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Abstract: The intrinsic dynamic and static nature of noncovalent Br-∗-Br interactions in neutral
polybromine clusters is elucidated for Br4–Br12, applying QTAIM dual-functional analysis (QTAIM-
DFA). The asterisk (∗) emphasizes the existence of the bond critical point (BCP) on the interaction in
question. Data from the fully optimized structures correspond to the static nature of the interactions.
The intrinsic dynamic nature originates from those of the perturbed structures generated using
the coordinates derived from the compliance constants for the interactions and the fully optimized
structures. The noncovalent Br-∗-Br interactions in the L-shaped clusters of the Cs symmetry are
predicted to have the typical hydrogen bond nature without covalency, although the first ones in
the sequences have the vdW nature. The L-shaped clusters are stabilized by the n(Br)→σ*(Br–Br)
interactions. The compliance constants for the corresponding noncovalent interactions are strongly
correlated to the E(2) values based on NBO. Indeed, the MO energies seem not to contribute to
stabilizing Br4 (C2h) and Br4 (D2d), but the core potentials stabilize them, relative to the case of 2Br2;
this is possibly due to the reduced nuclear–electron distances, on average, for the dimers.

Keywords: ab initio calculations; quantum theory of atoms-in-molecules (QTAIM); bromide; structures

1. Introduction

Halogen bonding is of current and continuous interest [1,2]. A lot of information
relevant to halogen bonding has been accumulated so far [3]. Halogen bonding has
been discussed on the basis of the shorter distances between halogen and other atoms
in crystals [4–6]. The short halogen contacts are found in two types: symmetric (type I)
and bent (type II) geometries. The bonding has also been investigated in the liquid [7,8]
and gas [9] phases. The nature of halogen bonding has been discussed based on the
theoretical background on the molecular orbital description for the bonding and the σ-hole
developed on the halogen atoms, together with the stability of the structural aspects [10].
We also reported the dynamic and static nature of Y–X—π(C6H6) interactions recently [11].
Halogen bonding is applied to a wide variety of fields in chemical and biological sciences,
such as crystal engineering, supramolecular soft matters, and nanoparticles. Efforts have
been made to unify and categorize the accumulated results and establish the concept of
halogen bonding [3,12–15].

Structures of halogen molecules (X2) have been reported, as determined by X-ray
crystallographic analysis for X = Cl, Br, and I [16–18]. The behavior of bromine–bromine
interactions has been reported for the optimized structures of Br2–Br5 in the neutral and/or
charged forms, together with Br1, so far [19,20]. Figure 1 draws the observed structure
of Br2, for example. The bromine molecules seem to exist as a zig-zag structure in the
infinite chains in crystals. One would find the linear alignment of three Br atoms in an
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L-shaped dimer ((Br2)2; Br4) and the linear alignment of four Br atoms in a double L-shaped
trimer ((Br2)3; Br6) in a planar Br2 layer in addition to Br2 itself. The linear four Br atoms
are located in the two L-shaped dimers of Br6, overlapped at the central Br2. While the
L-shaped dimers seem to construct the zig-zag type infinite chains, the linear four Br atoms
construct linear infinite chains. The attractive np(Br)→σ*(Br–Br) σ(3c–4e) (three center–
four electron interaction of the σ-type) and np(Br)→σ*(Br–Br)←np(Br) σ(4c–6e) must play
a very important role to stabilize Br4 and Br6, respectively, where np(Br) stands for the
p-type nonbonding orbital of Br in the plane, perpendicular to the molecular Br2 axis, and
σ*(Br–Br) is the σ*-orbital of Br2. The crystal structures of Cl2 and I2 are very similar to that
of Br2.
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Figure 1. Structure of Br2, determined by X-ray crystallographic analysis [17].

We have been very interested in the behavior of halogen bonding in polyhalogen
clusters, together with the structures. How can the interactions in the polyhalogen clusters
be clarified? We propose QTAIM dual-functional analysis (QTAIM-DFA) [21–25] based on
the quantum theory of atoms in molecules (QTAIM) approach introduced by Bader [26,27]
to classify and characterize the various interactions effectively [28]. In QTAIM-DFA,
Hb(rc) are plotted versus Hb(rc) − Vb(rc)/2 (=(

1 
 

ћ 2/8m)∇2ρb(rc) (see Equation (SA2) in the
supplementary materials), where ρb(rc), Hb(rc), and Vb(rc) stand for the charge densities,
total electron energy densities, and potential energy densities, respectively, at bond critical
points (BCPs, ∗) on the bond paths (BPs) in this paper [26]. The kinetic energy densities at
BCPs will be similarly denoted by Gb(rc) [26]. A chemical bond or an interaction between
Br and Br is denoted by Br-∗-Br in this work, where the asterisk emphasizes the existence of
a BCP on a BP for Br–Br [26,27]. In our treatment, data from the fully optimized structures
are plotted together with those from the perturbed structures around the fully optimized
ones. The static nature of the interactions corresponds to the data from the fully optimized
structures, which are analyzed using polar coordinate (R, θ) representation [21–25]. On the
other hand, the dynamic nature originates based on the data from both the perturbed and
fully optimized structures [21–25]. The plot is expressed by (θp, κp), where θp corresponds
to the tangent line and κp is the curvature of the plot. θ and θp are measured from
the y-axis and the y-direction, respectively. We call (R, θ) and (θp, κp) the QTAIM-DFA
parameters [29].

Interactions are classified by the signs of ∇2ρb(rc) and Hb(rc), based on the QTAIM
approach. The interactions are called shard shell (SS) interactions when ∇2ρb(rc) < 0 and
closed-shell (CS) interactions when ∇2ρb(rc) > 0 [26]. In particular, CS interactions are
called pure CS (p-CS) interactions when Hb(rc) > 0 and ∇2ρb(rc) > 0. We call interactions
where Hb(rc) < 0 and∇2ρb(rc) > 0 regular CS (r-CS) interactions, which clearly distinguishes
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these interactions from the p-CS interactions. The signs of∇2ρb(rc) can be replaced by those
of Hb(rc) − Vb(rc)/2 because (

1 
 

ћ 2/8m)∇2ρb(rc) = Hb(rc) − Vb(rc)/2 (see Equation (SA2) in
the supporting information). Indeed, Hb(rc) − Vb(rc)/2 = 0 corresponds to the borderline
between the classic covalent bonds of SS and the noncovalent interactions of CS, but Hb(rc)
= 0 appears to be buried in the noncovalent interactions of CS. As a result, it is difficult to
characterize the various CS interactions based on the signs of Hb(rc) − Vb(rc)/2 and/or
Hb(rc). In QTAIM-DFA, the signs of the first derivatives of Hb(rc) − Vb(rc)/2 and Hb(rc)
(d(Hb(rc) − Vb(rc)/2)/dr and dHb(rc)/dr, respectively, where r is the interaction distance)
are used to characterize CS interactions, in addition to those of Hb(rc) − Vb(rc)/2 and
Hb(rc), after analysis of the plot. While the former corresponds to (θp, κp), the latter does to
(R, θ). The analysis of the plots enables us to characterize the various CS interactions more
effectively. Again, the details are explained later.

The perturbed structures necessary for QTAIM-DFA can be generated. Among them,
a method employing the coordinates corresponding to the compliance constants Cii for in-
ternal vibrations is shown to be highly reliable to generate the perturbed structures [30–39].
The method, which we proposed recently, is called CIV. The dynamic nature of interactions
based on the perturbed structures with CIV is described as the “intrinsic dynamic nature of
interactions” since the coordinates are invariant to the choice of coordinate system. Rough
criteria that distinguish the interaction in question from others are obtained by applying
QTAIM-DFA with CIV to standard interactions. QTAIM-DFA and the criteria are explained
in the appendix of the supplementary materials using Schemes SA1–SA3, Figures SA1 and
SA2, Table SA1, and Equations (SA1)–(SA7). The basic concept of the QTAIM approach is
also explained.

QTAIM-DFA, using the perturbed structures generated with CIV, is well-suited to
elucidate the intrinsic dynamic and static nature of halogen–halogen interactions in the
polyhalogen clusters. As the first step to clarify the nature of various types of halogen–
halogen interactions in the polyhalogen clusters, the nature of each bromine–bromine
interaction in the neutral polybromine clusters is elucidated by applying QTAIM-DFA.
Various types of structures and interactions are found in the optimized structures of
polybromine clusters, other than those observed in the crystals. Here, we present the
results of investigations on the polybromine clusters, together with the structural feature,
elucidated with QTAIM-DFA and QC calculations.

2. Methodological Details in Calculations

The structures were optimized by employing Gaussian 09 programs [40]. The 6-311+G(3df)
basis [41–44] set was applied to optimize the structures of neutral polybromine clusters, Br2–
Br12. The Møller–Plesset second-order energy correlation (MP2) level [45–47] was applied
for the optimizations. Optimized structures were confirmed by frequency analysis. The
results of the frequency analyses were employed to calculate the Cij values and coordinates
corresponding to Cii [30,34–36]. The ρb(rc), Hb(rc) − Vb(rc)/2 (=(

1 
 

ћ 2/8m)∇2ρb(rc)), and
Hb(rc) values were calculated using the Gaussian 09 program package [40], with the same
method applied to the optimizations. Data were analyzed with the AIM2000 [48,49] and
AIMAll [50] programs.

Coordinates corresponding to the compliance constants for an internal coordinate i of
the internal vibrations (Ci) were employed to generate the perturbed structures necessary in
QTAIM-DFA [21–25]. Equation (1) explains the method to generate the perturbed structures
with CIV. An i-th perturbed structure in question (Siw) was generated by the addition of
the coordinates (Ci) corresponding to Cii to the standard orientation of a fully optimized
structure (So) in the matrix representation. The coefficient giw in Equation (1) controls the
difference in structures between Siw and So: giw are determined to satisfy Equation (2) for
the interaction in question, where r and ro show the distances in question in the perturbed
and fully optimized structures, respectively, with ao of Bohr radius (0.52918 Å) [21–25,30].

Siw = So + giw × Ci (1)
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r = ro + wao (w = (0), ±0.05 and ±0.1; ao = 0.52918 Å) (2)

y = co + c1x + c2x2 + c3x3 (Rc
2: square of correlation coefficient) (3)

In the QTAIM-DFA treatment, Hb(rc) are plotted versus Hb(rc) − Vb(rc)/2 for the data
of five points of w = 0, ±0.05, and ±0.1 in Equation (2). Each plot is analyzed using a
regression curve of the cubic function, as shown in Equation (3), where (x, y) = (Hb(rc) −
Vb(rc)/2, Hb(rc)) (Rc

2 (square of correlation coefficient) > 0.99999 in the norm) [25].

3. Results and Discussion
3.1. Structural Optimizations of Polybromine Clusters, Br6–Br12

Structures of the neutral Br2–Br12 clusters were optimized with MP2/6-311+G(3df).
The structural parameters for the optimized structures of minima for Br2–Br6 and Br8–Br12
are collected in Tables S1 and S2, respectively. Some transition states (TSs) for Br4 and
Br6 were also calclaterd. The notation of Cs-Lm (m = 1–5) is used for the linear L-shaped
clusters of the Cs symmetry, where m stands for the number of noncovalent interactions
in Br2m+2 (m = 1–5). Cyclic structures are also optimized, retaining the higher symmetries.
The optimized structures are not shown in figures, but they can be found in the molecular
graphs with the contour maps of ρ(r) for the linear-type bromine clusters Br4–Br12 (Cs-Lm
(m = 1–5)) and for the cyclic bromine clusters Br4–Br12, drawn on the optimized structures
with MP2/6-311+G(3df) [51]. The energies for the formation of Br4–Br6 and Br8–Br12 are
given in Tables S1 and S2, respectively, from the components (∆E = E(Br2k) − kE(Br2)) on
the energy surfaces (∆EES) and those with the collections of zero-point energies (∆EZP).
The ∆EZP values were plotted versus ∆EES. The plot is shown in Figure S1, which gives an
excellent correlation (y = 0.940x + 0.129; Rc

2 (square of correlation coefficient) = 0.9999) [52].
Therefore, the ∆EES values are employed for the discussion.

The behavior of the neutral dibromine clusters (Br4) is discussed first. Three structures
were optimized for Br4 as minima with some TSs. The minima are the L-shaped structure
of Cs symmetry (Br4 (Cs-L1)) [19], the cyclic structure of C2h symmetry (Br4 (C2h)), and
the tetrahedral type of D2d symmetry (Br4 (D2d)). A TS of the Cs symmetry was detected
between Br4 (Cs-L1) and Br4 (C2h), and two TSs of the C1 symmetry were between Br4 (C2h)
and Br4 (D2d) and between Br4 (D2d) and Br4 (Cs-L1). They are called TS (Cs: Cs, C2h), TS
(C1: C2h, D2d), and TS (C1: D2d, Cs), respectively. The three minima will be converted to
each other through the three TSs. A TS between Br4 (Cs-L1) and its topological isomer was
also detected, which is called TS (C2v: Cs, Cs); however, further effort was not made to
search for similar TSs between Br4 (C2h) and its topological isomer and between Br4 (C2d)
and its topological isomer.

Figure 2 draws the energy profiles for the optimized structures of minima, Br4 (Cs-L1),
Br4 (C2h), and Br4 (D2d), together with the TSs TS (Cs: Cs, C2h), TS (Cs: C2h, D2d), TS (C1:
C2d, Cs), and TS (C2v: Cs, Cs). The optimized structures are not shown in the figures, but
they can be found in the molecular graphs shown in Figure 2, illustrated on the optimized
structures. All BCPs expected are detected clearly, together with RCPs and a CCP [26].
The ∆EES value of −10.7 kJ mol−1 for the formation of Br4 (Cs-L1) seems very close to the
border area between the vdW and typical hydrogen bond (t-HB) adducts. The driving
force for the formation of Br4 (Cs-L1) must be Br3 σ(3c–4e) of the np(Br)→σ*(Br–Br) type.
The interactions in Br4 (C2h) and Br4 (D2d) seem very different from those in Br4 (Cs-L1).
The ∆EES values of Br4 (C2h) (−8.0 kJ mol−1) and Br4 (D2d) (−9.1 kJ mol−1) are close to
that for Br4 (Cs-L1) (−10.7 kJ mol−1). Moreover, the values for TS (Cs: Cs, C2h) (−7.4 kJ
mol−1), TS (C1: C2h, D2d) (−7.6 kJ mol−1), TS (C1: D2d, Cs) (−7.0 kJ mol−1), and TS (C2v:
Cs, Cs) (−8.7 kJ mol−1) are not so different from those for the minima.
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Figure 2. Energy profile with molecular graphs for the structures of Br4 clusters, optimized with
MP2/6-311+G(3df).

In the case of Br6, three structures of the linear Cs symmetry (Br6 (Cs-L2)), the linear C2
symmetry (Br6 (C2)), and the cyclic C3h symmetry (Br6 (C3h-c)) were optimized typically as
minima. The linear Br6 clusters of C2h symmetry (Br6 (C2h)) and C2v symmetry (Br6 (C2v)),
similar to Br6 (C2), were also optimized, of which the torsional angles, φ(1Br2Br5Br6Br)
(=φ3), were 0◦ and 180◦, respectively. One imaginary frequency was detected for each;
therefore, they are assigned to TSs between Br6 (C2) and the topological isomer on the
different reaction coordinates. Further effort was not made to search for TSs.

The ∆EES value for Br6 (Cs-L2) was predicted to be −22.6 kJ mol−1. The magnitude
is slightly larger than the double value for Br4 (Cs-L1) (∆EES = −10.7 kJ mol−1). Two
types of σ (3c–4e) operate to stabilize Br6 (Cs-L2). One, σ(3c–4e), seems similar to that in
Br4 (Cs-L1), but the other would be somewhat different. Namely, the second interaction
would contribute to ∆EES somewhat more than that of the first one in the formation of Br6
(Cs-L2). On the other hand, the linear interaction in Br6 (C2) can be explained by σ(4c–6e)
of the np(Br)→σ*(Br–Br)←np(Br) type. The magnitude of ∆EES of Br6 (C2) seems slightly
smaller than that of Br6 (Cs-L2) but is very close to the double value for Br4 (Cs-L1). The
magnitude of ∆EES for Br6 (C3h-c) is close to the triple value of Br4 (Cs-L1). One finds
triply degenerated σ(3c–4e) interactions in Br6 (C3h-c). The similarity in the interactions
for Br4 (Cs-L1), Br6 (C2), and Br6 (C3h-c) will be discussed again later. The magnitudes
of ∆EES become proportionally larger to the size of the clusters, as shown in Figures S1
and S2. The ∆EES values are plotted versus k in Br2k (2 ≤ k ≤ 6) for the Cs-Lm type. The
results are shown in Figure S2. Contributions from inner σ(3c–4e) (named rin) to ∆EES seem
slightly larger than those from σ(3c–4e) in the front end and end positions (named r2 and
rω, respectively).

After examination of the optimized structures, the next extension is to clarify the nature
of Br-∗-Br interactions by applying QTAIM-DFA. The contour plots are discussed next.

3.2. Molecular Graphs with Contour Plots of Polybromine Clusters

Figure 3 illustrates the molecular graphs with contour maps of ρ(r) for the linear type
of Br4 (Cs-L1)–Br12 (Cs-L5), drawn on the structures optimized with MP2/6-311+G(3df).
Figure 4 draws the molecular graphs with contour maps of ρ(r) for Br4–Br12, other than
those for Br4 (Cs-L1)–Br12 (Cs-L5), calculated with MP2/6-311+G(3df) [53,54] (see also
Figure S3). All BCPs expected are detected clearly, together with RCPs and a CCP contain-
ing those for noncovalent Br-∗-Br interactions, which are located at the (three-dimensional)
saddle points of ρ(r).
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3.3. Survey of the Br-∗-Br Interactions in Polybromine Clusters

As shown in Figures 2–4, the BPs in Br4–Br12 seem almost straight. The linearity is
confirmed by comparing the lengths of BPs (rBP) with the corresponding straight-line dis-
tances (RSL). The rBP and RSL values are collected in Table S3, together with the differences
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between them, ∆rBP (=rBP − RSL). The magnitudes of ∆rBP are less than 0.01 Å, except for
r2 in Br4 (C2v) (∆rBP = 0.014 Å), r3 in Br8 (S4-Wm) (0.014 Å), and r2 in Br10 (C2-c) (0.012 Å).
Consequently, all BPs in Br4–Br12 can be approximated as straight lines.

The ρb(rc), Hb(rc) − Vb(rc)/2 (=(

1 
 

ћ 2/8m)∇2ρb(rc)), and Hb(rc) values are calculated
for the Br-∗-Br interactions at BCPs in the structures of Br2–Br12, optimized with MP2/6-
311+G(3df) [53–55]. Table 1 collects the values for the noncovalent Br-∗-Br interactions in
Br4–Br12 of the Cs-Lm type. Table 2 summarizes the values for the noncovalent Br-∗-Br
interactions in Br4–Br12, other than those of the Cs-Lm type. Hb(rc) are plotted versus
Hb(rc) − Vb(rc)/2 for the data shown in Tables 1 and 2, together with those from the
perturbed structures generated with CIV. Figure 5 shows the plots for the noncovalent
Br-∗-Br interactions and covalent Br-∗-Br bonds, exemplified by Br10 (Cs-L4).

Table 1. The ρb(rc), Hb(rc) − Vb(rc)/2 (=(

1 
 

ћ 2/8m)∇2ρb(rc)), and Hb(rc) values and QTAIM-DFA parameters for Br-∗-Br at
BCPs in Br4 (Cs-L1)–Br12 (Cs-L5), together with Br10 (C2) and Br2, evaluated with MP2/6-311+G(3df) 1.

Species BCP on ρb(rc) c∇2ρb(rc) 2 Hb(rc) R 3 θ 4

(Symmetry) (au) (au) (au) (au) (◦)

Br4 (Cs-L1) r2 0.0109 0.0045 0.0014 0.0048 72.5
Br6 (Cs-L2) r2 0.0113 0.0047 0.0014 0.0049 73.0
Br6 (Cs-L2) r4 0.0119 0.0049 0.0014 0.0051 73.7
Br8 (Cs-L3) r2 0.0114 0.0047 0.0014 0.0049 73.2
Br8 (Cs-L3) r4 0.0124 0.0050 0.0014 0.0052 74.4
Br8 (Cs-L3) r6 0.0120 0.0049 0.0014 0.0051 73.9
Br10 (Cs-L4) r2 0.0114 0.0047 0.0014 0.0049 73.2
Br10 (Cs-L4) r4 0.0125 0.0051 0.0014 0.0053 74.6
Br10 (Cs-L4) r6 0.0125 0.0051 0.0014 0.0053 74.6
Br10 (Cs-L4) r8 0.0120 0.0049 0.0014 0.0051 73.9
Br12 (Cs-L5) r2 0.0114 0.0047 0.0014 0.0049 73.2
Br12 (Cs-L5) r4 0.0126 0.0051 0.0014 0.0053 74.7
Br12 (Cs-L5) r6 0.0127 0.0051 0.0014 0.0053 74.7
Br12 (Cs-L5) r8 0.0126 0.0051 0.0014 0.0053 74.7
Br12 (Cs-L5) r10 0.0120 0.0049 0.0014 0.0051 73.9

Br6 (C2) r2 0.0104 0.0044 0.0014 0.0046 72.1
Br10 (C2) r2 0.0118 0.0048 0.0014 0.0050 73.6
Br10 (C2) r4 0.0106 0.0044 0.0014 0.0046 72.3

Species Cii
5 θp:CIV

6 κp:CIV
7 Predicted

(Symmetry) (Å mdyn−1) (◦) (au−1) nature

Br4 (Cs-L1) 15.311 87.8 121.2 p-CS/vdW 8

Br6 (Cs-L2) 14.984 89.0 124.9 p-CS/vdW 8

Br6 (Cs-L2) 14.114 90.6 127.3 p-CS/t-HB 9

Br8 (Cs-L3) 14.826 89.2 125.0 p-CS/vdW 8

Br8 (Cs-L3) 13.590 92.2 132.0 p-CS/t-HB 9

Br8 (Cs-L3) 14.048 90.9 127.1 p-CS/t-HB 9

Br10 (Cs-L4) 14.751 89.4 126.2 p-CS/vdW 8

Br10 (Cs-L4) 13.445 92.6 133.2 p-CS/t-HB 9

Br10 (Cs-L4) 13.478 92.6 132.5 p-CS/t-HB 9

Br10 (Cs-L4) 13.983 91.1 128.4 p-CS/t-HB 9

Br12 (Cs-L5) 14.719 89.5 126.9 p-CS/vdW 8

Br12 (Cs-L5) 13.376 92.7 133.3 p-CS/t-HB 9

Br12 (Cs-L5) 13.334 93.0 134.3 p-CS/t-HB 9

Br12 (Cs-L5) 13.393 92.8 132.6 p-CS/t-HB 9

Br12 (Cs-L5) 13.962 91.1 128.8 p-CS/t-HB 9

Br6 (C2) 16.025 86.7 119.2 p-CS/vdW 8

Br10 (C2) 14.218 90.2 126.7 p-CS/t-HB 9

Br10 (C2) 16.378 87.2 120.0 p-CS/vdW 8

1 The interactions in minima are shown. 2 c∇2ρb(rc) = Hb(rc) − Vb(rc)/2, where c = h̄2/8m. 3 R = [(Hb(rc) − Vb(rc)/2)2 + Hb(rc)2]1/2. 4

θ = 90◦ − tan−1[Hb(rc)/(Hb(rc) − Vb(rc)/2)]. 5 Defined in Equation (R1) in the text. 6 θp = 90◦ − tan−1(dy/dx), where (x, y) = (Hb(rc) −
Vb(rc)/2, Hb(rc)). 7 κp = |d2y/dx2|/[1 + (dy/dx)2]3/2. 8 The pure CS interaction of the vdW nature. 9 The pure CS interaction of the HB
nature without covalency.
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Table 2. The ρb(rc), Hb(rc) − Vb(rc)/2 (=(

1 
 

ћ 2/8m)∇2ρb(rc)), and Hb(rc) values and QTAIM-DFA parameters for Br-∗-Br at
BCPs in Br4–Br12, other than the Cs-Lm structures, evaluated with MP2/6-311+G(3df) 1.

Species BCP on ρb(rc) c∇2ρb(rc) 2 Hb(rc) R 3 θ 4

(Symmetry) (au) (au) (au) (au) (◦)

Br4 (C2h) r2 0.0055 0.0022 0.0009 0.0024 67.2
Br4 (D2d) r2 0.0042 0.0017 0.0007 0.0018 66.0

Br6 (C3h-c) r2 0.0092 0.0038 0.0013 0.0040 70.7
Br8 (S4) r2 0.0128 0.0051 0.0014 0.0053 74.8

Br8 (S4-Wm) 5 r2 0.0136 0.0054 0.0013 0.0056 76.0
Br8 (S4-Wm) 5 r3 0.0038 0.0015 0.0007 0.0016 66.0

Br10 (C2-c) r2 0.0087 0.0035 0.0012 0.0037 70.5
Br10 (C2-c) r4 0.0097 0.0040 0.0014 0.0042 71.3
Br10 (C2-c) r6 0.0110 0.0044 0.0014 0.0046 73.0
Br10 (C2-c) r7 0.0049 0.0019 0.0008 0.0021 66.2
Br10 (C2-c) r8 0.0049 0.0018 0.0008 0.0020 66.6
Br12 (Ci) r2 0.0129 0.0052 0.0014 0.0054 75.0
Br12 (Ci) r4 0.0129 0.0052 0.0014 0.0054 75.0

Species Cii
6 θp:CIV

7 κp:CIV
8 Predicted

(Symmetry) (Å mdyn−1) (◦) (au−1) nature

Br4 (C2h) 24.709 73.6 122.9 p-CS/vdW 9

Br4 (D2d) 40.402 69.6 136.3 p-CS/vdW 9

Br6 (C3h-c) 25.617 83.3 121.7 p-CS/vdW 9

Br8 (S4) 13.201 93.5 139.2 p-CS/t-HB 10

Br8 (S4-Wm) 5 11.294 95.3 139.0 p-CS/t-HB 10

Br8 (S4-Wm) 5 52.918 67.5 204.0 p-CS/vdW 9

Br10 (C2-c) 34.402 81.3 112.7 p-CS/vdW 9

Br10 (C2-c) 23.971 84.7 122.1 p-CS/vdW 9

Br10 (C2-c) 20.831 87.6 122.6 p-CS/vdW 9

Br10 (C2-c) 29.570 71.5 118.9 p-CS/vdW 9

Br10 (C2-c) 37.855 71.8 120.4 p-CS/vdW 9

Br12 (Ci) 13.483 93.7 137.9 p-CS/t-HB 10

Br12 (Ci) 13.482 93.7 137.3 p-CS/t-HB 10

1 The interactions in minima are shown. 2 c∇2ρb(rc) = Hb(rc) − Vb(rc)/2, where c = h̄2/8m. 3 R = [Hb(rc) − Vb(rc)/2)2 + Hb(rc)2]1/2. 4

θ = 90◦ − tan−1[Hb(rc)/(Hb(rc) − Vb(rc)/2)]. 5 Image from windmill. 6 Defined in Equation (R1) in the text. 7 θp = 90◦ − tan−1(dy/dx),
where (x, y) = (Hb(rc) − Vb(rc)/2, Hb(rc)). 8 κp = |d2y/dx2|/[1 + (dy/dx)2]3/2. 9 The pure CS interaction of the vdW nature. 10 The pure CS
interaction of the HB nature without covalency.
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Figure 5. QTAIM-DFA plots (Hb(rc) versus Hb(rc) − Vb(rc)/2) for the interactions in Br10 (Cs-L4), evaluated with MP2/6-
311+G(3df); (a) whole region, (b) pure CS region, and (c) SS region. Marks and colors are shown in the figure.
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QTAIM-DFA parameters of (R, θ) and (θp, κp) are obtained by analyzing the plots
of Hb(rc) versus Hb(rc) − Vb(rc)/2, according to Equations (S3)–(S6). Table 1 collects the
QTAIM-DFA parameters for the noncovalent Br-∗-Br interactions of Br4 (Cs-L1)–Br12 (Cs-
L5), Br6 (C2), and Br10 (C2) together with the Cii values. Table 2 collects the (R, θ) and (θp,
κp) values for Br4–Br12, other than those given in Table 1, together with the Cii values. The
(R, θ) and (θp, κp) values for the covalent Br-∗-Br bonds in Br4–Br12 are collected in Table S4.

3.4. The Nature of Br-∗-Br Interactions in Polybromine Clusters

The nature of the covalent and noncovalent Br-∗-Br interactions in Br2–Br12 is dis-
cussed on the basis of the (R, θ, θp) values, employing standard values as a reference (see
Scheme SA3).

It is instructive to survey the criteria shown in Scheme SA3 before detailed discussion.
The criteria tell us that 180◦ < θ (Hb(rc) − Vb(rc)/2 < 0) for the SS interactions and θ < 180◦

(Hb(rc) − Vb(rc)/2 > 0) for the CS interactions. The CS interactions are subdivided into
pure CS interactions (p-CS) of 45◦ < θ < 90◦ (Hb(rc) > 0) and regular CS interactions (r-CS)
of 90◦ < θ < 180◦ (Hb(rc) < 0). The θp value predicts the character of interactions. In the
pure CS region of 45◦ < θ < 90◦, the character of interactions will be the vdW type for 45◦

< θp < 90◦ and the typical-HB type with no covalency (t-HBnc) for 90◦ < θp < 125◦, where
θp = 125◦ approximately corresponds to θ = 90◦. The classical chemical covalent bonds of
SS (180◦ < θ) will be strong when R > 0.15 au (Cov-s: strong covalent bonds), whereas they
will be weak for R < 0.15 au (Cov-w: weak covalent bonds).

The (R, θ, θp) values are (0.0576 au, 184.3◦, 190.9◦) for the original Br2 if evaluated
with MP2/6-311+G(3df). Therefore, the nature of the Br-∗-Br bond in Br2 is classified by
the SS interactions (θ > 180◦) and characterized to have a Cov-w nature (θp > 180◦ and R <
0.15 au). The nature is denoted by SS/Cov-w. The (R, θ, θp) values for the covalent Br-∗-Br
bonds in Br4–Br12 are (0.0472–0.0578 au, 182.0–184.4◦, 190.4–192.1◦); therefore, their nature
is predicted to be SS/Cov-w. The nature of the covalent Br-∗-Br bonds seems unchanged
in the formation of the clusters [53,54]. The noncovalent Br-∗-Br interactions in Br4–Br12
are all classified by pure CS interactions since θ ≤ 76◦ (<< 90◦) [53,54]. The θp values in
the Cs-Lm clusters change systematically. The θp values for r2 in Br2k (Cs-Lm) (k = 2–6) are
predicted to be in the range of 89.1◦ ≤ θp ≤ 89.6◦, with θp = 87.9◦ for Br4 (Cs-L1).

However, the values for rn-2 in Br2k (Cs-Lm) (k = 2–6) are in the range of 90.6◦ ≤ θp
≤ 91.2◦ and the values for noncovalent interactions, other than edge positions, are in the
range of 92.1◦ ≤ θp ≤ 93.0◦. Namely, the noncovalent Br-∗-Br interactions are predicted to
have the vdW nature (p-CS/vdW) for r2, while the interactions other than r2 are predicted
to have the t-HBnc nature (p-CS/t-HBnc) since θp > 90◦. The θp values of r2 for the Cs-Lm
clusters will be less than 90◦, irrespective of the angles between r1 and r2, which are close
to 180◦. The θp values will be larger than 90◦ for all noncovalent interactions other than r2.
Table 1 contains the data for Br10 (C2), of which θp = 90.4◦ (> 90◦) for r2 and θp = 87.1◦ (<90◦)
for r4, although Br10 (C2) is not the Cs-Lm type. The results for r2 seem reasonable based on
the structure (cf. Figure 3), while those for r4 would be complex. Table 1 summarizes the
predicted nature.

In the case of the noncovalent Br-∗-Br interactions in Br4–Br12, other than the Cs-Lm
type clusters, θp > 90◦ for r2 in Br8 (S4) (θp = 93.4◦) and Br8 (S4-Wm) (θp = 94.8◦) and for r2,
r4, and r6 in Br12 (Ci) (93.4◦ ≤ θp ≤ 93.7◦). The interactions would have the t-HBnc nature
(p-CS/t-HBnc). Very weak noncovalent Br-∗-Br interactions are also detected. The ranges
of 64.2◦ ≤ θ ≤ 66.6◦ and 66.2◦ ≤ θp ≤ 71.2◦ are predicted for r2 and r3 in Br4 (C2h), r2 in Br4
(C2v), r3 in Br8 (S4-Wm), and r7 and r8 in Br10 (C2-c). The results are summarized in Table 2.

What are the relationships between the QTAIM-DFA parameters for the noncovalent
Br-∗-Br interactions? The θ and θp values are plotted versus R. The plots are shown in
Figure S4; they give very good correlations. The θp values are plotted versus θ. The
plot is shown in Figure S5; it also gives a very good correlation. Table 3 summarizes the
correlations among the QTAIM-DFA parameters.
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Table 3. Correlations in the plots 1.

Entry Correlation a b Rc
2 n

1 ∆EZP vs. ∆EES 0.940 0.129 0.9999 20 2

2 θ vs. R 2595.6 60.70 0.979 33
3 θp vs. R 6449.1 58.19 0.989 33
4 θp vs. θ 2.67 −106.26 0.992 31 3

5 E(2) vs. Cii
−1 535.5 −18.22 0.997 15 4

6 E(2)vs. R 9760.9 −29.92 0.983 15 4

7 E(2) vs θ 2.446 −160.88 0.996 15 4

8 E(2) vs. θp 1.067 77.17 0.999 15 4

1 The constants (a, b, Rc
2) are the correlation constant, the y-intercept, and the square of the correlation coefficient,

respectively, in y = ax + b. 2 Containing TS species. 3 Neglecting the data of r2 and r3 in Br4 (C2h). 4 For the
noncovalent Br-∗-Br interactions in Br4 (Cs-L1)–Br12 (Cs-L5).

To further examine the behavior of noncovalent Br-∗-Br interactions, NBO analysis is
applied to the interactions.

3.5. NBO Analysis for Br-∗-Br of Br4 (Cs-L1)–Br12 (Cs-L5)

The noncovalent Br-∗-Br interactions in Br4(Cs-L1)–Br12 (Cs-L5) are characterized by
σ(3c–4e) of the n(Br)→σ*(Br–Br) type. NBO analysis [56] was applied to the n(Br)→σ*(Br–
Br) interactions with MP2/6-311+G(3df). For each donor NBO (i) and acceptor NBO (j),
the stabilization energy E(2) is calculated based on the second-order perturbation theory
in NBO. The E(2) values are calculated according to Equation (4), where qi is the donor
orbital occupancy, εi, εj are diagonal elements (orbital energies), and F(i,j) is the off-diagonal
NBO Fock matrix element. The values are obtained separately by the contributions from
ns(Br)→σ*(Br–Br) and np(Br)→σ*(Br–Br), which are summarized in Table S5. The total
values corresponding to ns+p(Br)→σ*(Br–Br) (=ns(Br)→σ*(Br–Br) + np(Br)→σ*(Br–Br))
were calculated, which are also summarized in Table S5. The total values are employed for
the discussion.

E(2) = qi × F(i,j)2/(εj − εi) (4)

Figure 6 shows the plots of E(2) and θp for the noncovalent Br-∗-Br interactions in Br4
(Cs-L1)–Br12 (Cs-L5). The values become larger in the order of P (r2: Br4 (Cs-L1)) < P (r2: Br6
(Cs-L2)–Br12 (Cs-L5)) < P (rω: Br6 (Cs-L2)–Br12 (Cs-L5)) < P (rin: Br6 (Cs-L2)–Br12 (Cs-L5)),
where P means E(2) or θp, while rω and rin stand for the last end and the inside noncovalent
interactions, respectively, in the sequence (see Figures 2 and 3). The values for P = E(2) are
as follows: E(2) = 16.6 kJ mol−1 for r2 in Br4 (Cs-L1) < 17.7 ≤ E(2) ≤ 18.2 kJ mol−1 for r2 in
Br6 (Cs-L2)–Br12 (Cs-L5) < 19.5 ≤ E(2) ≤ 20.0 kJ mol−1 for rω in Br6 (Cs-L2)– Br12 (Cs-L5) <
21.2 ≤ E(2) ≤ 22.0 kJ mol−1 for rin in Br8 (Cs-L3)–Br12 (Cs-L5).

Relations between E(2) and Cii were also examined for noncovalent Br-∗-Br inter-
actions in Br4 (Cs-L1)–Br12 (Cs-L5). The E(2) values were plotted versus Cii

−1 for the
noncovalent interactions. Figure 7 shows the plot. The plot gives a very good correlation,
which is shown in Table 3 (Entry 5). The results show that the energies for σ(3c–4e) of the
np(Br)→σ*(Br–Br) type in Br4 (Cs-L1)–Br12 (Cs-L5) are well evaluated, not only by E(2) but
also by Cii

−1. Similar relations would be essentially observed for the interactions in the
nonlinear clusters; however, the analyses will be much complex due to the unsuitable struc-
tures for the NBO analysis, such as the deviations in the interaction angles expected for Br3
σ(3c–4e), the mutual interactions between Br3 σ(3c–4e), and/or the steric effect from other
bonds and interactions, placed proximity in space. The E(2) values for Br4 (Cs-L1)–Br12
(Cs-L5) were also plotted versus R, θ, and θp, shown in Figures S6–S8, respectively. The
plots give very good correlations, which are given in Table 3 (Entries 6–8).
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3.6. MO Descriptions for Noncovalent Br-∗-Br Interactions in Br4

As discussed above, Br3 σ(3c–4e) of the np(Br)→σ*(Br–Br) type plays an important
role in the formation of Br4 (Cs-L1)–Br12 (Cs-L5). However, there must exist some inter-
actions, other than Br3 σ(3c–4e), to stabilize the clusters. The ∆EES values for Br4 (C2h)
(−8.0 kJ mol−1) and Br4 (D2d) (−9.1 kJ mol−1) are not so different from that for Br4 (Cs-L1)
(−10.7 kJ mol−1). However, Br4 (C2h) and Br4 (D2d) must consist of interactions other than
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σ(3c–4e). Indeed, Br3 σ(3c–4e) of the n(Br)→σ*(Br–Br) type contributes to stabilizing Br4
(Cs-L1), but Br4 (C2h) and Br4 (D2d) are shown to be stabilized by the σ(Br–Br)→σ*Ry(Br)
interaction by NBO, where Ry stands for the Rydberg term, although not shown.

The total energy for a species (E) is given by the sum of the core terms (Hc(i)) over all
electrons, Σi

n Hc(i), and the electron–electron repulsive terms, (Σi 6=j
n Jij − Σi 6=j,‖

n Kij)/2,
as shown by Equation (5), where Hc(i) consists of the kinetic energy and electron–nuclear
attractive terms for electron i. E contains the nuclear–nuclear repulsive terms, although not
clearly shown in Equation (5). As shown in Equation (6), the sum of MO energy for electron
i, εi, over all electrons, Σi=1

n εi, will be larger than E by (Σi 6=j
n Jij − Σi 6=j,‖

n Kij)/2 since the
electron–electron repulsions are doubly counted in Equation (6). Therefore, Σi

n Hc(i) and
(Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2 are given separately by Equations (7) and (8), respectively. The εi

values for Br4 (C2h), Br4 (D2d), and 2Br2, together with Br4 (Cs-L1), are collected in Tables
S6–S9, respectively, for convenience of discussion. Parameters (∆P) in the formation of
Br2k from the components are evaluated according to Equation (9). The ∆Σi

n Hc(i) and
∆(Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2 values for the formation of Br4 (C2h), Br4 (D2d), and Br4 (Cs-L1)

are collected in Table S11.

E = Σi
n Hc(i) + (Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2 (5)

Σi=1
n εi = Σi

n Hc(i) + (Σi 6=j
n Jij − Σi 6=j,‖

n Kij) (6)

Σi
n Hc(i) = 2E − Σi=1

n εi (7)

(Σi 6=j
n Jij − Σi 6=j,‖

n Kij)/2 = Σi=1
n εi − E (8)

∆P(Br2k) = P(Br2k) − kP(Br2) (9)

The nature of noncovalent Br—Br interactions in Br4 (Cs-L1) is examined first. The
σ(3c–4e) character in Br4 (Cs-L1) is confirmed by the natural charge evaluated with NPA
(Qn), developed in the formation of Br4 (Cs-L1). The evaluated Qn values are Br(1:
−0.0128|e−|)–Br(2: −0.0002|e−|)—Br(3: −0.0010|e−|)–Br(4: 0.0140|e−|); therefore,
Qn(Br(4)–Br(3)) and Qn(Br(2)–Br(1)) are +0.013|e−| and −0.013|e−|, respectively. Each
MO in Br4 (Cs-L1) is almost localized on Br(4)–Br(3) or Br(2)–Br(1), except for a few cases.
MOs in Br4 (Cs-L1) must be affected by the local charge. Each MO energy in Br4 (Cs-L1)
seems higher than the corresponding value of 2Br2 by 10–20 kJ mol−1 if the MO is localized
on Br(2)–Br(1), lower by 15–25 kJ mol−1 on Br(3)–Br(4), and slightly lower by 0–5 kJ mol−1

if the MO is localized on the whole molecule. We should be careful since it depends on the
phase in MO and the position of the Br atom(s). Typical cases are shown in Figure S9. In
total, ∆Σi=1

n εi is evaluated to be −357.2 kJ mol−1 for Br4 (Cs-L1). The results show that
Br4 (Cs-L1) is stabilized in the formation of the dimer from the components through the
lowering of MO energies in total, which is consistent with those evaluated with NBO, as
discussed above.

Figure 8 shows the plots of ∆Σi
n Hc(i) and ∆(Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2 for Br4 (Cs-L1),

Br4 (C2h), and Br4 (D2d), together with ∆EES and ∆Σi=1
n εi. In the case of Br4 (Cs-L1),

∆Σi
n Hc(i) and ∆(Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2 are evaluated to be 335.7 and −346.4 kJ mol−1,

respectively, which stabilizes Br4 (Cs-L1) in total. Two Br2 molecules in Br4 (Cs-L1) will
supply a wider area for electrons without severe disadvantageous steric compression by
the L-shaped structure in a plane. The structural feature of Br4 (Cs-L1) may reduce (or may
not severely increase) the electron–electron repulsive terms, ∆((Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2),

relative to the case of 2Br2, although ∆Σi
n Hc(i) seems to destabilize it. The ∆Σi

n Hc(i)
+ ∆(Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2 value is equal to −10.7 kJ mol−1, which corresponds to the

stabilization energy of Br4 (Cs-L1), relative to 2Br2.
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Figure 8. Contributions from ∆Σi
nHc(i) (=∆P = B) and ∆(Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2 (=∆P = C) to ∆EES

(=∆P = D, magnified by 10 times in the plot) for Br4 (Cs-L1), Br4 (C2h), and Br4 (D2d), relative to 2Br2,
together with ∆Σi=1

n εi (=∆P = A).

The energy profiles of Br4 (C2h) and Br4 (D2d) seem very different from that of Br4
(Cs-L1). The ∆Σi=1

n εi terms for Br4 (C2h) and Br4 (D2d) are evaluated to be 587.5 and 908.1
kJ mol−1, respectively. Namely, Br4 (C2h) and Br4 (D2d) would be less stable than 2Br2 if
∆Σi=1

n εi are compared. Consequently, it is difficult to explain the stability of Br4 (C2h) and
Br4 (D2d), based on the MO energies. On the other hand, ∆Σi

n Hc(i) of Br4 (C2h) and Br4
(D2d) are evaluated to be −603.5 and −926.3 kJ mol−1, respectively, whereas ∆(Σi 6=j

n Jij

− Σi 6=j,‖
n Kij)/2 are 595.5 and 917.2 kJ mol−1, respectively. As a result, the (∆Σi

n Hc(i) +
∆(Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2) values are −8.0 and −9.1 kJ mol−1 for Br4 (C2h) and Br4 (D2d),

respectively, which correspond to their ∆EES values (relative to 2E(Br2)). The results show
that the stabilizing effect of ∆Σi

n Hc(i) overcomes the shorter electron–nuclear distances in
the species on average. The shorter electron–electron distances must destabilize Br4 (C2h)
and Br4 (D2d) through the factor of ∆(Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2, which is the inverse effect

from the electron–nuclear interaction on ∆Σi
n Hc(i). However, the effect of the shorter

distances on ∆Σi
n Hc(i) seems to contribute more effectively than the case of ∆(Σi 6=j

n Jij −
Σi 6=j,‖

n Kij)/2 in Br4 (C2h) and Br4 (D2d), although they are not so large.
How can the BPs in Br4 (C2h) and Br4 (D2d) be rationalized through orbital interactions?

The ∆εi values of Br4 (C2h) are positive for all occupied MOs, relative to the corresponding
values of 2Br2, except for HOMO-3 (−5.5 kJ mol−1), HOMO-6 (−2.9 kJ mol−1), HOMO-7
(−35.8 kJ mol−1), and HOMO-13 (−1.1 kJ mol−1). Figure 9 illustrates the interactions
to produce HOMO, HOMO-3, HOMO-4, and HOMO-7. Indeed, HOMO-7 seems to
contribute well to stabilizing Br4 (C2h), but HOMO-4 (+40.8 kJ mol−1) is also formed
in the π(Br2)–π(Br2) mode. Similarly, HOMO (+13.7 kJ mol−1) is formed, together with
HOMO-3 in the π*(Br2) + π*(Br2) mode. Therefore, all MOs seem not to contribute to
stabilizing Br4 (C2h) inherently. Nevertheless, HOMO, HOMO-4, and HOMO-7 seem to
rationalize the appearance of BPs in Br4 (C2h), along the diagonal line and shorter sides of
the parallelogram, although all electrons contribute to the appearance of BPs in molecules.



Molecules 2021, 26, 2936 14 of 18

Molecules 2021, 26, x FOR PEER REVIEW 14 of 18 
 

 

are –8.0 and –9.1 kJ mol–1 for Br4 (C2h) and Br4 (D2d), respectively, which correspond to their 
ΔEES values (relative to 2E(Br2)). The results show that the stabilizing effect of ΔΣin Hc(i) 
overcomes the shorter electron–nuclear distances in the species on average. The shorter 
electron–electron distances must destabilize Br4 (C2h) and Br4 (D2d) through the factor of 
Δ(Σi≠jn Jij − Σi≠j,‖n Kij)/2, which is the inverse effect from the electron–nuclear interaction on 
ΔΣin Hc(i). However, the effect of the shorter distances on ΔΣin Hc(i) seems to contribute 
more effectively than the case of Δ(Σi≠jn Jij − Σi≠j,‖n Kij)/2 in Br4 (C2h) and Br4 (D2d), although 
they are not so large. 

How can the BPs in Br4 (C2h) and Br4 (D2d) be rationalized through orbital interactions? 
The Δεi values of Br4 (C2h) are positive for all occupied MOs, relative to the corresponding 
values of 2Br2, except for HOMO-3 (–5.5 kJ mol–1), HOMO-6 (–2.9 kJ mol–1), HOMO-7 (–
35.8 kJ mol–1), and HOMO-13 (–1.1 kJ mol–1). Figure 9 illustrates the interactions to produce 
HOMO, HOMO-3, HOMO-4, and HOMO-7. Indeed, HOMO-7 seems to contribute well 
to stabilizing Br4 (C2h), but HOMO-4 (+40.8 kJ mol–1) is also formed in the π(Br2)–π(Br2) 
mode. Similarly, HOMO (+13.7 kJ mol–1) is formed, together with HOMO-3 in the π*(Br2) 
+ π*(Br2) mode. Therefore, all MOs seem not to contribute to stabilizing Br4 (C2h) inher-
ently. Nevertheless, HOMO, HOMO-4, and HOMO-7 seem to rationalize the appearance 
of BPs in Br4 (C2h), along the diagonal line and shorter sides of the parallelogram, although 
all electrons contribute to the appearance of BPs in molecules. 

 
Figure 9. Energy profile for the formation of Br4 (C2h), exemplified by HOMO, HOMO-3, HOMO-4, 
and HOMO-7. 

Similarly, Δεi of Br4 (D2d) are positive for all occupied MOs, relative to the correspond-
ing values of 2Br2, except for HOMO-3 (–1.9 kJ mol–1), HOMO-7 (–39.2 kJ mol–1), and 
HOMO-13 (–0.5 kJ mol–1). Figure 10 illustrates the interactions to produce HOMO, 
HOMO-3, HOMO-4, and HOMO-7 in Br4 (D2d). HOMO-4 (+50.2 kJ mol–1) is formed 
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Figure 9. Energy profile for the formation of Br4 (C2h), exemplified by HOMO, HOMO-3, HOMO-4,
and HOMO-7.

Similarly, ∆εi of Br4 (D2d) are positive for all occupied MOs, relative to the corre-
sponding values of 2Br2, except for HOMO-3 (−1.9 kJ mol−1), HOMO-7 (−39.2 kJ mol−1),
and HOMO-13 (−0.5 kJ mol−1). Figure 10 illustrates the interactions to produce HOMO,
HOMO-3, HOMO-4, and HOMO-7 in Br4 (D2d). HOMO-4 (+50.2 kJ mol−1) is formed
through the π(Br2)–π(Br2) mode in addition to HOMO-7. Similarly, HOMO (+13.9 kJ
mol−1) is formed, accompanied by HOMO-3, in the π*(Br2) + π*(Br2) mode. Therefore, no
MOs essentially stabilize Br4 (D2d). However, the appearance of BPs along the longer and
shorter diagonal lines of the tetrahedron of Br4 (D2d) seem to be rationalized by HOMO-7,
together with HOMO-3 and HOMO-4, modifying the BPs, although BPs will appear as the
whole properties of molecules.
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The nature of interactions in the charged clusters is also of interest. Such investigations
are in progress.

4. Conclusions

The intrinsic dynamic and static nature of noncovalent Br-∗-Br interactions was eluci-
dated for Br4–Br10 with MP2/6-311+G(3df). QTAIM-DFA was applied to the investigation.
Hb(rc) were plotted versus Hb(rc) − Vb(rc)/2 for the interactions at BCPs of the fully opti-
mized structures, together with those from the perturbed structures, generated with CIV.
The nature of the covalent Br-∗-Br bonds in Br4–Br10 is predicted to have the SS/Cov-w
nature if calculated with MP2/6-311+G(3df). On the other hand, the nature of the noncova-
lent Br-∗-Br interactions in Br4–Br12 is classified by the pure CS interactions (θ ≤ 76◦). The
noncovalent Br-∗-Br interactions in the linear type clusters of Br4 (Cs-L1)–Br12 (Cs-L5) are
predicted to have the p-CS/t-HBnc nature (90.6◦ ≤ θp), except for r2, outside the ones of
the first end, which have the p-CS/vdW nature, although it is very close to the border area
between the two (θp ≤ 89.4◦). In the case of the cyclic clusters, the noncovalent Br-∗-Br in-
teractions will have the p-CS/vdW nature (θp ≤ 88.4◦), except for r2 in Br8 (S4) (θp = 93.5◦)
and Br8 (S4-Wm) (θp = 95.3◦), which have the p-CS/t-HBnc nature.
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The energies for Br3 σ(3c–4e) of the np(Br)→σ*(Br–Br) type are well evaluated by not
only E(2) but also Cii

−1 for Br4 (Cs-L1)–Br12 (Cs-L5). E(2) correlates very well to Cii
−1. The

CT interactions of the np(Br)→σ*(Br–Br) type must contribute to form Br4 (Cs-L1), which
can be explained based on the MO energies, εi. However, it seems difficult to explain
the stability of Br4 (C2h) and Br4 (D2d) based on the energies. The Br2 molecules must
be stacked more effectively in Br4 (C2h) and Br4 (D2d), resulting in shorter electronuclear
distances on average. The energy lowering effect by ∆Σi

n Hc(i), due to the effective stacking
of 2Br2 in Br4 (C2h) and Br4 (D2d), contributes to form the clusters, although the inverse
contribution from ∆((Σi 6=j

n Jij − Σi 6=j,‖
n Kij)/2) must also be considered.

Supplementary Materials: The following are available online, Table S1: Structural parameters for
Br2–Br6, Table S2: Structural parameters for Br8–Br12, Table S3: The bond path distances and the
straight-line distances in the polybromide clusters, together with the differences between the two,
Table S4: The ρb(rc), Hb(rc) − Vb(rc)/2 (=(

1 
 

ћ 2/8m)∇2ρb(rc)), and Hb(rc) values and QTAIM-DFA
parameters for Br-∗-Br in polybromine clusters of Br2–Br12, Table S5: Contributions from the donor–
acceptor (NBO(i)→NBO(j)) interactions of the n(Br)→σ*(Br–Br) type in the optimized structures
of Br4–Br12, calculated using NBO analysis, Table S6: MO energies of Br4 (C2h), Table S7: MO
energies of Br4 (D2d), Table S8: MO energies of Br2 (D∞h), Table S9: MO energies of Br4 (Cs-L1), Table
S10: The ∆εi values for Br4 (Cs-L1), relative to 2Br2 (D∞h), Table S11: Energies for the Br4 clusters
and 2Br2, together with the differences between the two, Figure S1: Plot of ∆EZP versus ∆EES for
Br4–Br12, relative to those of Br2, respectively, Figure S2: Plots of ∆EES for Br2–Br12 (Cs-Ln), Figure
S3: Optimized structures for the cyclic bromine clusters of Br8–Br12, together with the linear type
bromine cluster of Br10, Figure S4: Plot of θ and θp versus R for the noncovalent Br-∗-Br interactions
at the BCPs in the fully optimized structures of Br4–Br12, Figure S5: Plot of θp versus θ for the
noncovalent Br-∗-Br interactions at the BCPs in the fully optimized structures of Br4–Br12, Figure S6:
Plot of E(2) versus R for noncovalent Br-∗-Br interactions in Br4 (Cs-L1)–Br12 (Cs-L5), Figure S7: Plot
of E(2) versus θ for noncovalent Br-∗-Br interactions in Br4 (Cs-L1)–Br12 (Cs-L5), Figure S8: Plot of
E(2) versus θp for noncovalent Br-∗-Br interactions in Br4 (Cs-L1)–Br12 (Cs-L5), Figure S9: MOi (i = 70,
67, 64, 35, and 30) and the energies relative to those corresponding to 2Br2, and Cartesian coordinates
and energies of all the species involved in the present work. Appendix: Survey of QTAIM, closely
related to QTAIM dual-functional analysis; Criteria for classification of interactions: behavior of
typical interactions elucidated by QTAIM-DFA; Characterization of interactions.
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