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Abstract: Methacrolein oxide (MACR-oxide) is a four-carbon, resonance-stabilized Criegee inter-
mediate produced from isoprene ozonolysis, yet its reactivity is not well understood. This study
identifies the functionalized hydroperoxide species, 1-hydroperoxy-2-methylallyl formate (HPMAF),
generated from the reaction of MACR-oxide with formic acid using multiplexed photoionization
mass spectrometry (MPIMS, 298 K = 25 ◦C, 10 torr = 13.3 hPa). Electronic structure calculations
indicate the reaction proceeds via an energetically favorable 1,4-addition mechanism. The formation
of HPMAF is observed by the rapid appearance of a fragment ion at m/z 99, consistent with the
proposed mechanism and characteristic loss of HO2 upon photoionization of functional hydroper-
oxides. The identification of HPMAF is confirmed by comparison of the appearance energy of the
fragment ion with theoretical predictions of its photoionization threshold. The results are compared
to analogous studies on the reaction of formic acid with methyl vinyl ketone oxide (MVK-oxide), the
other four-carbon Criegee intermediate in isoprene ozonolysis.

Keywords: reaction intermediates; oxidation reactions; reaction pathways; kinetics; mass spectrome-
try; ionization; volatile organic compounds; atmospheric chemistry

1. Introduction

Isoprene (2-methyl-1,3-butadiene), a five-carbon doubly unsaturated hydrocarbon, is
the most abundant non-methane species emitted into Earth’s atmosphere. The primary
source of isoprene is foliar emissions from the southern (48%) and northern (38%) tropics,
with total emissions approaching 600 Tg year−1 [1]. Ozonolysis is an important sink of
tropospheric isoprene (~10%) and proceeds via 1,3-cycloaddition of ozone to either of
the two C=C double bonds to yield a highly internally excited primary ozonide (POZ) as
shown in Scheme 1 [2,3].
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Scheme 1. Reaction scheme illustrating the generation of anti-MACR-oxide + formaldehyde and 
syn-MVK-oxide + formaldehyde from the ozonolysis of isoprene. 

The POZ subsequently decomposes to form carbonyl and zwitterionic carbonyl oxide 
products, the latter known as a Criegee intermediate [2,3]. Four pairs of reaction products 
are possible depending on which double bond of isoprene ozone adds to and the nature 
of the POZ decomposition. The four sets of products and relative yields from isoprene 
ozonolysis are formaldehyde oxide (CH2OO) + methyl vinyl ketone (ca. 17%), CH2OO + 
methacrolein (ca. 41%), methyl vinyl ketone oxide (MVK-oxide, CH3C(OO)CH(CH2) + for-
maldehyde (ca. 23%), and methacrolein oxide (MACR-oxide, HC(OO)C(CH2)CH3) + for-
maldehyde (ca. 19%) [2,4]. An illustration of the formation of MACR-oxide and MVK-
oxide from isoprene ozonolysis is shown in Scheme 1. 

The Criegee intermediates generated from isoprene ozonolysis are chemically acti-
vated and can undergo rapid unimolecular decomposition or can be thermalized through 
collisions to form stabilized Criegee intermediates [5]. Unimolecular decomposition of in-
itially energized and thermalized Criegee intermediates strongly impacts the oxidizing 
capacity of the atmosphere by contributing to the daytime hydroxyl (OH) radical budget 
and essentially all of the OH radicals at nighttime [6,7]. Stabilized Criegee intermediates 
can further impact the oxidizing capacity of the atmosphere by acting as oxidants them-
selves [8–11], and undergo rapid reaction with tropospheric pollutants such as formic acid 
and SO2 [12–16]. The products from these reactions are implicated in the formation of sec-
ondary organic aerosol (SOA) that are known to impact urban visibility [17], human 
health [18,19], and global climate [20,21]. Reaction with formic acid generates highly oxy-
genated, lower-volatility, functionalized hydroperoxides that may be precursors to SOA 
[12,15,16], whereas reaction with SO2 forms SO3 –  a critical sulfuric acid precursor that 
results in sulfate aerosol production [22–25]. This study is comprised of an experimental 
and theoretical investigation of the reaction of thermalized MACR-oxide with formic acid 
and includes a direct comparison to the reaction of MVK-oxide with formic acid, demon-
strating the differences in reactivity of these important atmospheric intermediates and at-
mospheric implications. 

MACR-oxide and MVK-oxide are isomers of each other, differing only by the posi-
tion of a methyl group. They differ from alkyl substituted Criegee intermediates in the 
presence of resonance stabilization through their conjugated pi bonds [12,26,27]. Each is 
predicted to have four conformational forms (syn/anti-cis/trans) with similar ground state 
energies (within ca. 3 kcal mol−1) compared to their respective lowest energy conformer 
[27,28]. The syn and anti conformers are separated by a high barrier (ca. 30 kcal mol−1) [28] 
for rotation about the C=O bond, such that interconversion is negligible at 298 K. Each syn 
and anti conformer comprises two configurations (cis/trans) that are distinguished by the 
orientation of the vinyl group with respect to the C=O bond. The cis and trans 

Scheme 1. Reaction scheme illustrating the generation of anti-MACR-oxide + formaldehyde and
syn-MVK-oxide + formaldehyde from the ozonolysis of isoprene.

The POZ subsequently decomposes to form carbonyl and zwitterionic carbonyl
oxide products, the latter known as a Criegee intermediate [2,3]. Four pairs of reac-
tion products are possible depending on which double bond of isoprene ozone adds
to and the nature of the POZ decomposition. The four sets of products and relative
yields from isoprene ozonolysis are formaldehyde oxide (CH2OO) + methyl vinyl ketone
(ca. 17%), CH2OO + methacrolein (ca. 41%), methyl vinyl ketone oxide (MVK-oxide,
CH3C(OO)CH(CH2) + formaldehyde (ca. 23%), and methacrolein oxide (MACR-oxide,
HC(OO)C(CH2)CH3) + formaldehyde (ca. 19%) [2,4]. An illustration of the formation of
MACR-oxide and MVK-oxide from isoprene ozonolysis is shown in Scheme 1.

The Criegee intermediates generated from isoprene ozonolysis are chemically acti-
vated and can undergo rapid unimolecular decomposition or can be thermalized through
collisions to form stabilized Criegee intermediates [5]. Unimolecular decomposition of
initially energized and thermalized Criegee intermediates strongly impacts the oxidizing
capacity of the atmosphere by contributing to the daytime hydroxyl (OH) radical budget
and essentially all of the OH radicals at nighttime [6,7]. Stabilized Criegee intermediates
can further impact the oxidizing capacity of the atmosphere by acting as oxidants them-
selves [8–11], and undergo rapid reaction with tropospheric pollutants such as formic acid
and SO2 [12–16]. The products from these reactions are implicated in the formation of
secondary organic aerosol (SOA) that are known to impact urban visibility [17], human
health [18,19], and global climate [20,21]. Reaction with formic acid generates highly
oxygenated, lower-volatility, functionalized hydroperoxides that may be precursors to
SOA [12,15,16], whereas reaction with SO2 forms SO3—a critical sulfuric acid precursor
that results in sulfate aerosol production [22–25]. This study is comprised of an experimen-
tal and theoretical investigation of the reaction of thermalized MACR-oxide with formic
acid and includes a direct comparison to the reaction of MVK-oxide with formic acid,
demonstrating the differences in reactivity of these important atmospheric intermediates
and atmospheric implications.

MACR-oxide and MVK-oxide are isomers of each other, differing only by the position
of a methyl group. They differ from alkyl substituted Criegee intermediates in the presence
of resonance stabilization through their conjugated pi bonds [12,26,27]. Each is predicted
to have four conformational forms (syn/anti-cis/trans) with similar ground state energies
(within ca. 3 kcal mol−1) compared to their respective lowest energy conformer [27,28]. The
syn and anti conformers are separated by a high barrier (ca. 30 kcal mol−1) [28] for rotation
about the C=O bond, such that interconversion is negligible at 298 K. Each syn and anti
conformer comprises two configurations (cis/trans) that are distinguished by the orientation
of the vinyl group with respect to the C=O bond. The cis and trans conformational forms are
expected to rapidly interconvert at 298 K by rotation about the C–C bond (<10 kcal mol−1

barrier) resulting in an equilibrium mixture of cis/trans conformers [12].
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Until recently, no synthetic methods for the isolated production of MACR-oxide
and MVK-oxide were known, preventing the direct study of their reactivity. Lester and
coworkers have demonstrated a photolytic method for selective production of MACR-oxide
and MVK-oxide in laboratory experiments [27,28]. This alternate synthetic mechanism
enabled the study of the electronic spectroscopy [26,27], infrared spectroscopy [28–30],
unimolecular reactivity [28,29,31,32], and bimolecular reactivity [12,33–35] of the four-
carbon isoprene-derived Criegee intermediates.

Criegee intermediates have been predicted and observed to have vast differences
in their unimolecular and bimolecular reactivity depending on their substituents and
conformational form [9,11,36]. The extended conjugation present between the carbonyl
oxide moiety and vinyl group of the four-carbon isoprene derived Criegee intermediates
fundamentally changes their electronic properties compared to Criegee intermediates with
saturated alkyl substituents, altering their unimolecular and bimolecular reactivity [36].
The available unimolecular decay mechanisms, transition state (TS) barriers for unimolec-
ular and bimolecular processes, and resultant rate coefficients are each impacted by the
extended conjugation and the relative changes in these properties alters the fate of these
Criegee intermediates in the atmosphere [28,37–40].

A novel unimolecular decay mechanism has been identified for some Criegee interme-
diates that have extended conjugation [38]. This mechanism is available for conformations
in which the terminal oxygen is oriented toward the vinyl group (e.g., syn-MACR-oxide
and anti-MVK-oxide) and proceeds via rapid 1,5 electrocyclic ring closure between the
carbonyl oxide moiety and vinyl group to form 5-membered cyclic peroxides known as
dioxoles [28,31,37,38]. The rapid unimolecular decay of these conformers (2500 s−1 for syn-
MACR-oxide and 2140 s−1 for anti-MVK-oxide) suggests the lifetimes of syn-MACR-oxide
and anti-MVK-oxide in the atmosphere are <1 ms, and bimolecular reactions, even those
with large rate coefficients, cannot significantly compete for their removal [36]. In contrast,
syn-MVK-oxide and anti-MACR-oxide are predicted to undergo unimolecular decay via
pathways with higher transition state barriers, resulting in slow thermal decay rates (33
and 10 s−1, respectively, at 298 K = 25 ◦C and 760 torr = 101.3 kPa) [28,38]. For example, the
unimolecular decay of syn-MVK-oxide has been shown to proceed through a 1,4 H-atom
transfer at a rate slower than Criegee intermediates with saturated alkyl substituents that
undergo an analogous unimolecular decay mechanism due to a higher transition state
barrier. The larger transition state barrier is attributed to loss of the extended conjugation
of syn-MVK-oxide [28,29,36,41]. For these conformers, unimolecular decay is sufficiently
slow that some bimolecular reactions can compete for their removal.

The transition state barriers of bimolecular reactions involving MACR-oxide and
MVK-oxide are also impacted by the disruption of their extended conjugation, resulting
in higher transition state barriers for reaction [12,34,38,42,43]. Reactions of MACR-oxide
and MVK-oxide with transition state barriers comparable to the energy of reactants (such
as reactions with water vapor and alcohols [38,42,43]) are most affected. For example, the
reactions of water vapor with syn-MVK-oxide and anti-MACR-oxide were found to be sub-
stantially slower than found for alkyl-substituted Criegee intermediates with similar carbon
backbones and conformational forms that lack resonance stabilization [12,34]. In contrast,
the rate coefficients for reaction of syn-MVK-oxide with formic acid and SO2 are as large as
those for Criegee intermediates such as CH2OO [12,14,44,45]. While the barriers for these
reactions are comparatively higher than for CH2OO, they are strongly submerged relative
to reactants such that the rate coefficients for reaction are not greatly impacted. However,
it has recently been shown that the reactivity of anti-MACR-oxide with SO2 is four times
faster than that for syn-MVK-oxide, with rate coefficients of (1.5 ± 0.4) × 10−10 cm3 s−1

and (4.2 ± 0.6) × 10−11 cm3 s−1, respectively [12,34]. In addition, MACR-oxide was found
to have a measurable, albeit slow, reaction with water vapor, whereas the reaction of MVK-
oxide with water vapor is negligible [12,34]. This comparison suggests that even though
disruption of the extended conjugation of MVK-oxide and MACR-oxide plays a significant
role in dictating their reactivity, their structural differences also affect their reactivity.
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We report herein the formation of a functionalized hydroperoxide species, 1-hydroperoxy-
2-methylallyl formate (HPMAF), from the reaction of MACR-oxide with formic acid using
multiplexed photoionization mass spectrometry (MPIMS, 298 K = 25 ◦C, 10 torr = 13.3 hPa).
Complementary high-level ab initio calculations support the formation of HPMAF from
this reaction via a nearly barrierless reaction pathway. A direct comparison is made to the
reaction of MVK-oxide with formic acid to highlight how differences in hydrogen bonding
affect reactions of the two isomers with formic acid.

2. Results and Discussion

The reaction of MACR-oxide with formic acid is expected to generate 1-hydroperoxy-
2-methylallyl formate (HPMAF), a functionalized hydroperoxide species, via a 1,4-addition
mechanism (Scheme 2) analogous to the reaction of saturated Criegee intermediates and
MVK-oxide with formic acid [12,15,16,46].
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Scheme 2. Mechanism for the reaction of MACR-oxide with formic acid, leading to the formation
of 1-hydroperoxy-2-methylallyl formate (HPMAF). HPMAF is predicted to fragment upon VUV
ionization into fragment ions at m/z 87 or 99. The calculated appearance energy of the m/z 87 and 99
fragment ion is 10.53 and 9.89 eV, respectively (CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ).

The proposed mechanism with formation of HPMAF is investigated via MPIMS
experiments at 298 K (=25 ◦C) and 10 Torr (=13.3 hPa). Kinetically resolved signal is not
observed on the parent mass channel of HPMAF (m/z 132) in the presence of formic acid.
However, a strong signal appears in the mass spectrum at m/z 99. In addition, a weak signal
present at m/z 87 is found to increase upon the addition of formic acid. Figure 1 shows a
representative mass spectrum integrated over the full kinetic time window (0–60 ms) and
VUV photon energy (9.0–11.0 eV, 50 meV steps). Gaussian fits of the mass spectra yield
peak positions of 87.043 ± 0.003 and 99.045 ± 0.002, consistent with the exact chemical
composition of C4H7O2 (87.045) and C5H7O2 (99.045), respectively. These product signals
are in accord with HCO2-loss (m/z 87) and HO2-loss (m/z 99) fragment ions, respectively,
observed from the photoionization of the functionalized hydroperoxide species formed
from the reaction of MVK-oxide with formic acid (Scheme 1) [12,33]. The time profile of
m/z 99 (Figure 2) obtained using 10.5 eV VUV photon energy exhibits a fast rise consistent
with rapid reaction of Criegee intermediates with organic acids [12,16,33]. In addition,
the amplitude of the product signal increases as a function of formic acid concentration
indicating that it originates from reaction with MACR-oxide. The minor fragmentation
pathway observed at m/z 87 is discussed in Section S1 of the Supplementary Materials
(Figures S1–S3).
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indicates the reaction is rapid and most of the MACR-oxide generated is reacted at (formic acid) = 
6.6 × 1012 cm−3. 

Identification of HPMAF is supported by high-level ab initio calculations of the 1,4-
addition reaction of anti-MACR-oxide with formic acid (Figure 3). The reaction begins 
with barrierless formation of a 7-membered cyclic pre-reactive complex (MACR-ox-
ide…FA) that is substantially submerged (−15.9 kcal mol−1) relative to reactants. Rapid 
interconversion between cis and trans conformational forms of MACR-oxide within the 

Figure 1. Fragment ions observed in the mass spectrum following the reaction of MACR-oxide with
formic acid (2.6 × 1013 cm−3) using MPIMS. The mass spectrum is obtained by integrating over
the full kinetic time window (0–60 ms) and VUV photon energy (9.0–11.0 eV). Gaussian fits to the
mass peaks yield exact masses of 87.043 ± 0.003 and 99.045 ± 0.002, consistent with the chemical
composition of C4H7O2 (87.045) and C5H7O2 (99.045) corresponding to HCO2-loss and HO2-loss
from photoionization of HPMAF, respectively.
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Figure 2. Temporal profile of m/z 99 observed from the reaction of MACR-oxide with formic
acid (light grey line (formic acid) = 0 cm−3, dark grey line (formic acid) = 6.6 × 1012 cm−3, black
line (formic acid) = 5.7 × 1013 cm−3) at a photoionization energy of 10.5 eV. The temporal profile
reveals the rapid formation of a stable product that fragments upon ionization into a fragment ion at
m/z 99. The small increase in the amplitude of the m/z 99 signal between the dark grey and black
traces indicates the reaction is rapid and most of the MACR-oxide generated is reacted at (formic
acid) = 6.6 × 1012 cm−3.

Identification of HPMAF is supported by high-level ab initio calculations of the 1,4-
addition reaction of anti-MACR-oxide with formic acid (Figure 3). The reaction begins
with barrierless formation of a 7-membered cyclic pre-reactive complex (MACR-oxide
. . . FA) that is substantially submerged (−15.9 kcal mol−1) relative to reactants. Rapid
interconversion between cis and trans conformational forms of MACR-oxide within the
pre-reactive complex structure is expected due to a low torsional barrier associated with
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the submerged transition state [33]. The transition state associated with the 1,4-addition
reaction (TSa, −15.8 kcal mol−1) has a similar structure and nearly identical energy as the
pre-reactive complex. This deeply submerged transition state facilitates rapid reaction and
leads to the formation of the functionalized hydroperoxide species, HPMAF. The transition
state involves the concerted transfer of a H-atom from formic acid to the terminal oxygen of
MACR-oxide, while a bond is formed between the carbonyl O-atom of formic acid and the
central C-atom of MACR-oxide as shown in Scheme 2. Finally, we consider spectator cataly-
sis of syn-MACR-oxide to dioxole products (Figure S6) but find a significant transition state
barrier (3.2 kcal mol−1) indicating this pathway is not competitive with the more favorable
1,4-addition mechanism (see Supplementary Materials Section S2). Additional details
regarding the electronic structure calculations, including analogous reaction pathways
characterized for the syn conformers of MACR-oxide, and tabulated electronic energies
and corrections, are provided in Section S2 of the Supplementary Materials (Table S1 and
Figures S4–S6).
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Figure 3. Reaction coordinate showing HPMAF formation from the 1,4-addition reaction of anti-trans-
MACR-oxide with formic acid (FA, green) at the CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ
level of theory including estimated CCSDT(Q) corrections.

The observation of a fragment ion associated with HO2-loss (m/z 99, Scheme 1) is
characteristic of the photoionization of functionalized hydroperoxide species [12,33,47].
Theoretical calculations were performed to complement the experimental observation of
the HO2-loss fragment ion (m/z 99) and absence of signal at the parent mass of HPMAF
(m/z 132) upon photoionization. A schematic plot illustrating the minimum energy path
for dissociation of the HPMAF ion to the HO2 radical and ion co-fragment along the C–O
bond coordinate is shown in Figure 4 at theωB97XD/6–31 + G* level of theory. Figure 4
illustrates vertical excitation from the optimized ground state geometry of the most stable
conformer of HPMAF to the ion state (dark blue). The relaxation energy associated with
the Franck–Condon geometry to the minimum of the ion state is evaluated to obtain the
adiabatic ionization energy (AIE, blue dashed line to green point). The minimum energy
path to HO2-loss is obtained through constrained optimizations (stepping the C–O bond
length while allowing all other degrees of freedom to optimize, ωB97XD/6–31 + G*) of
the equilibrium geometry of the ion (green), through an intermediate configuration (light
blue), and finally to full separation of HO2 and fragment ion co-products (orange dashed
line). The asymptotic energy associated with the fully separated products is obtained from
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separate calculations of the HO2 radical and ion co-products (red point). The constrained
optimizations indicate there is no transition state barrier to dissociation of the HPMAF
ion. In addition, the asymptotic energy for HO2-loss is substantially below the vertical
ionization energy (VIE) for HPMAF. Thus, we expect to observe the HO2-loss fragment ion
at VUV photon energies greater than the calculated asymptotic energy (grey shaded region).
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Figure 4. Constrained optimization (ωB97XD/6–31 + G*) of the C–O bond length associated with
HO2 dissociation from the HPMAF ion. Significant points included are: Franck–Condon excitation
from the equilibrium geometry of the ground state (dark blue), the adiabatic minimum of the ion state
(green), an intermediate point along the HO2 dissociation coordinate (light blue), separated products
in the relaxed optimization (orange), and (red) asymptotic energy for the HO2-loss fragment ion.
The grey shaded region illustrates that the HO2 + ion co-fragment asymptote is below the calculated
vertical ionization energy, suggesting the photoionization process will result in dissociative ionization.

Higher level calculations of the critical points along the fragmentation pathway are
evaluated at the CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ (CCSD(T)/TZF) level
and provided in Table 1.

Table 1. Vertical ionization energy (VIE) and zero-point energy corrected adiabatic ionization energy
(AIE) of HPMAF, and asymptotic energies for the anticipated fragment ions calculated at three levels
of theory. All energies are reported relative to the most stable conformational form of HPMAF.

ωB97XD
6–31 + G*

B2PLYP-D3
cc-pVTZ

CCSD(T)-F12
TZF

VIE (HPMAF) 9.71 9.94 10.18
AIE (HPMAF) 9.16 9.32 9.73

CH3C(=CH2)C+HOOH
(HO2-loss) 9.58 9.56 9.89

CH3C(=CH2)C+HOC(O)H
(HCO2-loss) 10.17 10.05 10.53

The higher level CCSD(T)/TZF calculations reveal that C-O bond fission from the
adiabatic minimum requires only 0.16 eV (3.7 kcal mol−1). This indicates the HO2 group is
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weakly bound in the HPMAF ion such that dissociation is facile at VUV energies greater
than 9.89 eV. In addition, there are significant differences in the optimized geometries of
the ground and ion states (Figure 4) suggesting Franck–Condon overlap may be weak near
the threshold for ionization of HPMAF. This poor overlap is evidenced by a significant
difference in the calculated AIE and VIE of HPMAF (0.45 eV). The combination of small
Franck–Condon overlap near the threshold for ionization and the small amount of energy
required for HO2-loss from the HPMAF ion suggests the HPMAF parent signal at m/z 132
may be weak or missing, consistent with the experimental result.

Further evidence for the formation of HPMAF is obtained by comparing the pho-
toionization spectrum of the m/z 99 product with the calculated asymptotic energy of the
HO2-loss fragment ion. The photoionization spectrum of the m/z 99 product integrated
over the full kinetic time window (0–60 ms) for each VUV photon energy (9.0–11.0 eV,
50 meV steps) is shown in Figure 5. The asymptotic energies computed for HO2-loss
(9.89 eV) and the VIE of HPMAF (10.18 eV) are shown by the green solid and dashed
lines, respectively. Uncertainty in the calculated ionization energies is represented by the
grey shaded region (± 0.1 eV). Higher energy conformers of HPMAF are likely populated
under the experimental conditions (298 K = 25 ◦C, 10 torr = 13.3 hPa), and would have
a lower appearance energy than the most stable conformer by up to 0.2 eV (light grey
shaded region). There is good agreement between the observed and calculated appearance
energy for HO2-loss from HPMAF. Thus, the HO2-loss mass channel (m/z 99) provides
direct evidence for the formation of HPMAF from the reaction of MACR-oxide with formic
acid. The photoionization spectrum of the m/z 87 mass channel integrated over the full
kinetic time window (0–60 ms) for each VUV photon energy (9.0–11.0 eV, 50 meV steps) is
shown in Figure S3, which reveals low and high energy components suggestive of multiple
species contributing to the photoionization signal. The appearance energy of the higher
energy component agrees well with the asymptotic energy computed for the HCO2-loss
fragment ion shown in Scheme 2. The origin of the lower energy component is discussed
in Section S1 of the Supplementary Materials.
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Figure 5. Photoionization spectrum of m/z 99 obtained upon introduction of formic acid
(2.6 × 1013 cm−3) and integration over the full kinetic time window (0–60 ms) with calculated
appearance energy of the HMPAF–HO2 fragment ion (green solid line) and vertical ionization energy
of HPMAF (green dashed line). The grey shaded region represents uncertainty associated with the
calculated ionization energies (±0.1 eV). The light grey shaded region represents the appearance
energy of higher energy conformers of HPMAF.

Analogous electronic structure calculations were previously carried out to study the
reaction of MVK-oxide with formic acid [12,33]. MVK-oxide is the other four-carbon
unsaturated Criegee intermediate that can be formed from isoprene ozonolysis. Since
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MVK-oxide and MACR-oxide are isomers of each other, a direct comparison of the reaction
energetics is especially meaningful. A comparison of the absolute energetics for the reaction
of anti-trans-MACR-oxide and syn-trans-MVK-oxide with formic acid is shown in Figure 6.
syn-trans-MVK-oxide is more stable than anti-trans-MACR-oxide by ca. 5.9 kcal mol−1. The
stabilization of syn-trans-MVK-oxide is in part due to the presence of two hydrogen bonding
interactions between the terminal O-atom of MVK-oxide with the adjacent H-atoms of
the methyl group (illustrated in Figure 6 by grey dashed lines), as observed for the syn
conformer of the methyl-substituted Criegee intermediate, CH3CHOO [48,49]. A similar
stabilizing interaction is not available for anti-MACR-oxide because the methyl group is
adjacent to the vinyl substituent and pointing away from the carbonyl oxide moiety. The
difference in energy decreases to ca. 4.3 kcal mol−1 upon formation of the pre-reactive
complex between the Criegee intermediates and formic acid, likely due to a stronger dipole-
dipole interaction between the O-atom of the C=O of formic acid with the central C-atom
of the carbonyl oxide group of anti-MACR-oxide. The stronger dipole-dipole interaction
is manifested in the smaller intermolecular distance in anti-MACR-oxide . . . FA (2.485 Å)
compared to syn-MVK-oxide . . . FA (2.891 Å). The larger intermolecular distance in the
syn-MVK-oxide pre-reactive complex is likely due to steric hindrance of the methyl group
adjacent to the terminal oxygen. The transition state barrier for the 1,4-addition of formic
acid to MVK-oxide is slightly larger (1.6 kcal mol−1) than that for MACR-oxide, which is
nearly barrierless (0.1 kcal mol−1), resulting in an energy difference between the transition
states of ca. 3.1 kcal mol−1. At the transition state, the distance between the O-atom of
formic acid and C-atom of the Criegee intermediate are similar, 2.294 Å and 2.263 Å, for
the reactions involving MACR-oxide and MVK-oxide, respectively. The slightly higher
barrier for the 1,4-addition of formic acid to MVK-oxide can be explained by the loss
of one hydrogen bonding interaction at the transition state due to rotation of its methyl
group (Figure 6, teal arrow). The energies of the two systems are nearly identical upon
formation of the functionalized hydroperoxide product where the extended conjugation of
both systems and the hydrogen bonding interactions present for MVK-oxide are lost.
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with anti-trans-MACR-oxide (green) and syn-trans-MVK-oxide (teal) Criegee intermediates (CIs).
Energies for the reaction of syn-trans-MVK-oxide are adapted from Ref. [33] with permission from
the PCCP Owner Societies. All energies are reported in kcal mol−1 at the CCSD(T)-F12/TZF level
of theory.
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As a result of the highly submerged reaction pathway, the energetic differences that
arise from steric hindrance and disruption of the hydrogen bonding interactions present
for MVK-oxide likely do not result in a substantial difference in the rate coefficient for the
reaction of formic acid with MVK-oxide (3.0 × 10−10 cm3 s−1) [12] compared to that with
MACR-oxide. However, we anticipate that these interactions may play a more significant
role in reactions in which the energy of the transition state is similar to that of the reactants,
leading to enhanced MACR-oxide bimolecular kinetics compared with MVK-oxide. For
example, the conformational form of the methyl-substituted Criegee intermediate with the
terminal O-atom oriented away from the methyl group (anti-CH3CHOO) has been shown
to have dramatically enhanced reactivity (ca. 103–105) with reactants, such as water vapor
and alcohols, compared to syn-CH3CHOO [38,42,43,50–53]. The enhanced reactivity of
anti-CH3CHOO arises from its ability to have more favorable dipole-dipole interactions
with reactants than for syn-CH3CHOO. In addition, there is an energetic consequence for
disrupting the hydrogen bonding interaction between the terminal O-atom and methyl
substituent for syn-CH3CHOO that gives rise to a larger transition state barrier for reaction.
Thus, we anticipate that the enhanced reactivity of anti-MACR-oxide with SO2 and water
vapor [12,34] may originate from the ability of MACR-oxide to have stronger dipole-dipole
interactions with reactants as well as the absence of hydrogen bonding interactions that are
present for syn-MVK-oxide.

Previous studies of smaller Criegee intermediates have demonstrated that unimolec-
ular decay or reaction with water dimer are important tropospheric sinks [50,54–57], the
latter due to the much higher concentration of water vapor in the troposphere compared
with other potential bimolecular reaction partners (e.g., NO2, SO2, organic acids). By
contrast, anti-MACR-oxide is predicted to have a relatively long atmospheric lifetime
compared to other Criegee intermediates due to its slow predicted unimolecular decay rate
(ca. 10 s−1, 298 K) [38] and small effective rate coefficient with water monomer and dimer
((9 ± 5) × 10−17 cm3 s−1); and thus other bimolecular reactions may be important [34].
The large rate coefficient measured for the reaction of anti-MACR-oxide with SO2 [34],
and the large anticipated rate coefficient for its reaction with formic acid due to the highly
submerged reaction pathway (~ 10−10 cm3 s−1) [12] mapped out in this work indicates
these reactions can compete for anti-MACR-oxide removal in environments with abun-
dant SO2 and formic acid. Global modeling indicates the reaction of MVK-oxide with
SO2 contributes to sulfuric acid production, ultimately enhancing the formation of sulfate
aerosols [12]. In addition, the reaction of MVK-oxide with formic acid leads to ca. 20%
reduction in modeled formic acid globally. We anticipate that the reaction of MACR-oxide
with formic acid will play a similar role to MVK-oxide in the removal of formic acid in
areas with large isoprene emissions such as the Amazon [12], and generate functionalized
hydroperoxide species that may be precursors to secondary organic aerosols [16].

3. Materials and Methods
3.1. Experimental Methods

Products from the reaction of MACR-oxide with formic acid are investigated using
the Sandia Multiplexed Photoionization Mass Spectrometer (MPIMS) apparatus interfaced
with the tunable vacuum ultraviolet (VUV) radiation of the Chemical Dynamics Beamline
(9.0.2) of the Advanced Light Source (Lawrence Berkeley National Laboratory, Berkeley,
CA, USA) [58]. MACR-oxide is generated by photolysis of the (E)-1,3-diiodo-2-methylprop-
1-ene precursor and subsequent reaction of the iodoalkenyl radical products with O2 as
described previously [27,31]. The precursor ((~2–3) × 1013 cm−3) is entrained in a He
flow using a pressure and temperature controlled glass bubbler (100 torr = 133.3 hPa,
298 K = 25 ◦C) and mixed with O2 (~6.4 × 1016 cm−3) and formic acid in a He bath gas
using calibrated mass flow controllers. The gas mixture is delivered to a halocarbon wax-
coated quartz reactor tube (298 K = 25 ◦C, 10 torr = 13.3 hPa), which is photolyzed along
its length with the 248 nm output of a KrF excimer laser (40 mJ cm−2 pulse−1). The laser
energy is selected to reduce the concentration of MACR-oxide (max. ~1 × 1012 cm−3)
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in order to minimize secondary chemistry. Reactants, intermediates, and products are
continuously sampled from an orifice (~650 µm) in the reactor sidewall into vacuum. The
resultant free jet expansion is skimmed and intercepted orthogonally by tunable VUV
radiation. Ions generated via absorption of the VUV radiation are pulse extracted by
ion optics and detected using orthogonal acceleration time-of-flight mass spectrometry.
Products resulting from the reaction of MACR-oxide with formic acid are investigated with
fixed ionization energy (10.5 eV) and photoionization scans (9.0–11.0 eV, 50 meV steps).

3.2. Theoretical Methods

Complementary electronic structure calculations are carried out to characterize the
energies of the MACR-oxide conformers, the barriers to cis/trans isomerization, and the sta-
tionary points for the reaction of the MACR-oxide conformers with formic acid. The station-
ary points for the reaction of the four conformers of MACR-oxide with formic acid are de-
termined at the CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ (CCSD(T)/TZF) level
of theory including zero-point energy (ZPE) corrections. An estimation of the CCSDT(Q)
correction for higher order excitations in the coupled cluster expansion is also incorporated
to account for multireference effects. The estimate is based on CCSDT(Q) corrections
calculated for the isomerization of MVK-oxide [28] and the chemical reaction of CH2OO
with SO2 [12].

Additional electronic structure calculations are carried out to investigate the mini-
mum energy path to fragmentation of the HPMAF ion (HO2-loss, CH3C(=CH2)C+HOOH)
following VUV photoionization. The geometry of the HPMAF ion is optimized and the
minimum energy path to HO2-loss is mapped through constrained optimizations of the
C–O bond length at theωB97XD/6–31 + G* level. Higher level calculations are carried out
to obtain the vertical and adiabatic ionization energies of HPMAF, and appearance energy
of the HO2-loss fragment ion at the CCSD(T)/TZF level. The appearance energy of the
HO2-loss fragment ion is obtained by summing the energies of separate optimizations of
the HO2 and fragment ion. ZPE corrections are included for the adiabatic ionization energy
and appearance energy of the HO2-loss fragment ion. TheωB97XD and B2PLYP-D3 are
performed using Gaussian16 [59], whereas the CCSD(T)-F12 calculations are done using
Molpro 2015 [60].

4. Conclusions

In this study, we perform high level ab initio calculations that show there is a highly
submerged pathway for the reaction of MACR-oxide with formic acid via a 1,4-addition
mechanism that generates a functionalized hydroperoxide species, HPMAF. We identify
HPMAF from the reaction of MACR-oxide with formic acid with photoionization (MPIMS)
detection. Specifically, dissociative photoionization of HPMAF is observed by the identifica-
tion of fragment ions associated with HO2-loss (m/z 99) and HCO2-loss (m/z 87) processes
characteristic of functionalized hydroperoxides. Rapid appearance of photoionization
signal at m/z 99 and 87 is consistent with the highly submerged pathway for reaction.
The experimental fragment ion appearance energies agree with calculations of their ap-
pearance energies, providing further support for the formation of HPMAF in the reaction
of MACR-oxide with formic acid. Additional calculations mapping out the minimum
energy path for dissociation of the HPMAF ion to the HO2-loss fragment ion indicates
the asymptote for dissociation is below the vertical ionization energy associated with
Franck–Condon excitation from the equilibrium geometry of the ground state to the ion,
suggesting that the ionization process will directly produce the HO2-loss fragment ion, as
is observed experimentally.

In addition, we compare the energetics for the reaction of formic acid with MVK-oxide,
the other four-carbon resonance stabilized Criegee intermediate formed from isoprene
ozonolysis, with that for MACR-oxide. The hydrogen bonding interaction present in the
syn-MVK-oxide system between the terminal O-atom of the carbonyl oxide group and
adjacent H-atoms of the methyl group as well as steric hindrance from the methyl group
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appear to influence the reaction profile. Disruption of one of the hydrogen bonds at the
transition state due to rotation of the methyl group leads to an increased barrier for reaction
of syn-MVK-oxide with formic acid than that for anti-MACR-oxide, which lacks a methyl
group adjacent to the terminal O-atom. We anticipate that this difference will result in
minor perturbations to the rate coefficient for reaction of anti-MACR-oxide with formic
acid compared to that with syn-MVK-oxide. More significant effects may be observed
for the reactions of four-carbon Criegee intermediates with water vapor or SO2, which
typically have substantially larger transition state barriers. Due to the relatively long
lifetime predicted for anti-MACR-oxide with respect to unimolecular decay and reaction
with water vapor, we anticipate that the reaction of anti-MACR-oxide with formic acid
will contribute to the removal of formic acid in regions with high isoprene emissions and
form highly oxidized hydroperoxide species that may play a role in secondary organic
aerosol formation.

Supplementary Materials: The following are available online, additional experimental details,
computed stationary point geometries, and energy corrections. Section S1. HCO2-loss fragment
ion, Section S2. Theoretical reaction pathways, Section S3. Stationary point geometries, Table S1.
Stationary point energies and corrections, Figure S1 Temporal profile of m/z 87 as a function of formic
acid concentration, Figure S2: Comparison of m/z 87 and 99 integrated signals as a function of formic
acid concentration, Figure S3: Photoionization spectrum of m/z 87 with and without formic acid
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