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Abstract: Most of TM6-cluster compounds (TM = transition metal) are soluble in polar solvents,
in which the cluster units commonly remain intact, preserving the same atomic arrangement as
in solids. Consequently, the redox potential is often used to characterize structural and electronic
features of respective solids. Although a high lability and variety of ligands allow for tuning of redox
potential and of the related spectroscopic properties in wide ranges, the mechanism of this tuning
is still unclear. Crystal chemistry approach was applied for the first time to clarify this mechanism.
It was shown that there are two factors affecting redox potential of a given metal couple: Lever’s
electrochemical parameters of the ligands and the effective ionic charge of TM, which in cluster
compounds differs effectively from the formal value due to the bond strains around TM atoms.
Calculations of the effective ionic charge of TMs were performed in the framework of bond valence
model, which relates the valence of a bond to its length by simple Pauling relationship. It was also
shown that due to the bond strains the charge depends mainly on the atomic size of the inner ligands.

Keywords: redox potential; Lever’s parameters; metal–metal bond; bond valence sum; steric effect;
effective ionic charge

1. Introduction

One of the main questions often arising in the studies of redox potential of metal–
organic complexes is whether their electrochemical behavior can be predicted through the
properties of the metal and the isolated ligands [1]. This question is particularly pertinent
for the TM6-cluster compounds (TM = transition metal) (Figure 1). It was shown that a high
lability and diversity of the outer (apical or terminal) ligands in these compounds allow
for tuning of redox potential and the related spectroscopic properties in wide ranges [2,3].
The choice of the inner (capping or bridging) ligands is also crucial for the potential values.
However, a mechanism of the potential tuning is still unclear. To elucidate this mechanism,
in this paper we will discuss possible correlation between structural and electrochemical
properties of cluster compounds.
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ids. As an example, Figure 2 presents the redox potential of [Fe6S8(PEt3)6]n+ (n = 0–4) in 

dichloromethane solution as a function of the Fe-ion charge or formal oxidation state. 

Goddard et al. showed that each species from n = 0 to n = 4 can be a part of new solid phase 

with its own crystal and electron structures, e.g., [Fe6S8(PEt3)6], [Fe6S8(PEt3)6] (BPh4) etc. [4]. 

Thus, for cluster compounds, the redox transition in solution is intimately related to the 

respective changes in solids. The upper inset in Figure 1 shows the cyclic voltammetry 

(current vs. voltage) obtained for this system, with four oxidation and four reduction 

peaks, which take place upon electrochemical process. The redox potential, E1/2, is com-

monly calculated as a mean value between oxidation and reduction peaks for each transi-

tion between two species with different valence states. The black points on the main 

graph correspond to the formal oxidation states of the Fe atom upon transition between 

two redox-states, e.g., the average between Fe oxidation states in [Fe6S8(PEt3)6]4+ and 

[Fe6S8(PEt3)6]3+. In contrast, the red points are related to the initial species, e.g., to 

[Fe6S8(PEt3)6]4+ (see the reaction in the Figure 2). The average Fe valence is more appropri-

ate to characterize the redox transition, but the use of the valence for one of the species 

introduces only a systematic error, which is commonly not important for comparison of 

the redox potentials in different compounds. For example, for the Re6-, Mo6- and W6-com-

pounds with 24-electron cluster, it is usual to assign the redox potentials to the initial 

compound that losses one of the electrons in the electrochemical processes (24/23e redox 

transition) [5], in spite of the fact, that the potential is related to the mixture of two species. 

Figure 1. Cluster unit TM6Li
8La

6. The TM and the ligands are in red and green, respectively. TM-TM
bonds in octahedral clusters are marked in blue. The TM-L bonds around TM, inner and outer
ligands are in red, green and pink, respectively.

A possibility of such correlation is based on the fact that a large part of cluster com-
pounds is soluble in polar solvents, in which the cluster units maintain their atomic
structural arrangement. As a result, the electrochemical experiments, in particular cyclic
voltammetry, became one of the ways to characterize structural and electronic features of
solids. As an example, Figure 2 presents the redox potential of [Fe6S8(PEt3)6]n+ (n = 0–4)
in dichloromethane solution as a function of the Fe-ion charge or formal oxidation state.
Goddard et al. showed that each species from n = 0 to n = 4 can be a part of new solid
phase with its own crystal and electron structures, e.g., [Fe6S8(PEt3)6], [Fe6S8(PEt3)6] (BPh4)
etc. [4]. Thus, for cluster compounds, the redox transition in solution is intimately related to
the respective changes in solids. The upper inset in Figure 1 shows the cyclic voltammetry
(current vs. voltage) obtained for this system, with four oxidation and four reduction peaks,
which take place upon electrochemical process. The redox potential, E1/2, is commonly cal-
culated as a mean value between oxidation and reduction peaks for each transition between
two species with different valence states. The black points on the main graph correspond
to the formal oxidation states of the Fe atom upon transition between two redox-states,
e.g., the average between Fe oxidation states in [Fe6S8(PEt3)6]4+ and [Fe6S8(PEt3)6]3+. In
contrast, the red points are related to the initial species, e.g., to [Fe6S8(PEt3)6]4+ (see the
reaction in the Figure 2). The average Fe valence is more appropriate to characterize the
redox transition, but the use of the valence for one of the species introduces only a sys-
tematic error, which is commonly not important for comparison of the redox potentials in
different compounds. For example, for the Re6-, Mo6- and W6-compounds with 24-electron
cluster, it is usual to assign the redox potentials to the initial compound that losses one of
the electrons in the electrochemical processes (24/23e redox transition) [5], in spite of the
fact, that the potential is related to the mixture of two species.
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Figure 2. Redox potential of [Fe6S8(PEt3)6]n+ (n = 0–4) (vs. saturated calomel electrode (SCE)) in 

dichloromethane solution as a function of the formal charge (oxidation state) of the Fe-ion in 

the points of the redox transition (in black) and in the initial species (in red) (According to the 

electrochemical data of refs. [4,6]). The upper inset shows the cyclic voltammetry (current vs. 

voltage) with four oxidation and four reduction peaks associated with redox transitions upon 

electrochemical process. The low inset presents the chemical formula of the cluster species with 

respective potential, E1/2, which is the mean value between oxidation and reduction potentials for 

each redox transition. 
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Figure 2. Redox potential of [Fe6S8(PEt3)6]n+ (n = 0–4) (vs. saturated calomel electrode (SCE)) in dichloromethane solution
as a function of the formal charge (oxidation state) of the Fe-ion in the points of the redox transition (in black) and in the
initial species (in red) (According to the electrochemical data of refs. [4,6]). The upper inset shows the cyclic voltammetry
(current vs. voltage) with four oxidation and four reduction peaks associated with redox transitions upon electrochemical
process. The low inset presents the chemical formula of the cluster species with respective potential, E1/2, which is the mean
value between oxidation and reduction potentials for each redox transition.

Figure 2 illustrates a general relationship: the higher the transition metal (TM) charge,
the higher is the potential of the redox transition and the more difficult it is to oxidize the
cluster compound. Thus, it is clear that the redox potential of a cluster compound depends
on the TM oxidation state, but it is affected also by the ligand composition [2,3,7]. Pombeiro
summarized the efforts to establish the ligand effect on the redox potential for coordination
compounds [8]. In his review Pombeiro recommended to use a simple correlation proposed
by Lever [9]:

E1/2 = SM [Σ EL] + IM (1)

where SM and IM are tabulated constants for the redox couple of a given metal, which
depend on the spin state and stereochemistry, but, in organic solvent, are insensitive to the
net charge of the species. EL are the electrochemical parameters tabulated for about 200
different ligands [9].

Szczepura et al., used the Lever’s approach to explain the change in the redox potential
in three cluster compounds [Re6Se8(PEt3)5L]+ (L = I; 5-methyltetrazolate, 1,5-CH3CN4;
and acetonitrile CH3CN) [10]. Plotting the potential values of the complexes (measured
vs. ferrocene couple FeCp2

+/FeCp2) versus the EL sum for the six terminal ligands, they
obtained the linear correlation for the 24/23e redox transition:

E1/2 [Re(III)5Re(IV)/Re(III)6] = 0.378 Σ EL + 0.282 (V) (2)

where the numbers are not related to the Re metal, but rather to the cluster core, [Re6Se8]2+. Sim-
ilar approach was used by Yoshimura et al., who showed that for complexes, [Re6S8Cl4L2]2−

(L = N–Heterocyclic ligands), the redox potential depends linearly on the pKa values (the
analogs of EL), decreasing for more basic ligands (with higher pKa) [2]. This correlation was
explained by the effect of σ electrons of the ligands on the HOMO level of the Re6-cluster.
According to the authors, the potential growth for the ligand series L = dmap < mpy < py <
bpy < cpy < pz (dmap = 4-dimethylaminopyridine; mpy = 4-methylpyridine; py = pyridine;
bpy = 4,4-bipyridine; cpy = 4-cyanopyridine; pz = pyrazine) suggests that the coordination of
electron-withdrawing groups make the [Re6S8]2+ core more difficult to oxidize. Sasaki marked
that the increase of E1/2 related to substitution of Cl− ligands by pyridine is associated with
reduction of electron density on the cluster core due to the less effective π-donation ability of
pyridine as compared to that of Cl− [11].
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To determine the first redox potential, E1/2 [Re(III)5Re(IV)/Re(III)6], in a series of
cluster compounds, [Re6Li

8La
6]4− (Li = S or Se inner ligands, and La—various negatively

charged terminal ligands with different donor-acceptor character), Rojas-Poblete et al.
performed calculations based on the Born–Haber thermodynamic cycle and using rela-
tivistic DFT for estimating free-energy values. [12]. According to the authors, the redox
potential generally correlates well with the bonding energy calculated previously for the
same ligands [13]. The higher the absolute value of the negative energy, the lower is the
potential: F− < I− < Cl− < Br− < NCO− < NCS− < NC− < CN− < OCN− and more
stable should be the cluster complex, while the redox potentials for Cl−, Br− and I− are
relatively close to each other.

In 2001 Gabriel et al., summarized nicely the available values of the redox potentials
for Re6-, Mo6- and W6-cluster compounds [5]. However, they marked the difficulty to
derive out any general trend upon the ligand effect on these values. Indeed, many ques-
tions related to the redox potential still remain open. Is Equation (1) proposed by Lever
really relevant for estimating the ligand effect on the redox potential in the TM6-cluster
compounds? Do the inner and outer ligands affect differently the redox potential? If yes,
why does it happen? How does the presence of different ligands affect the electron density
distribution inside the cluster? Literature screening shows that none of the approaches
mentioned above used structural data to explain the redox properties of cluster compounds.
Moreover, as far as we know, none of the works took into account the effective ionic charges
of TMs, which differ considerably from the formal ones in the case of compounds with
metal–metal bonds [14]. Recently, using crystal chemistry approach, we described the
effect of the ligand surrounding on the effective ionic charges of TM in the solid cluster
compounds [15,16]. However, additional study is needed to investigate whether the results
of these works are also relevant for the redox process in solution.

Thus, in this paper we analyze the available electrochemical data, with the aim of
separating the different effects, which may affect the redox potential. Then, we calculate
the effective charges of the TMs in solids and correlate them with the electrochemical
data of the same cluster units in solution. To explain the obtained results, we present a
short description of the crystal chemistry of the TM6-cluster compounds. For calculation
of the ionic charges, we used the Bond Valence Model (BVM) [17], which relates the
interatomic distances to the bond valences by simple Pauling equation [18]. For ionic solids,
coordination compounds etc., it is well known that the BVM provides accurate values of
the ionic charges in the form of bond valence sum (BVS) [19]. In our previous works we
showed that the BVM is also very effective in the case of cluster compounds [20,21].

2. Methods: Calculations of the Effective Ionic Charges (or BVS) of TMs in
Cluster Compounds

The effective ionic charge of the TM in a given cluster compound can be calculated as
BVS of the metal–ligand bonds based on the lengths of these bonds, R TM-L, and respective
empirical constants, R0 TM-L [22]. To avoid any problem in the choice of these parameters,
we used an alternative way, namely, the method based on the bond order or valence
conservation in these type of cluster compounds (See Section 3.3.1) [23]. Hence, the
calculations were performed by the following formula:

VTM = N TM − Σ s TM-TM (3)

where N TM is the number of valence electrons of TM (7 for the Re atoms and 6 for the Mo
and W atoms. Note that in compounds under study all the electrons are bonding). Σ s
TM-TM is the BVS of the TM-TM bonds where each term of the sum is given by:

s TM-TM = exp[(R0 TM-TM − R TM-TM)/b TM-TM]. (4)

Here, s TM-TM and R TM-TM are the valence and length of the bond, respectively.
R0 TM-TM and b TM-TM are the bond valence parameters, transferable for the TM-TM pair in
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different compounds. These parameters were established in our previous works based on
quantum chemistry and crystal chemistry data: R0 Re-Re = 2.495 Å, b Re-Re = 0.26 Å; R0
Mo-Mo = 2.51 Å, b Mo-Mo = 0.34 Å; R0 W-W = 2.535 Å, b W-W = 0.29 Å [23].

The advantage of this method as compared to the original BVM mentioned above
is the universality of the bond valence parameters for all the Mo6-, W6- or Re6-cluster
compounds, which increases the accuracy of the BVS comparison for different complexes.
In addition, the crystal structures of most of cluster compounds are known from the X-ray
experiments, in which the position of the heavy atoms is determined much more accurately
than that of the relatively light ones. Thus, it is preferable to use the TM-TM distances in
the BVS calculations.

3. Results and Discussion
3.1. Analysis of Available Electrochemical Data
3.1.1. Case of the Constant Cluster Core and Different Outer Ligands

The first question that we would like to clarify is the validity of the Lever’s parameters
for cluster compounds. Correlation between the redox potential and the sum of the Lever’s
parameters for different series of the Re6-cluster compounds is presented in Figure 3.
The values of the redox potentials are taken from refs. [5,10,24,25]. The electrochemical
experiments were performed in CH3CN or CH2Cl2 solutions. The first two series can be
described by the formula Re6S8Cl6-xLx, in which the outer Cl ligands are partly replaced
by N–Heterocyclic (py, ppy = 4-phenylpyridine, bpy, mpy, bpe = 1,2-bis(4-pyridyl)ethan,
pz) or triethylphosphine (PEt3) ligand (L) groups. The larger the number of these groups, x,
the higher is the redox potential. In the third series, Re6Se8Cl6-xLx, the sulfur in the cluster
core is replaced by Se, while the outer ligands are represented by various organic and
inorganic atoms, groups and their combinations: I−, CN−, CH3CN, CO, PEt3, 1,5-MeN4C
and dppm = 1,1-Bis(diphenylphosphino)methane. In the last series, the Re6Te8 -core is
surrounded by CN− or CNCH3 ligands.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 12 
 

 

s TM-TM = exp[(R0 TM-TM − R TM-TM)/b TM-TM]. (4)

Here, s TM-TM and R TM-TM are the valence and length of the bond, respectively. R0 TM-

TM and b TM-TM are the bond valence parameters, transferable for the TM-TM pair in differ-

ent compounds. These parameters were established in our previous works based on quan-

tum chemistry and crystal chemistry data: R0 Re-Re = 2.495 Å, b Re-Re = 0.26 Å; R0 Mo-Mo 

= 2.51 Å, b Mo-Mo = 0.34 Å; R0 W-W = 2.535 Å, b W-W = 0.29 Å [23]. 

The advantage of this method as compared to the original BVM mentioned above is 

the universality of the bond valence parameters for all the Mo6-, W6- or Re6-cluster com-

pounds, which increases the accuracy of the BVS comparison for different complexes. In 

addition, the crystal structures of most of cluster compounds are known from the X-ray 

experiments, in which the position of the heavy atoms is determined much more accu- 

rately than that of the relatively light ones. Thus, it is preferable to use the TM-TM dis- 

tances in the BVS calculations. 

3. Results and Discussion 

3.1. Analysis of Available Electrochemical Data 

3.1.1. Case of the Constant Cluster Core and Different Outer Ligands 

The first question that we would like to clarify is the validity of the Lever’s parame- 

ters for cluster compounds. Correlation between the redox potential and the sum of the 

Lever’s parameters for different series of the Re6-cluster compounds is presented in Figure 

3. The values of the redox potentials are taken from refs. [5,10,24,25]. The electrochemical 

experiments were performed in CH3CN or CH2Cl2 solutions. The first two series can be 

described by the formula Re6S8Cl6-xLx, in which the outer Cl ligands are partly replaced by 

N–Heterocyclic (py, ppy = 4-phenylpyridine, bpy, mpy, bpe = 1,2-bis(4-pyridyl)ethan, pz) 

or triethylphosphine (PEt3) ligand (L) groups. The larger the number of these groups, x, 

the higher is the redox potential. In the third series, Re6Se8Cl6-xLx, the sulfur in the cluster 

core is replaced by Se, while the outer ligands are represented by various organic and in-

organic atoms, groups and their combinations: I−, CN−, CH3CN, CO, PEt3, 1,5-MeN4C 

and dppm = 1,1-Bis(diphenylphosphino)methane. In the last series, the Re6Te8 -core is sur- 

rounded by CN− or CNCH3 ligands. 

 

Figure 3. Redox potential (23/24 e−) of different series of Re6-complexes as a function of the 

Lever’s parameters of terminal ligands. The data for the Re6S8-, Re6Se8- and Re6Te8- cores are 

marked in black, red and blue, respectively. (According to electrochemical data of refs. 

[5,10,24,25]). 

Figure 3. Redox potential (23/24 e−) of different series of Re6-complexes as a function of the Lever’s parameters of terminal
ligands. The data for the Re6S8-, Re6Se8- and Re6Te8- cores are marked in black, red and blue, respectively. (According to
electrochemical data of refs. [5,10,24,25]).

As can be seen from Figure 3 for each series, the redox potential is linearly related
to the sum of the Lever’s parameters. Thus, Equation (1) is really valid for each series,
but it is not universal for all of them. At first glance, it seems natural that the redox
potential is affected by the kind of the inner ligands. It is logical to suggest that S, Se and
Te have different values of the electrochemical parameters EL (which we did not find in
literature), and this difference in EL is responsible for the separate correlations, E1/2(EL),
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for the complexes with the Re6S8-, Re6Se8- and Re6Te8-cores in Figure 3. However, this
suggestion contradicts with other electrochemical data. For example, the redox potentials
of Mo6S8(PEt3) and Mo6Se8(PEt3) measured for three redox transitions (19/20, 20/21 and
21/22e) in different solutions (THF and CH2Cl2) are almost identical, and in some cases
E1/2 of the selenide is even a little bit higher than that for the sulfide core [5,26]. Another
strange feature is the separate correlations, E1/2(EL), for the first two series, in spite of the
same Re6S8-core. These obvious deviations of the universal Equation 1 strongly suggests
that there is an additional factor besides the Lever’s parameters of ligands that should
be taken into account to rationalize the redox process. In order to clarify this, we have to
continue the analysis of the E1/2 data.

3.1.2. Case of the Fixed Lever’s Parameter for the Outer Ligands

In this section we would like to show how different position of the same ligand atom
affects the redox potential. For this, we chose Mo6-, W6- and Re6-halides and chalcogen-
halides. All three halogen ligands have close values of EL: −0.24 for Cl−, −0.22 for Br−
and −0.24 for I− [9]. Thus, we can expect that the redox potential of these compounds for
the same TM will be independent of EL. In fact, E1/2 for compounds with the same cluster
core [TM6Li

8] and different outer ligands are very close (Figure 4. The electrochemical data
are taken from ref. [5]). However, variation in the type of the inner ligands results in drastic
potential changes. For example, substitution of one of the inner Cl ligands in Mo6Cl14 (not
shown in Figure 4) by S or Se leads to the potential drop from 1.36 to 0.56 V. In this case,
the drop might be caused by the difference between the Lever’s parameters EL for Cl−
and chalcogenide ligands, but the replacement of Cl− by I− for the W6-cluster decreases
E1/2 from 0.93–0.99 to 0.56–0.57 V. This potential drop is certainly not related to the Lever’s
parameters, because the EL of Cl− and I− are exactly the same. Thus, it should be another
reason for the variations in the redox potential, but from the electrochemical data it is not
clear why the change in the position of the halogen ligands from the outer to the inner sites
is so crucial for the redox process. Hence, the next step of our study was the analysis of
ionic charges in cluster compounds.
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3.2. Correlation Between the Effective Ionic Charge (BVS) of TMs and the Redox Potential

In this section, our aim was to reveal the effect of ionic charges (taken as BVS) of TMs
on the redox potential, by excluding that of the Lever’s parameters. For this, we used
the electrochemical data, similar to those of Section 3.1.2. We correlated them with ionic
charges calculated for solids with the same cluster units as in solutions (Figure 5). For
example, to describe the effective ionic charge of the Mo atom in the [Mo6Cl8Cl6]2−-cluster
units, we calculated the respective BVS in three cluster compounds, (Bu4N)2[Mo6I8I6],
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Cu2[Mo6I8I6] and Cs2[Mo6I8I6]: 2.404; 2.487 and 2.438 v.u. These values show that, in spite
of different cations in the three compounds, the BVSs of the Mo atoms are relatively close
to each other and differ effectively from the formal value of 2. The results of calculations
based on the TM-TM distances for all cluster compounds are presented in Table S1.
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Figure 5. Redox potential (23/24 e−) as a function of ionic charges (BVS) of TM in Re6—(a) and Mo6—, W6—(b) cluster
compounds. The electrochemical data are taken from refs. [27,28] for the Re6-complexes, ref. [29] for the Mo6-complexes
with CF3COO ligands and refs. [5,30,31] for other compounds.

A first feature that strikes the eye in Figure 5a is a huge difference in the potential
of two series of the Re6-complexes. This difference can be explained by very different
EL values of the outer ligands: 0.02 for cyanide CN− and 0.37 for methyl isocyanide
CH3NC. In addition, all the data of Figure 5 show obvious correlation between the redox
potential and the effective ionic charge calculated for the respective cluster compounds.
This correlation is the most evident from Figure 5a. For each of two series of the Re6-
complexes, the effective ionic charge increases with sulfur substitution by Se and Te. The
higher the Re effective charge, the lower is the redox potential. (Note the TM BVS charge
has nothing to do with the usual notion of atomic charge in quantum chemistry: rather it is
related to the TM-L bond covalency, i.e., the larger the BVS charge, the greater the TM-L
bond covalency and, as a consequence, the lower the redox potential.) Similar potential
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drop with ionic charge can be seen for the Mo6- and W6-cluster complexes (Figure 5b).
Some point dispersion for these compounds is caused by the variety of the electrochemical
data presented by different authors. For instance, according to Gabriel et al., E1/2 vs. SCE
in CH3CN is equal to 1.36 V for [Mo6Cl8Cl6]2− [5], while Ebihara et al., and Jackson et al.,
presented the value of 1.56 [30] and 1.46 V [31], respectively. Nevertheless, it is clear that
for the inner ligands the effective ionic charge increases from Cl via Br to I, with respective
drop of the redox potential, while for the outer ligands this effect is much less pronounced.
For example, for the compounds, (Bu4N)2Mo6Cl8La

6, the ionic charge of the Mo atoms
increases from 2.953 for La = Cl to 2.962 for La = Br and to 3.067 for La = I. Thus, the redox
potential of cluster units is clearly affected by the effective ionic charge of TMs in respective
solids. Rationalization of these charges and the reason of their deviation from the formal
values is presented in the next section.

3.3. Steric and Electrostatic Effects in Cluster Compounds and Their Influence on the
Redox Potential
3.3.1. Basic Crystal Chemistry of Cluster Compounds

To explain the results presented above we have firstly to remind the unusual crystal
chemistry of the cluster compounds. In general, lattice strains caused by steric mismatch
between different atoms in their packing arrangement is a typical phenomenon for a
large part of solids. The bond strains result in the deviation of the BVSs from the formal
values [32], but in compounds without metal–metal bonds these deviations are commonly
very small. Additional metal–metal bonds change drastically this picture. The length
of these bonds, corresponding to the formal bond order, is in most cases too short to
match other bonds in the atomic packing. For the compounds under study a virtual naked
octahedral cluster with a single TM-TM bond (24-electron cluster) is in most cases much
smaller than a void formed by closely packed ligands. The larger the anion, the bigger is
the void, available for this cluster, and the higher is the cluster/void mismatch.

Due to this mismatch, in order to realize bonding, the metal–metal bonds should be
stretched, while the metal–ligand bonds should be compressed. For the TM6-clusters, the
main factor that predicts the stretching of the TM-TM bonds (and the cluster size) is the
size of the inner ligands, while influence of the outer ligands on the cluster size is relatively
small [33]. The bond strains result in the valence discrepancy. It was shown that due to
the high strains, the difference between effective and formal bond orders may be very
high (about 1 v.u.) [20,34]. Nevertheless, due to redistribution of electron density around
TMs, the valence (or bond order) deficiency in the metal–metal interactions is commonly
compensated for by valence excess in the metal–ligand bonds (bond order conservation
principle) [23]. As a result, the total BVS of TMs is equal or very close to the formal number
of their valence electron. In general, in compounds without metal–metal bonds, the lattice
strains impact the material instability [17]. In contrast, the bond strains in compounds
under study are associated with more symmetric distribution of the electron density around
TMs, stabilizing cluster units [23].

Another structural peculiarity of the TM6-cluster compounds is a high concentration
of positive ionic charge in the same void. This concentration results in a very special
distribution of the negative charges around clusters [35]. To illustrate this, the inset of
Figure 6 shows the BVSs of the I atoms in (Bu4N)2Mo6I8I6. In this type of compounds,
the inner and outer ligands are bonded to three and one TM atoms, respectively (See
Figure 1). Since the lengths of the TM-L bonds in both cases are very close, the BVS of
the inner ligands is about three times higher than that of the outer ones. Figure 6 shows
also the anion BVSs or, more precisely, the contribution of the Mo6-cluster to the anion
BVS for a number of cluster compounds with Mo6L8-core (L = Cl, Br, I). The BVS are
presented as a function of the anion distance from the cluster center. According to the BVS
drop, the TM6-cluster can be regarded as a virtual cation with high positive charge [16],
while the inner ligands efficiently shield the outer ones from this charge. Interestingly, the
BVS distribution is almost independent of the type of the outer ligands. For example, for
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(TBA)2Mo6Br8(CF3COO)6, the BVS of the inner (Br) and outer (O) ligand atoms is 1.91 and
0.57 v.u., respectively.
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3.3.2. Rationalization of the Factors Affecting the Redox Potential of Cluster Compounds

Now let’s highlight a few points that should be explained based on the above knowl-
edge of crystal chemistry of cluster compounds:

1. According to Equation (1) proposed by Lever, in organic solvents, the constants, SM
and IM, are insensitive to the net charge of the species [9]. Why is this not the case
for the compounds under study? In other words, why Equation (1) in our case is
not universal for the redox couple of a given metal? In which cases will the redox
potential depend solely on the Lever’s parameters?

2. Why does the position of a given ligand in the cluster surrounding (inner or outer
site) change effectively the redox potential of cluster compounds?

3. Which ligand property is responsible of the changes in the effective ionic charge
of TM?

The last two questions are the simplest ones. As was mentioned in the previous
section, the bigger are the anions in the cluster surrounding, the larger is the void formed
by these anions and the higher the mismatch between the unstressed cluster and the void.
Consequently, the higher is the difference between formal and effective ionic charges (BVS)
of TMs. Finally, it is the size of the ligand atoms that predicts the effective ionic charge and
its deviation from the formal value. Thus, the difference in the E1/2 (BVS) correlations that
we saw for various series in Figure 5 is caused by different radii of halogen or chalcogen
atoms: 1.67 Å for Cl−, 1.82 Å for Br−, 2.06 Å for I−, 1.70 Å for S2−, 1.84 Å for Se2− and
2.07 Å for Te2− [36]. Due to geometric and electrostatic shielding, it is the size of the inner
ligands that is the most effective in this case, while the effect of the outer ligands is rather
minor. Nevertheless, the distinction of the redox potential for two series of [Re6S8Cl6-
xLx]n− that we saw in Figure 3 could be assigned to the difference in the size of the N and P
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atoms in the respective outer ligands, which is evident from the Re-L distances: 2.16–2.22 Å
for L = N and 2.46–2.49 Å for L = P.

In order to answer the first question, we have to consider that Equation 1 was proposed
for compounds without metal–metal bonds. As was mentioned above, for such compounds
the BVS of TMs are commonly close to the formal values. In this case we can really expect
that the constants, SM and IM, will be insensitive to the net charge of the TMs species,
because this charge is almost constant. They will be different only for the different redox
couples of a given metal (see Figure 2). In the case of cluster compounds the effective ionic
charge of TM differs effectively from the formal one. It means that the net charge for a
given couple is not constant, but changes with the ligand size. In this case Equation (1)
proposed by Lever will be valid only for equal or at least for a close size of the inner and
outer ligands in all the cluster compounds in the series.

4. Conclusions

In this paper, we analyzed the electrochemical data available in literature, in order to
clarify the factors, which affect the redox potential of cluster compounds in polar solutions.
Based on the previous crystal chemistry works and calculations performed in this study
for respective solids, it was shown that the effective ionic charges (taken as BVSs) of TMs
in cluster compounds differ effectively from the formal values. Due to the bond strains,
the BVS of TMs are mainly governed by the size of the inner ligands. Thus, it was proved
for the first time that the potential for a redox couple of TM depends not only on the TM
constants and the electrochemical parameters of the ligands, as proposed by Lever for
compounds without metal–metal bonds, but also on the effective ionic charge of the TM in
a given cluster compound. Knowledge of the structure/TM charge relationship in cluster
units should allow for more effective tuning of the redox potential and of the respective
spectroscopic properties.

Supplementary Materials: The following are available online, Table S1: Average TM-TM distances
and the results of the BVS calculations for the TM6-cluster compounds used in Figure 5.
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