and the supernatant transferred to new clean vials and
subjected to ultrasonic treatment (42 ± 2.5 kHz, 100 W) for 5 min. Lastly the samples were
filtered (0.45 µm nylon filters, Laborspirit, Lisbon, Portugal).

3.4.4. Validation and Real Sample Assays

Assays performed with urine samples were done after the optimal conditions were
found. In this sense, for each assay, 1.2 mL of urine was added to 3.8 mL of buffer solution
(pH 12.0, adjusted with HCl 5 mol L−1) with 5% of NaCl. For validation assays, 100 µL
of TCAs mix solution was added, except when performing blank assays. For the valida-
tion process several parameters were evaluated, such as linearity, analytical thresholds,
selectivity, accuracy, precision, recovery, matrix effects and the process efficiency, according
to previous works [50,51]. To assess the developed methods selectivity, the optimized
BAµE-µLD/LVI-GC-MS method was applied to urine control samples and the absence
of interfering compounds at the studied TCAs retention time was verified. Calibration
standards were prepared between 10.0 and 1000.0 µg L−1 to assess the linearity (estimated
with the lack-of-fit test), the coefficients of determination (r2) and residuals dispersion.
In order to determine intra and inter-day accuracy and precision, several assays (n = 6)
were performed using different spiking concentrations of TCAs mix solution, including
10.0, 50.0, 500.0, and 1000.0 µg L−1, corresponding to the lower limit of quantification
(LLOQ), low, medium, and high concentrations, respectively. Interday assays were per-
formed in three consecutive days and intraday assays were performed in the same day.
The acceptance criteria were that the relative residuals and relative standard deviations
(RSDs) ≤ 15%, except for LLOQ values were ≤20% values were accepted. The analytical
thresholds were assessed by the limit of detection (LOD) and LLOQ. The LOD corresponds
to a signal-to-noise (S/N) ratio of 3/1, while LLOQ is the lowest concentration where
it is possible to quantify according to accuracy and precision parameters, being the first
point in calibration curve, and also it corresponds to a S/N < 10. Lastly, to obtain matrix
effects, recovery yields, and process efficiency, three sets of samples, each at two different
concentrations (25.0 and 750.0 µg L−1), were prepared. Set A samples consisted of a mix
solution with all the TCAs at the previously stated concentrations. Set B samples were
fortified after the microextraction and before liquid desorption. Set C samples were spiked
before the microextraction. The ration between absolute peak areas of sets A and B allowed
for the calculation of matrix effects, between B and C for the recovery yields calculation,
and between A and C for the calculation of the process efficiency.

3.5. Instrumental Set-Up

GC-MS analyses were performed with an Agilent Technologies system (Santa Clara,
CA, USA) constituted by an Agilent 6890 series gas chromatograph, equipped with an Agi-
lent 7683 automating liquid sampler and a programmed temperature vaporization injector,
coupled to an Agilent 5973N mass selective detector. All data recorded and instrumental
control was performed in the MS ChemStation software (G1701; version E.02.02.1431).
Injection was made in solvent vent mode (vent time: 0.3 min, 50.0 mL/min, pressure
0.0 psi, purge flux: 60.0 mL/min, time 2.0 min) with programmed temperature starting
at 80 ◦C (0.45 min) to 280 ◦C (600 ◦C/min, 3 min isothermal). Large-volume-injections
(LVI) of 10 µL at 100 µL/min were performed. A capillary column was used Zebron ZB-5
(30.0 m × 0.25 mm × 0.25 µm; 5% phenyl, 95% dimethylpolysiloxane) (Phenomenex) for
the GC analysis, along with helium as the carrier gas, in constant pressure mode (9.82 psi).
Oven temperature was programmed starting at 80 ◦C (held for 1 min), to 240 ◦C (20 ◦C/min,
for 5 min), then to 245 ◦C (1 ◦C/min), and finally 300 ◦C (20 ◦C/min), achieving a total run
time of approximately 22 min. The transfer line temperature was 280 ◦C, the quadrupole
analyzer temperature was 150 ◦C, and the ion source temperature was 230 ◦C. A solvent
delay of 7 min was selected. Electron ionization was used (70 eV) in a range of masses
between 35 and 550 Da, in the full-scan mode, with an ionization current of 34.6 µA and a
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multiplier voltage of 1200 V. In the selected ion monitoring (SIM) mode several groups of
ions were monitored in a defined time frame according to their retention time, maintaining
a dwell time of 100 ms−1. All the instrumental data were performed in triplicate and the
calculations of each assay were performed by comparing the average peak areas of the
extracted compounds to the IS peak area.

4. Conclusions

The analytical methodology proposed in the present work was fully developed, op-
timized, validated and applied for the determination of trace levels of selected six TCAs
in urine matrices. The results show that the proposed approach compares favorably with
other analytical strategies already reported in the literature, especially regarding the re-
covery yields and linear range. The proposed method is simple and user-friendly, suitable
for trace analysis of TCAs in urine samples, in compliance with green analytical chemistry
principles and can be used as a tool for routine work.
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