
molecules

Article

Force Field Parameters for Fe2+
4S2−

4 Clusters of
Dihydropyrimidine Dehydrogenase, the 5-Fluorouracil Cancer
Drug Deactivation Protein: A Step towards In Silico
Pharmacogenomics Studies

Maureen Bilinga Tendwa 1,†, Lorna Chebon-Bore 1,† , Kevin Lobb 1,2 , Thommas Mutemi Musyoka 1,*
and Özlem Tastan Bishop 1,*

����������
�������

Citation: Tendwa, M.B.;

Chebon-Bore, L.; Lobb, K.; Musyoka,

T.M.; Tastan Bishop, Ö. Force Field

Parameters for Fe2+
4S2−

4 Clusters of

Dihydropyrimidine Dehydrogenase,

the 5-Fluorouracil Cancer Drug

Deactivation Protein: A Step towards

In Silico Pharmacogenomics Studies.

Molecules 2021, 26, 2929. https://

doi.org/10.3390/molecules26102929

Academic Editor: Julio Caballero

Received: 20 April 2021

Accepted: 11 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University,
Makhanda 6140, South Africa; bilingatendwa@gmail.com (M.B.T.); lornajemosop@gmail.com (L.C.-B.);
k.lobb@ru.ac.za (K.L.)

2 Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
* Correspondence: mutemibiochemistry@gmail.com (T.M.M.); o.tastanbishop@ru.ac.za (Ö.T.B.)
† These authors contributed equally to this work.

Abstract: The dimeric dihydropyrimidine dehydrogenase (DPD), metalloenzyme, an adjunct anti-
cancer drug target, contains highly specialized 4 × Fe2+

4S2−
4 clusters per chain. These clusters

facilitate the catalysis of the rate-limiting step in the pyrimidine degradation pathway through a
harmonized electron transfer cascade that triggers a redox catabolic reaction. In the process, the
bulk of the administered 5-fluorouracil (5-FU) cancer drug is inactivated, while a small proportion
is activated to nucleic acid antimetabolites. The occurrence of missense mutations in DPD protein
within the general population, including those of African descent, has adverse toxicity effects due
to altered 5-FU metabolism. Thus, deciphering mutation effects on protein structure and function
is vital, especially for precision medicine purposes. We previously proposed combining molecular
dynamics (MD) and dynamic residue network (DRN) analysis to decipher the molecular mechanisms
of missense mutations in other proteins. However, the presence of Fe2+

4S2−
4 clusters in DPD poses a

challenge for such in silico studies. The existing AMBER force field parameters cannot accurately
describe the Fe2+ center coordination exhibited by this enzyme. Therefore, this study aimed to derive
AMBER force field parameters for DPD enzyme Fe2+ centers, using the original Seminario method
and the collation features Visual Force Field Derivation Toolkit as a supportive approach. All-atom
MD simulations were performed to validate the results. Both approaches generated similar force
field parameters, which accurately described the human DPD protein Fe2+

4S2−
4 cluster architecture.

This information is crucial and opens new avenues for in silico cancer pharmacogenomics and drug
discovery related research on 5-FU drug efficacy and toxicity issues.

Keywords: AMBER force field parameters; iron [Fe2+
4S2−

4] clusters; dihydropyrimidine dehydroge-
nase (DPD); molecular dynamic (MD) simulation; quantum mechanics (QM); Seminario approach

1. Introduction

Dihydropyrimidine dehydrogenase (DPD; EC 1.3.1.2) is the initial rate-limiting en-
zyme in the triple-step pyrimidine-based catabolic pathway [1,2]. The enzyme is involved
in the degradation of pyrimidine bases (thymine and uracil) via a NADPH-dependent
reaction to 5,6-dihydrothymine and 5,6 dihydrouracil, respectively [1]. Besides its biologi-
cal nucleotide catabolizing function, the enzyme is an adjunct anti-cancer drug target [3].
It is solely responsible for the phase 1 metabolism of 5-fluorouracil (5-FU), a commonly
prescribed pyrimidine-like anti-cancer drug. During 5-FU metabolism, the bulk (80–85%) of
the administered dose is rapidly inactivated to dihydroflourouracil (DHFU). Additionally,
a small proportion (1–3%) of the administered drug is activated to fluorodeoxyuridine
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monophosphate (FdUMP) and fluorouridine triphosphate (FUTP), leading to inhibition of
DNA synthesis and RNA processing. The remaining 12–19% unmetabolized 5-FU form
is excreted in the urine [4]. As such, deficiency or reduced levels of DPD enzyme, as well
as sequence variation due to mutations, have been reported to cause fluoropyrimidine
associated toxicity effects [5,6]. Thus, understanding the implication of mutations for the
catalytic mechanism of DPD can improve treatment approaches for oncology patients.
Although there is a growing interest in molecular investigations of DPD enzyme, espe-
cially via computational approaches such as molecular dynamics (MD) simulations [7], a
significant hindrance of the implementation of such studies is the presence of four iron-
sulfur (Fe2+

4S2−
4) clusters in the homodimeric form of the DPD structure, which require

additional force field parameters.

1.1. DPD Structure and Mechanism of Action

In this study, our interest is in the human DPD protein. However, since we used
the crystal structure of a pig homolog to build the 3D human model, we will define the
structural features from the template structure.

The 222 kDa homodimeric DPD pig structure (PDB ID: 1H7X) [2,8] enzyme consists
of one ligand (5-FU represented as URF), a cofactor (nicotinamide adenine dinucleotide
phosphate (NADPH)), two protein-bound organic cofactors (flavin adenine dinucleotide
(FAD) and flavin mononucleotide (FMN)), and four inorganic Fe2+

4S2−
4 clusters. Each of

the 1020 residue monomers has five domains: domain one (residues 27–173, 2 × Fe2+
4S2−

4
clusters); domain two (residues 174–286 and 442–524) and three (residues 287–441) are
the NADPH- and FAD-binding domains, respectively; domain four (FMN, URF residue
535–847; active-site loop residues 675–679) and domain five (residues 1–26 and 848–1017;
2 × Fe2+

4S2−
4) (Figure 1) [1,2,9,10]. Additionally, the two Fe2+

4S2−
4 (hetero atoms 1028 and

1029) clusters in domain four of the same chain are in very close proximity to domain
five Fe2+

4S2−
4 (hetero atoms 1026 and 1027) clusters of the opposite chain [9,10]. The

FMN/pyrimidine binding domain of each chain is closely positioned to the correspond-
ing C-terminal domain (2 x Fe2+

4S2−
4 clusters) [1,2,10]. This arrangement is crucial for

the electron transfer pathway from the NADPH donor molecule to pyrimidine binding
sites [1,2,10]. However, the exact mechanism of how these redox cofactors participate in
the reaction is largely unknown [11]. Previous studies have indicated that the Fe2+

4S2−
4

clusters tend to form a bridge between FMN and FAD cofactors for electron transport to
the active site [9,12–14].

The Fe2+
4S2−

4 clusters manifest a distorted tetrahedron cubane-like geometry [1,2,15].
Each Fe2+ in three of the clusters (1027, 1028, and 1029) is coordinated by cysteine residues
and connected by disulfide bridges ([Fe2+

4S2−
4 (S-Cys)4]). However, cluster 1026 de-

picts a unique coordination, in which four Fe2+ atoms are inter-connected by disulfide
bridges, three of which are bound to the protein backbone by a cysteine residue side
chain, while the fourth is bound via a glutamine residue ([Fe2+

4S2−
4 (S-Cys)3(S-Gln)]) side

chain [1,2,9,10,15].

1.2. The Study

Although there is an increased interest in the protein metal interactions, prompted by
the essential physiological roles played by metal ions [15–17], the Fe–S (Gln) coordination
in cluster 1026 is yet to be reported in other Fe2+

4S2−
4 cluster containing proteins [1,2].

Metal ions such as iron (Fe2+) are crucial components of a protein’s electron transportation,
as they trigger the activation process in the catalytic subunit. Additionally, they perform
important stabilization and homeostatic functions in a protein [18]. As a result, these
metal ions form a highly organized geometric arrangement with specific highly conserved
residues [19].
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Figure 1. A comprehensive representation of chain-A and chain-B of the pig DPD template (PDB ID: 1H7X) crystal struc-
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cofactors are represented as sticks. The grey surface represents chain-B, which is a mirror image of chain-A. (B) Highlights 

the Fe2+4S2−4 clusters coordinating environment of chain-A. (C) The electron transport process in which 2 electrons are lost 

from nicotinamide-adenine-dinucleotide phosphate (NADPH) via flavin adenine dinucleotide (FAD) and Fe2+4S2−4 (1026 

and 1027) clusters in site 1 of both chains, for the reduction of URF (5-FU) in site 2 of the opposite chain via Fe2+4S2−4 (1028 

and 1029) clusters and flavin mononucleotide (FMN). 
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Figure 1. A comprehensive representation of chain-A and chain-B of the pig DPD template (PDB ID: 1H7X) crystal structure.
(A) Chain-A domains (1–5) are colored (teal, magenta, light grey, and light and dark blue, respectively) and the cofactors
are represented as sticks. The grey surface represents chain-B, which is a mirror image of chain-A. (B) Highlights the
Fe2+

4S2−
4 clusters coordinating environment of chain-A. (C) The electron transport process in which 2 electrons are lost

from nicotinamide-adenine-dinucleotide phosphate (NADPH) via flavin adenine dinucleotide (FAD) and Fe2+
4S2−

4 (1026
and 1027) clusters in site 1 of both chains, for the reduction of URF (5-FU) in site 2 of the opposite chain via Fe2+

4S2−
4 (1028

and 1029) clusters and flavin mononucleotide (FMN).

We can gain insights into metal coordinating environments through computational
studies, especially via molecular dynamics (MD) simulation. However, MD calculations are
highly dependent on force fields derived through quantum mechanics (QM), and molecular
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mechanics (MM) approaches [20,21]. MM methods employ classical-type models to predict
the amount of energy in a molecule, based on its conformation [22]. Compared to QM
approaches, MM methods are computationally cheaper and sufficient for describing atomic
interactions and dynamics of a purely organic system. However, most of the available MM
force fields cannot accurately describe the metal/organic interface occurring in metallopro-
teins, as they ignore their induced explicit electronic degree of freedom [23]. To account for
the electronic effects of the metals, de novo QM/MM calculations have been employed to
describe the precise electron structure of atoms around a metal center [24–26]. Due to the
importance of metals in protein function, the development of novel force field parameters
using either hybrid QM/MM or pure QM approaches for describing various transition
metal architectures is gaining pace [27]. This has led to numerous modified force fields that
have been incorporated in several force field families, such as the optimized potentials for
liquid simulations (OPLS-AA) [28], Gronigen molecular simulation (GROMOS) [29], chem-
istry at Harvard molecular mechanics (CHARMM) [30,31], and assisted model building
with energy refinement (AMBER) [32]. Both CHARMM and AMBER are widely used. They
give a large palette of atom types, allowing several organic molecules to be represented by
assigning atom types based on chemical similarity [33,34]. OPLS-AA [35,36] optimizations
focus on the condensed phase properties of small molecules, and have since been extended
to include a diverse set of small molecule model compounds. However, atom type as-
signment must be done manually. It worth noting that a commercial implementation of
OPLS-AA with atom typing functionality is available [37]. On the other hand, CHARMM
has been enhanced with the CHARMM general force field (CGenFF), which not only covers
a wide range of chemical groups found in biomolecules and drug-like molecules, but
also many heterocyclic scaffolds [38,39]. Furthermore, a web interface for automatic atom
typing and analogy-based parameter and charge assignment is now available [40,41]. The
GROMOS force field atom type palette offers a pool of diversity for the construction of
small molecule models with a force field derived from biopolymer parameters [29]. The
general AMBER force field (GAFF) [42] and the antechamber toolkit are now included
in AMBER [33,43,44] allowing the user to generate an AMBER [32,45] force field model
for any input molecule. Besides the associated simulation speeds and exportable parame-
ters, the development of a Python-based metal parameter builder (MCPB.py) [46], which
supports various AMBER force fields and >80 metal ions, has made the parametrization
of inorganic constituents in proteins more facile. These advantages make AMBER the
most preferred platform for the development of metal parameters for use in simulations
involving metalloproteins. Hitherto, various methods, such as the polarization model, and
non-bonded, semi-bonded, and bonded models, have been implemented to characterize
metalloproteins. The non-bonded model uses non-covalent (van der Waals and electrostatic
forces) interaction to define metal centers [43,44], whereas, semi-bonded [47,48] models put
dummy atoms around metals to resemble electron orbitals. However, these two methods
are incapable of taking into account charge transfer and polarization effects around the
metal centers [49]. These shortcomings have been solved by incorporating the charge
transfer and polarization effects in potential energy function models [50,51]. Contrastingly,
the bonded model utilizes defined harmonic energy terms, which have been introduced
into possible energy function to account for the bond formation between atoms and metal
centers [48,52,53][ The approaches mentioned above have been extensively used in studies
to characterize Fe2+ centers in a range of metalloproteins [52–55]. Among other Fe2+ clus-
ters, Carvalho and colleagues [54] satisfactorily generated AMBER force field parameters
for Fe2+

4S2−
4 clusters coordinated by cysteine residues. However, none of these parameters

featured glutamine residue coordination to the Fe2+ center or developed parameters for
the structures of composite multiple clusters, besides applying two approaches. To the best
of our knowledge, this is the first study to determine the human DPD protein metal force
field parameters.

Collectively, the current study integrates MM with QM techniques to determine ac-
curate force field parameters for 8 × Fe2+

4S2−
4 cluster complexes of the modeled human
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DPD proteins. We utilized the bonded method of QM and Seminario techniques in our
calculations [27]. More specifically, the density functional theory (DFT) of the QM ap-
proach was used to derive Fe2+ center AMBER parameters for two models using different
Seminario methods. The first method (viz. Model 1) used the original Seminario [56]
method [46], whereas the second method (viz. Model 2) used collation features Visual
Force Field Derivation Toolkit (VFFDT) Seminario [57]. A comparison of the parameters
from the two methods was performed and their reliability evaluated via all atom MD
simulations. For the first time, the current study reports novel force field parameters for
multiple Fe2+

4S2−
4 clusters, coordinated to both cysteine and glutamine residues. Fur-

thermore, the reliability of the two parameter generation approaches was also evaluated
and found to be comparable. The newly derived force field parameters can be adopted
by other systems depicting a similar Fe2+ coordinating environment. More importantly,
the establishment of these parameters creates an avenue for further molecular studies to
fully understand the functional mechanism of the human DPD protein, and to decipher
the effects of missense mutations on drug metabolism and cancer drug toxicity issues. As
part of our ongoing investigations about the effects of known variants in human DPD,
especially on its structure and stability, the reliability of the current parameters has been
confirmed and the findings will be published as a follow-up study. Furthermore, different
methods, such as the identification of new mutants, coupled with structural analysis and
clinical studies, i.e., phenotyping of DPD, has had a great impact on the understanding of
the structural and functional effects of these mutations [6]. Together, these results will be
crucial, not only for understanding how mutations lead to 5-FU toxicities, but also to better
inform the implementation of precision medicine in cancer treatment.

2. Results and Discussion
2.1. Human DPD 3D Wild Type (WT) Complete Structure Determined via Homology
Modeling Approaches

The availability of accurate and complete 3D structural information is a fundamental
aspect for molecular studies aimed at understanding protein function. With the absence of
the human DPD X-ray structure in the protein data bank (PDB) [8], homology modeling
approaches were used to calculate accurate models of the human DPD enzyme using
MODELLER v9.15 [58], DiscoveryStudio4.5 [59], and pig X-ray structure (PDB ID: 1H7X,
2.01 Å) as a template [1,2]. The choice of the template was guided by the high sequence
identity (93%) with the target human DPD enzyme. Additionally, it was in complex with
the drug of interest (5-FU) and had a complete query coverage of 100%. Using the very
slow refinement level in MODELLER v9.15, 100 apo protein models were generated. The
three best models, with the lowest z-DOPE scores of −1.36, −1.36, and −0.88, were chosen
for further validation. z-DOPE score evaluates the closeness of a model in comparison with
the native structure, based on atomic distance-displacement statistical potential, with a
score of ≤−1.0 being considered as a near-native structure [60,61]. Consequently, holo (apo
and cofactors) and holo-drug (5-FU) complex structures were generated by incorporating
the non-protein coordinates from the template in Discovery Studio 4.5 [59]. Additional
model quality assessment (Table S1) was performed using the VERIFY3D webserver [62],
qualitative model energy analysis (QMEAN) [63], protein structure analysis (ProSA) [64],
and program to check the stereochemical quality of protein structures (PROCHECK) [65].
VERIFY3D utilizes pairwise interaction derived energy potentials to evaluate the local
quality of a model, based on each residue structure environment [62]. High-quality struc-
tures are predicted to have more than 80% of their residues with a 3D-1D score of 0.2 or
higher [62]. The modeled structures had 3D-ID scores of 0.2 or higher (Table S1) in 85.01%
of its residues. QMEAN estimates the quality of the submitted model based on its physic-
ochemical properties, then derives a value corresponding to the overall quality of the
structure and compares it to the calculated QMEAN-scores of 9766 high-resolution experi-
mental structures [63]. The modelled structures of DPD holo and holo–drug complexes had
a QMEAN-score of 0.90 and 0.89, which is similar to that of high-resolution experimental
structures. ProSA assesses the quality of the submitted model by calculating its potential
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energy and comparing the resulting score to that of the experimental structures available in
PDB [64]. The Z-score of each monomer of the holo and holo–drug complexes was between
−13.41 and −13.56, which is similar to NMR structures of the same size.

PROCHECK assesses the stereochemical quality of the submitted protein models
based on their phi/psi angle arrangement and then produces Ramachandran plots, which
show the protein residues positions on the most favored, allowed, and disallowed re-
gions [65]. Each generated model had more than 83.8%, 16.0%, and 0.2% of their residues
in the most favored, allowed, and disallowed regions, respectively, suggesting a good dis-
tribution of torsion angles (Table S1). Overall, constructed holo and holo–drug complexes
with consistently high-quality scores were obtained.

To remove steric clashes in the generated models (holo and holo-drug), 100 steps
of minimization, with the steepest descent algorithm using the GROMACS 5.14 MD
simulation package [66], were performed and determined to be suitable for subsequent
calculations.

2.2. AMBER Force Field Parameters Generated Using Bonded Approaches

The metal coordination geometries in proteins are highly dependent on the protona-
tion states of the residues involved. Thus, to achieve the correct geometry arrangements in
the human DPD protein, the protonation states of all titratable resides were determined
at a pH of 7.5, using the H++ webserver (http://biophysics.cs.vt.edu/H++, accessed on
12 December 2019) [67] (Table S2). To ensure correct protonation, a visual inspection of
all titratable residues was performed and corrected using Schrödinger Maestro version
11.8 [68]. Table 1 shows the protonation states of residues forming a bond with the metal
ions in the Fe2+

4S2−
4 clusters. Cys was protonated as CYM and interacted with the Fe2+

center through a sulfur (SG) bond. On the other hand, Gln was protonated as GLH to
coordinate with the Fe2+ ion through the oxygen (OE) atom.

Table 1. The protonation states and their pKa values of metal coordinating residues in human DPD
protein model.

Residue Name
AMBER Protonated

Residue Name Residue Number pKa Value

Glutamine (Gln) 1 GLH 156 0.00

Cysteine (Cys)
2 CYM

79 8.37

82 >12.00

87 >12.00

91 8.92

130 >12.00

136 >12.00

140 >5.55

953 >12.00

956 1.93

959 <0.00

963 11.69

986 >12.00

989 8.92

992 <0.00

996 10.50
1 GLH represented protonation state of glutamine (Gln), as stipulated by AMBER. 2 CYM represented protonation
state of cysteine (Cys), as stipulated by AMBER.

http://biophysics.cs.vt.edu/H
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The AMBER force field parameters of the Fe2+
4S2−

4 clusters in the human DPD
protein were calculated using two approaches: the original Seminario method (Model 1)
and the collation features Seminario approach in visual-force field derivation tool (VFFDT)
(Model 2). In each chain, two distinct residue coordinating environments were identified.
Cluster 1026 (4 × Fe2+, 4 × S2−, 3 × Cys and 1 × Gln) coordination was different from
those of clusters 1027, 1028, and 1029 (4 × Fe2+, 4 × S2− and 4 × Cys). The four Fe2+ (FE1,
FE2, FE3, FE4) bonded to the four S2− (S1, S2, S3, S4) ions to form internal coordinates.
Whereas, four cysteine bounded the four Fe2+ (FE1, FE2, FE3, FE4) via a sulfide link (Cys
[SG]) to form external coordinates of clusters 1027, 1028, and 1029. However, cluster
1026 coordinated externally to the four Fe2+ (FE1, FE2, FE3, FE4) through three Cys [SG]
and the oxygen atom of Glutamine (Gln [OE]). Since the two monomers were a mirror
image of each other, the Fe2+

4S2−
4 clusters with the same geometry orientation were given

a similar number, with a different letter representing their respective chains: chain-A
(1026-A, 1027-A, 1028A, and 1029-A) and chain-B (1026-B, 1027-B, 1028B, and 1029-B). The
subset structures representing all the possible coordination environments for Fe2+ centers
in DPD protein were used for QM calculation. Using this approach, the computational time
and resources utilized were greatly reduced compared to if all the clusters were considered.
QM values for Fe2+

4S2−
4 subset clusters (1026-A and 1027-A) (Figure 2A) were generated

for the Model 1 using Becke three-parameter hybrid exchange and Lee Yang Parr (B3LYP)
correlation function level of theory [69–71]. Model 2 calculations failed at the B3LYP level of
theory, therefore, the parameters for single internal coordinates (S3 and FE3) were obtained
using a Los Alamos double-zeta basis (LSDA/LANL2DZ) approach [72]. However, those
for the external coordinates ((Cys and Fe2+) and (Gln and Fe2+)) were derived using a
geometry, frequency, noncovalent, extended TB (GFN1-xTB) method (Figure S1) [73,74].
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Figure 2. Human DPD Fe2+
4S2−

4clusters parameterization using original Seminario approach. (A) 3D representation of
Fe2+

4S2−
4 coordinating geometry. (B) The optimized geometry of Model 1 human DPD subset at B3LYP/6-31G* level of

theory. (C,D) Visualization of the energy potential using GaussView, showing the starting point of optimization at the
lowest energy level (step 238).
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2.2.1. Geometry Optimization

The subset structures for Model 1 attained the local minima at step number 238 initiat-
ing the optimization process (Figure 2C,D). During the optimization process, a significant
energy variation between steps 120 and 230 was observed. The main cause of the energy
variation was the formation of a repulsive bond between Fe2+ and Fe2+ ions instead of
the Fe2+ and S2− ions in cluster 1026. Nevertheless, the subset structures achieved correct
optimization, while maintaining their geometry, as seen in Figure 2B.

The original Seminario method derived individual point value parameters for the
subsets in Model 1 (Table S3). Contrastingly, the VFFDT (Model 2) approach/method gen-
erated average related parameters for internal bond length and angles, whereas the external
parameters were averaged manually (Table S4). The equilibrium bond length and angle
values obtained from QM (Models 1 and 2) showed some deviation of the crystal structure
(Tables 2–4). These disparities might have been due to deficient phase information on the
x-ray structure, since they give a static snapshot of the dynamic structure, contributing to
spurious values [75]. Moreover, the disparity might have resulted from the lack of solvent
effects and intermolecular interactions during the QM gas-phase optimization step [75,76].
As expected, the average bond length and angle for Model 2 were within the range of those
obtained from Model 1. Furthermore, consistent with previous studies, in both models, the
bond distances between Gln(OE)-Fe2+ were seemingly lower (Model 1: 1.92 Å and Model
2: 1.93 Å) (Table 2) compared to the bond between Cys(S)-Fe2+, with force constants of
60.40 and 24.97 kcal·mol−·Å−, respectively. The short bond length might be attributed to
the smaller atom radius of oxygen in Gln compared to that of sulfur in Cys [1,2]. These
values coincided with those obtained from previous related studies concerning Fe2+ and
Cys [54,77,78]. However, there is limited literature on Fe2+ and Gln force field interactions,
which has been sufficiently addressed in this study.

Despite the slight differences, the values of force constant from both systems (Model 1
and 2) were within the same range, and consistent with those obtained from previous
studies [54,78]. Commonly, force field parameter values of a model conducted under differ-
ent systems are not exact, but fall within an expected range [56,57,79]. In generating new
parameters, the state of the structural geometry optimization is thought to be a contributing
factor to the varied observations [80]. Previous findings [81] ascribed the discrepancies to
the different methods used in obtaining the force constant and the opposite manners in
which the connectivity’s were defined. Most importantly, the derived values showed that
both models maintained the subsets structural geometry following the optimization step.

2.2.2. RESP Charges

Partial atomic charge calculations were derived for each atom interacting with the Fe2+

center for the optimized subset structures. Figure S2 and Table S5, illustrate differences
in the WT DPD atomic charge distribution in the oxidized subsets. The RESP method
derived these charges by fitting the molecular electrostatic potential obtained from the
QM calculation, based on the atom-centered point charge model. In their oxidized state,
atoms within the DPD Fe2+ (S2−, Gln and Cys) center exhibited varied atomic charges due
to the large electrostatic environment around the protein’s metal sphere. Such variations
are known to influence charge transfer at the redox center bringing stability around the
coordinating sphere of metalloproteins [79]. As such, they are vital components in the
achievement of accurate inter- and intra-molecular potential electrostatic interaction [75].
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Table 2. Comparison of average bond length (Å) calculated with X-ray, 2 DFT 4 (B3LYP), and 5 (LSDA) methods for the molecular cluster model ([Fe2+
4S2−

4 (S-Cys)3(S-Gln)]) and
([Fe2+

4S2−
4 (S-Cys)4]) of native DPD protein.

Fe2+
4S2−4 Cluster
Number

Geometry Bond Length (Å)

Model System Fe2+
4S2−4(S-Cys)3(O-Gln) and ([Fe2+

4S2−4(S-Cys)4]) Clusters

Bond X-ray 1 QM (2 DFT) AFTER 3 MD

Bond Description 1H7X 4 B3LYP (Model 1) 5 LSDA (Model 2) Model 1 Model 2

Average Bond
Length (Å)

Average
Equilibrium

Bond Length [req]
(Å)

Force Constant
[Kr]

(kcal·mol−1·Å−2)

Average
Equilibrium

Bond Length [req]
(Å)

Force Constant
[Kr]

(kcal·mol−1·Å−2)

Bond Length (Å)
Mean and6 SD

Bond Length (Å)
Mean and 6 SD

Cluster 1026A

FE-S 2.54 2.24 58.63 2.22 89.23 2.24 ± 0.21 2.23 ± 0.22

FE-SG (Cys) 2.35 2.37 48.72 2.33 39.77 2.37 ± 0.01 2.33 ± 0.01

FE-OE (Gln) 1.89 1.92 60.40 1.93 54.97 1.91 ± 0.01 1.93 ± 0.04

Cluster 1027A

FE-S 2.46 2.24 57.11 2.22 89.23 2.25 ± 0.15 2.23 ± 0.16

FE-SG(Cys) 2.31 2.38 40.85 2.33 39.77 2.38 ± 0.05 2.33 ± 0.01

FE-S 2.58 2.24 57.11 2.22 89.23 2.25 ± 0.23 2.23 ± 0.25

Cluster 1028B

FE-SG (Cys) 2.36 2.38 40.85 2.33 39.77 2.38 ± 0.01 2.33 ± 0.02

FE-S 2.48 2.24 57.11 2.22 89.23 2.23 ± 0.18 2.23 ± 0.18

FE-SG (Cys) 2.32 2.38 40.85 2.33 39.77 2.38 ± 0.04 2.33 ± 0.00

Cluster 1029B

FE-S 2.54 2.24 58.63 2.22 89.23 2.24 ± 0.21 2.23 ± 0.22

FE-SG (Cys) 2.35 2.37 48.72 2.33 39.77 2.37 ± 0.01 2.33 ± 0.01

FE-OE (Gln) 1.89 1.92 60.40 1.93 54.97 1.91 ± 0.01 1.93 ± 0.04
1 QM: quantum mechanics, 2 DFT: density functional theory, 3 MD: molecular dynamics, 4 B3LYP: Becke, three-parameter, Lee Yang Parr, 5 LSDA: local spin density approximation, 6 SD: standard deviation.
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Table 3. Comparison of average internal angles (◦) calculated with X-ray, 2 DFT 4 (B3LYP), and 5 (LSDA) methods for the molecular cluster model ([Fe2+
4S2−

4(S-Cys)3(S-Gln)]) and
([Fe2+

4S2−
4(S-Cys)4]) of native DPD protein.

Fe2+
4S2−4 Cluster
Number

Geometry Angle (◦)

Model System Fe2+
4S2−4(S-Cys)3(O-Gln) and ([Fe2+

4S2−4(S-Cys)4]) Clusters

Angle X-ray 1 QM (2 DFT) AFTER 3 MD

Angle Description 1H7X 4 B3LYP (Model 1) 5 LSDA (Model 2) Model 1 Model 2

Average
Angle (◦)

Average
Equilibrium
Angle [
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Cluster 1026A
FE-S-FE 67.98 67.32 52.64 66.28 26.86 62.91 ± 3.59 68.10 ± 0.08

S-FE-S 106.03 108.50 39.12 109.21 39.52 109.25 ± 2.28 106.99 ± 0.68

Cluster 1027A
FE-S-FE 68.39 67.61 49.30 66.28 26.86 64.55 ± 2.72 68.24 ± 0.11

S-FE-S 107.21 108.14 40.39 109.21 39.52 110.0 ± 1.98 108.07 ± 0.61

Cluster 1028B
FE-S-FE 68.22 67.61 49.30 66.28 26.86 66.13 ± 1.48 68.30 ± 0.06

S-FE-S 106.51 108.14 40.39 109.21 39.52 107.02 ± 0.36 106.97 ± 0.33

Cluster 1029B
FE-S-FE 67.97 67.61 49.30 66.28 26.86 65.15 ± 1.99 67.48 ± 0.35

S-FE-S 107.62 108.14 40.39 109.21 39.52 106.74 ± 0.62 107.30 ± 0.23
1 QM: quantum mechanics, 2 DFT: density functional theory, 3 MD: molecular dynamics, 4 B3LYP: Becke, three-parameter, Lee Yang Parr, 5 LSDA: local spin density approximation, 6 SD: standard deviation.
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Table 4. Comparison of average external angles (◦) calculated with X-ray, 2 DFT 4 (B3LYP), and 5 (GFN1-xTB) methods for the molecular cluster model ([Fe2+
4S2−

4(S-Cys)3(S-Gln)]) and
([Fe2+

4S2−
4(S-Cys)4]) of native DPD protein.

Fe2+
4S2−4 Cluster
Number

Geometry Angle (◦)

Model System Fe2+
4S2−4(S-Cys)3(O-Gln) and ([Fe2+

4S2−4(S-Cys)4]) Clusters

Bond X-ray 1 QM (2 DFT) AFTER 3 MD

Bond Description 1H7X 4 B3LYP (Model 1) 5 GFN1-xTB (Model 2) Model 1 Model 2

Average Angle
(◦)

Average
Equilibrium

Angle (◦)

Force constant
(kcal·mol−1·rad−2)

Average
Equilibrium

Angle (◦)

Force Constant
(kcal·mol−1·rad−2)

Angle (◦)
Mean and 6 SD

Angle (◦)
Mean and 6 SD

Cluster 1026A

C-Gln(OE)-FE 117.29 130.30 75.86 115.32 41.23 115.29 ± 1.41 114.42 ± 2.02

C-Gln(OE)-H 104.50 122.90 80.00 118.02 44.55 113.34 ± 6.25 116.93 ± 8.78

Gln(OE)-FE-S 107.18 109.53 48.56 113.08 40.55 111.10 ± 2.77 112.09 ± 3.47

Cluster 1027A

CT-Cys(SG)-FE 106.87 106.27 102.22 107.39 100.90 107.56 ± 0.49 109.52 ± 1.87

Cys(SG)-CT-H 108.92 109.50 50.80 104.33 23.56 101.39 ± 5.32 106.06 ± 2.02

Cys(SG)-FE-S 110.17 110.68 53.74 113.28 36.14 108.84 ± 0.94 112.60 ± 1.72

Cluster 1028B

CT-Cys(SG)-FE 106.72 106.27 102.22 107.39 100.90 111.35 ± 3.27 115.99 ± 6.55

Cys(SG)-CT-H 107.42 109.50 50.80 104.33 23.56 106.53 ± 0.63 104.94 ± 1.75

Cys(SG)-FE-S 110.37 110.68 53.74 113.28 36.14 110.89 ± 0.37 112.35 ± 1.40

Cluster 1029B

CT-Cys(SG)-FE 110.70 106.27 102.22 107.39 100.90 105.99 ± 3.33 116.21 ± 3.90

Cys(SG)-CT-H 110.45 109.50 50.80 104.33 36.14 105.07 ± 3.80 103.38 ± 5.00

Cys(SG)-FE-S 110.02 110.68 53.74 113.28 36.14 110.58 ± 0.40 111.20 ± 0.83
1 QM: quantum mechanics, 2 DFT: density functional theory, 3 MD: molecular dynamics, 4 B3LYP: Becke, three-parameter, Lee Yang Parr, 5 LSDA: local spin density approximation, 6 SD: standard deviation.



Molecules 2021, 26, 2929 12 of 27

2.2.3. Inferring the Generated QM Force Fields Parameters to the Corresponding
Identical Clusters

The newly generated Fe2+ force field parameters for subsets 1026-A and 1027-A
(Tables S6 and S7) were inferred to the remaining Model 1 DPD clusters corresponding to
their geometries mentioned earlier. Similarly, the generated internal and external parame-
ters (Table S4) for Model 2 were also inferred to the corresponding clusters, accordingly. At
the end, each model featured a holo and a holo-drug (5-FU cancer drug) protein complex,
totaling 64 internal (Fe-S) and 32 external (30 Cys-Fe; 2 Gln-Fe) parameter calculations for
the DPD (Fe2+

4S2−
4) clusters. In terms of energy profile and range of force constants for

Model 1 and 2, there were no significant differences observed in terms of DPD Fe2+ ion
coordination to Cys, Gln residues, and S2− ions. Tables 2–4 show a summary of equilibrium
bond length, angle, and related force constants, with detailed information available in the
supporting information (Tables S6 and S7). Dihedral-related force constants were derived
manually from the respective structures (Table S8).

2.3. Genereted Force Field Parameters Validated Using MD Simulations
2.3.1. Analysis of Protein Stability and Flexibility through RMSD, RMSF, and Rg

Accurate parameters are necessary for maintaining the coordinating geometry of a
metal center in metalloproteins [55]. Therefore, to evaluate the accuracy and reliability of
the derived parameters (Model 1 and 2), all atom MD simulations (150 ns) for holo system
and holo–drug complexes were performed. The derived parameters were validated by
assessing the root mean square deviation (RMSD) (Figure 3A), the radius of gyration (Rg)
(Figure 3B), and root mean square fluctuation (RMSF) (Figure 3C). Simulations of both
models for holo and holo–ligand complexes showed minimal deviation from their initial
structures, which were maintained across the simulation process (Figure 3A). Model 1
systems (holo and holo-drug) displayed a multimodal RMSD density distribution, implying
they sampled various local minima, whereas each of the Model 2 proteins attained a single
local minimum (unimodal distribution). The Rg (Figure 3B) revealed that the compactness
of the various protein models remained the same during dynamics. However, differences
were observed between the holo and holo-drug bound proteins. The ligand-bound protein
was seen to generally have a higher Rg than the non-ligand bound protein in both model
systems. This may be attributed to the presence of the drug. Proteins from both models
exhibited similar RMSF profiles (Figure 3C). However, the ligand-bound proteins appeared
slightly more flexible than the non-ligand bound ones. As expected, the loop regions, which
constitute ~43% of the entire protein structure, including the active-site loop (residues
675–679), were the most flexible regions, while the metal site residues displayed minimal
fluctuation (Figure S3). Visualization of the different trajectories through visual molecular
dynamics (VMD) [82] verified a high conformational change of the loop areas, while the
protein central core containing Fe2+ clusters had vibrational-like movements.

The profiles of the RMSDs (Figure 3A) exhibited higher variation in conformational
changes across all systems. These variations were more apparent in the Model 1 system’s
proteins compared to the Model 2 system. Considering the similarity of protein behavior
with drug binding, it is apparent that both models showed similar atomic tendencies in the
drug and non-drug bound systems. The disparities arising from conformational changes
were because of the slight differences in the approaches used in the models’ preparation.
For instance, fixed bond parameters were assigned between Fe-S, Fe-Fe, and the connecting
residues (Fe-Cys or Fe-Gln) of Model 2, based on averages of crystallographic structure
(Table S2), whereas Model 1 parameters were attained from single point atom calculation
of the crystallographic structure. The RMSF values of both the holo and holo-drug bound
complexes demonstrated a region of higher flexibility between residues in all models
(Figure 3C).
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Proteins are dynamic entities and as such they undergo conformational changes as
part of their functionality. Elucidating these changes is necessary for understanding how
their functionality is maintained [83]. Hence, we evaluated the conformational variations
sampled by each system during the simulation by plotting the free energy of each system
snapshot as a function of RMSD and Rg using the Boltzmann constant (Figure 4). In
both models, free energy investigations revealed similar tendencies to the kernel density
map in all the systems. Both holo and holo-drug bound proteins populated three main
conformations in Model 1. However, the holo bound protein attained three energy minima
at 0.18, 0.20, and 0.25 nm, while the drug-bound protein energy minima were attained
later, at 0.22, 0.25, and 0.35 nm. On the other hand, Model 2 equilibrated at single energy
minima for both the drug (0.28 nm) and holo (0.22 nm) bound complexes. Model 1
proteins repeatedly attempted to find a high probability region that guaranteed more
thermodynamic stability for its conformational state than Model 2. However, upon drug
binding the conformation entropy was increased in both models, which destabilized the
transitional state and simultaneously slowed down the protein equilibration. Visualization
of the trajectories in VMD for establishing the cause of the trimodal ensemble showed
alternating movements in the loop regions, including the C-terminal, N-terminal, and
active-site loop areas. More importantly, the Fe2+

4S2−
4 cluster’s geometry was maintained

during the simulation (Figure S4).

2.3.2. Fe2+
4S2−

4 Clusters Exhibited Stability during MD Simulations

Assessment of the inter- or intra-molecular distances between groups of interest
can be used to investigate stability changes during MD simulations [84]. In this study,
distances between the center of mass (COM) of; 1) the entire DPD protein and each of the
eight Fe2+

4S2−
4 clusters (Figure 5A); 2) each chain and the four Fe2+

4S2−
4 clusters therein

(Figure 5B); and 3) the active site of each chain and its Fe2+
4S2−

4 clusters, were evaluated
(Figure 5C) for each model (Model 1 and 2: holo and holo-drug). From these calculations,
the overall stability of the key components involved in the electron transfer process was
evaluated. Generally, the inter-COM distances between the various groups in both models
were nearly the same (Figure 5A–C). Moreover, data were distributed with a less standard
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deviation (uni-modal distribution), as seen from most kernel density plots, suggesting the
distances within metal clusters remained in the same range across the 150 ns simulation
and maintained stability within the metal clusters. Thus, the two methods can reliably be
used to achieve accurate parameters for other metalloproteins.
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In addition to the group inter-COM distance calculations, the distances between the
Fe2+ centers and the coordinating residues were also determined for the holo-drug com-
plexes in both models (Figure 6). Using this approach, the integrity of the coordinating
geometry could be accessed during simulations. From the results, a high bond length
consistency was observed within all Fe2+

4S2−
4 centers; an indication that the derived

parameters were accurately describing the cluster geometries. Furthermore, the obtained
bond lengths were in agreement with those reported previously [54,55]. The maintenance
of the bond distances signified that the desired functionality and stability had not been
jeopardized given that this is dependent on the protein environment [54]. Notably, Zheng
et al.’s protocol for the evaluation of metal-binding structure confirmed that the coordinat-
ing tetrahedral geometry of Fe2+

4S2−
4 clusters was maintained during the entire simulation

run. Although our calculations agreed with previous findings [54,56,77,78], it is worth
noting that, to the best of the authors’ knowledge, none of the studies featured the force
field parameters for glutamine interaction with a single or multiple Fe2+

4S2−
4 cluster in a

single protein.
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2.3.3. Validation of Derived Parameters in IH7X Crystal Structure

The derived Fe2+
4S2−

4 parameters coordinated uniquely to Cys and Glu residues
were inferred to the template structure (PDB ID: 1H7X) for additional validation purposes.
As with the modelled human structures, the four Fe2+

4S2−
4 clusters in each chain of the

template maintained the correct geometry, as shown in Figure S5.

2.4. Essential Motions of Protein in Phase Space

Proteins are dynamic entities, whose molecular motions are associated with many
biological functions, including redox reactions. Collective coordinates derived from
atomic fluctuation principal component analysis (PCA) are widely used to predict a low-
dimensional subspace in which essential protein motion is expected to occur [85]. These
molecular motions are critical in biological function. Therefore, PCA was calculated to
investigate the 3D conformational study and internal dynamics of the holo and holo–drug
complexes of both models (Model 1 and Model 2). The first (PC1) and the second (PC2)
principal components captured the dominant protein motions of all atoms in the 150 ns
MD simulation (Figure 7). Both holo structures (Model 1 and Model 2) showed a U-shaped
time evolution from an unfolded state (yellow) emerging from simple Brownian motion
and ending in a native state (dark blue), over 150 ns. Strikingly, the projection of holo-drug
complexes from both models (1 and 2) adopted a V-shaped time evolution space, emerging
from an unfolded state (yellow) and ending in a native state (dark blue). Model 1 and
Model 2 holo structures accounted for 44.95% of the total global structural variances. The
holo–drug complexes displayed 48.95% and 36.5% of global total variance for Model 1
and Model 2, respectively. In overall, the holo–drug complexes (Model 1 and Model 2)
exhibited an altered conformational evolution over time in-comparison to their respective
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holo structure, suggesting that the newly derived force field parameters in both models
did not alter protein function.
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Figure 7. Principal component analysis. First and second principal component analysis (PC1 and PC2) of human DPD
wild type extracted from essential dynamics. The time evolution of the transition from unfolded state of the DPD protein
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PCs of Model 1, accounting for 44.95% and 48.95% of the total structural variance of the holo and holo–drug complexes,
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3. Materials and Methods

A graphical workflow of the methods and tools used in this study is presented in
Figure 8.
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Figure 8. A flow diagram illustrating a summary of methods and tools used in the generation and validation of Fe2+
4S2−

4

force field parameters for a human DPD protein model. Two approaches (original Seminario and automated Seminario) were
used to determine the bond lengths, angles, and dihedrals around the Fe2+

4S2−
4 centers. The reliability of the generated

parameters for describing the coordination geometry of the Fe2+
4S2−

4 centers was evaluated using all atom MD simulations.

3.1. Software

AMBER and AmberTools17, University of California, San Francisco, CA, USA;
AutoDock4.2 software, The Scripps Research Institute, San Diego, CA, USA; Discovery
Studio v4.5, Dassault Systems BIOVIA, San Diego, CA, USA; GaussView 5.0.9, Carnegie
Mellon University Gaussian, Wallingford, Connecticut, USA; GROMACS v5.1.5., University
of Groningen, Uppsala Sweden; RStudio v1.1.456, R Core Team, Boston, MA, USA; PyMOL
Molecular Graphics System, v1.8.2.3 Schrödinger, New York, NY, USA and MODELLER,
University of California, San Francisco, CA 94143, USA.

3.2. Homology Modeling of Native DPD Protein.

Due to the absence of human DPD protein crystal structural information in the Protein
Data Bank (PDB) database [10], a homology modeling approach was used to obtain a
complete 3D structure using MODELLER v9.15 [61]. This technique has become indis-
pensable for obtaining 3D model structures of proteins with unknown structures and their
assemblies by satisfying spatial constraints based on similar proteins with known struc-
tural information [86]. The restraints are derived automatically from associated structures
and their alignment with the target sequence. The input consists of the alignment of the
sequence to be modeled with a template protein whose structure has been resolved, and a
script file (Table S9). At first, the target sequence (human DPD enzyme: UniProt accession:
Q12882) was obtained from the Universal Protein Resources [87]. Both HHPred [88] and
PRIMO [89] were used to identify a suitable template for modeling the human DPD protein.
From the potential templates listed by the two webservers, PDB 1H7X, a DPD crystal struc-
ture from pig with a resolution 2.01 Å, was identified as the top structural template having
a sequence identity of 93% [1,2]. A pir alignment file was prepared between the Uniprot
(UniProt accession: Q12882) target sequence and that of template using multiple sequence
comparison by log-expectation (MUSCLE). Therefore, the template PDB ID: 1H7X was
utilized. In MODELLER v9.15 [90], a total of 100 human DPD holo models were generated
at the “very-slow” refinement level, guided by the selected template. The resulting models,
devoid of both drugs (5-FU and cofactors), were ranked based on their lowest normalized
discrete optimized protein energy (z-DOPE) score [60], and the top three models were
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selected for further modeling. To incorporate the non-protein structural information, each
of the selected models was separately superimposed onto the template in Discovery Studio
4.5 [59], and all non-protein information was copied. The coordinates for cofactors and
the drug were then transferred directly to the modeled structures. Further quality assess-
ment of the resulting complexes was performed using VERIFY3D [62], PROCHECK [65],
QMEAN [63], and ProSA [64]. The best model showing a consistently high-quality score
across the different validation programs was chosen for further studies.

3.3. Protonation of Titrarable Residues.

To account for the correct protonation states of the system, all DPD titratable residues
were protonated at pH 7.5 [1], a system salinity of 0.5 M, and internal and external de-
fault dielectric constants of 80 and 10, respectively, in the H++ web server [67]. System
coordinates (crd) and topology (top) files were used to build protonated protein structure
files. A visual inspection of all titratable residues was performed, and incorrect protonation
corrected using Schrödinger Maestro version 11.8.

3.4. New Force Field Parameter Generation.

Prior to the parameter generation process, the residue coordinations present in chain-
A and chain-B Fe2+

4S2−
4 centers were evaluated to identify representative subsets. Two

unique coordination subset arrangements, viz. 1026A (4 × Fe2+, 4 × S2−, 3 × Cys and
1 × Gln) and 1027B (4 × Fe2+, 4 × S2− and 4 × Cys), were identified. The two subsets
(1026A and 1027B) represented the coordinating geometry of all Fe2+

4S2−
4 clusters in

the protein. Subsequently, force field parameters describing the coordinating interac-
tions in these unique centers were determined via two approaches. First, the original
Seminario method (Model 1) was implemented using the bonded model approach in Am-
berTools16 [57] and Python-based metal center parameter builder (MCPB) [46]. Gaussian
09 [91,92] input files (com) of the protonated protein incorporating the subsets structures
(1026A and 1027B) were prepared. Thereafter, their geometries were optimized utilizing the
hybrid DFT method at a B3LYP correlation function level of theory. This process utilized
double split-valence with a polarization [6-32G(d)] basis set [71,92] (Table S1). Sub-matrices
of Cartesian Hessian matrix were used in the derivation of the metal geometry force field
parameters [56]. Bond and angle force constants were obtained via fitting to harmonic
potentials. The potential energy of the relative position for each atom in the system was
determined by AMBER force field parameters calculated from Equation (1) below:
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where the bond lengths, angles values, torsion values, and the interatomic distances were
obtained. The first and second term of the harmonic potential energy function relates to
bond bending and bond stretching, respectively, whereas the torsion angles are described
by the third term. Lastly, the van der Waals forces and electrostatic interaction are given by
the non-bonded energy function involving the Lennard Jones (12–6) potential and Coulomb
potential, respectively [32,56]. The optimized/minimized structures were then visualized in
GaussView 5.0.9 [93] to confirm that the bonds in the centers were intact. The atomic charges
of the optimized subset structures were then derived from electrostatic potential (ESP).
However, ESP assigns unreasonably charged values to the buried atoms, which impair
their conformational transferability. Therefore, the restrained electrostatic potential (RESP)
fitting technique, which considers the Coulomb potential for the calculation of electrostatic
interaction, was employed to address these issues. This method has been highly regarded
and widely used for assigning partial charges to various molecules utilizing B3LYP/6-
31G(d) gas phase [45]. Restraints, in terms of penalty functions, are applied on the buried
atoms, leading to multiple possible charged values. Hence, the quality of fit to the QM ESP
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is not compromised [94]. Herein, a default Merz–Kollman restrained electrostatic potential
(RESP) radius of 2.8 Å was allocated to the metal centers. An additional approach (herein
named as Model 2) using the collation features Seminario: VFFDT program was used [57].
Analysis data were acquired following optimization of subset Fe2+-S2−, Fe2+-Cys, and Fe2+-
Gln coordination; the calculations were performed using density functional theory (DFT)
featuring the LSDA/LANL2DZ (Table S2) [72]. This factored in the internal covalent bonds;
note that the calculation was not successful at the B3LYP level of theory [69]. The external
non-covalent bond calculation was determined by GFN1-xTB [73,74]. Retrieval of the force
field parameters for the entire molecule was done through the Protocol menu item “FF” for
the whole “General Small Molecule”. Since the system in this study was symmetrical, the
atom types were left identical to Fe or S. The AMBER force field parameters for Fe2+ metal
center bond and angles were then generated automatically. Individual detailed statistics
were derived but only the final values were utilized for further calculations. The obtained
parameters were then inferred to the other clusters in the modeled structures, as well as the
template crystal structure (PDB ID: 1H7X) using the LEaP [95] program. This was based on
the similarity of the clusters coordinating geometry. As such, cluster 1026A was inferred
to 1029B, and those for 1027A were inferred to 1027B, 1028A, 1028B, 1029A, and 1029B, as
they depict an identical coordination geometry. In total, 2 × ([Fe2+

4S2−
4(S-Cys)3(S-Gln)])

and 6 × ([Fe2+
4S2−

4 (S-Cys)4]) cluster parameters were derived for each model. No other
3D structure with metal centers, such as the human DPD coordinating environment, was
available in the PDB. Therefore, the pig crystal structure was used to validate the reliability
and accuracy of the newly generated force field parameters.

3.5. Force Field Parameters Validation and Analysis

To evaluate the reliability of the generated parameters derived from the original and
automated Seminario approaches, duplicate all-atom MD simulations were conducted
using the GROMACS 5.14 MD package [66]. For each model system (Model 1, Model 2,
1H7X crystal structure), the holo (protein with only cofactors) and holo–drug (5-FU) com-
plexes were considered for simulation studies. At first, AMBER topologies for each system
were generated by Leap modeling with the AMBER ff14SB force field to incorporate all the
generated parameters [96]. The resulting system topologies were converted to GROMACS-
compatible input files for the structure (gro) and the topology (top), with the correct atom
types and charges using the AnteChamber Python Parser interface (ACPYPE) tool [97].
The infinite systems were then solvated in an octahedron box system using the simple
point charge (SPCE216) water model [98], and with a padding distance of 10 Å set between
the protein surface and the box face. The net charge for all systems was subsequently
neutralized by adding 0.15 M NaCl counter-ions [99]. The neutralized systems were then
subjected to an energy minimization phase (without constraints) using the steepest descent
integrator 0.01 nm, and a maximum force tolerance of 1000 kJ·mol−T·nm−m was attained.
This was necessary to get rid of steric clashes that may have resulted during incorporation
of the parameters and water molecules. Subsequently, the systems were equilibrated to
ensure that they attained the correct temperature and pressure using a two-step conical
ensemble (each 100 ps). First, the temperature was set at 300 K (NVT-number of particles,
volume, and temperature) using a modified Berendsen thermostat. This was followed
by pressure equilibration at 1 atm (NPT-number of particles, volume and temperature)
using the Parrinello–Rahman barostat algorithm [100]. The ensembles utilized the revised
coulomb type for long range electrostatic interactions with a gap cut of 8.0 Å, as described
by the particle mesh Ewald (PME) [101] method, and the LINCS algorithm was used to
constrain bonds between all atoms [102]. Finally, production MD simulations of 150 ns
were performed for all the systems at the Centre for High Performance Computing (CHPC)
in Cape Town South Africa using 72 Linux CPU cores, with time integrations step of 2 fs.
Coordinates were written to file every 10 ps. The obtained MD trajectories were stripped
off all periodic boundary conditions (PBC) and fitted to the reference starting structure.
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3.5.1. Root Mean Square, Root Mean Square Fluctuation, and Radius of Gyration Analysis

Global and local conformational behaviors of the replicate ensembles were determined
using various GROMACS modules, viz. gmx rms, gmx rmsf, gmx gyrate, gmx distance, and
analyzed in RStudio [103]. These packages were used to analyze the root mean square
deviation (RMSD), root mean square fluctuation (RMSF), the radius of gyration (Rg), and
the inter-center of mass between groups of interest, respectively. The overall conforma-
tional changes per system were observed using visual molecular dynamics (VMD) [82]
to ensure that the derived parameters correctly maintained the geometry of the various
Fe2+

4S2−
4 clusters.

3.5.2. Principal Component Analysis

Principal component analysis (PCA) was conducted in MDM-TASK-web to investigate
the time evolution of the protein’s conformational changes in MD trajectories [85,104]. PCA
is a linear transformation technique that extracts the most important element from a data
set by using a covariance matrix built from atomic coordinates defining the protein’s
accessible degree of freedom. The calculations of the coordinate covariance matrix for the
Cα and Cβ atoms were implemented after RMS best-fit of the trajectories was applied
to an average structure [85,104]. Corresponding eigenvectors and eigenvalues were then
obtained from a diagonalized matrix. Protein coordinates were then projected using
eigenvectors. PC1 versus PC2 plots were then derived from the normalized primary and
secondary projections.

3.5.3. Additional Analytical Approaches

Molecular graphics were then prepared with PyMOL v1.8 [105], Anaconda 4.3.1
Jupyter Notebooks [106], and various open-source Python libraries, such as matplotlib [107],
Seaborn, Pandas [108], NumPy [109], and NGLview [110].

To ascertain how accurate the generated force field parameters were, the average bond
lengths and force constants from the derived parameters were compared to those of the
x-ray structure. All statistical calculations were performed using Welch t-test in RStudio
v1.1. 456 [103], where a p-value (<0.05) was considered significant.

4. Conclusions

In addition to the nucleotide metabolizing function of the DPD metalloenzyme in
humans, the dimeric protein also serves as an important anti-cancer drug target [4–6]. Defi-
ciency or dysfunction of the enzyme, because of mutations, results in increased exposure to
active fluoropyrimidines metabolites, leading to severe toxicity effects. Computational ap-
proaches such as MD simulations have become integral components of elucidating protein
function, as well as the effects of mutations [4]. MD simulations allow the elucidation of the
conformational evolution of protein systems over time during a reaction process [26,31,32].
MD simulations require the appropriate mathematical functions and a set of parameters
collectively known as force fields, which describe the protein energy as a function of its
atomic coordinates. In cases where adequate parameters are lacking, especially those
describing non-protein components in a system, additional descriptors are necessary. In
this work, which forms a platform for future studies towards anti-cancer personalized
medicine, we reported new validated AMBER parameters that can be used to accurately
describe the complex Fe2+

4S2−
4 clusters in the DPD protein and related systems. This was

motivated by the absence of ready to use force field parameters enabling in silico studies on
the DPD system. The development of combined QM/MM methods has provided the most
effective, accurate, and theoretical description of the molecular system [92]. They enable
a comprehensive analysis of the structural, functional, and coordinating environment in
metal-binding sites [26]. Thus, we highlighted the two similar methods’ capabilities, yet
with different approaches and aspects of the algorithms for deriving authentic force field
parameters for Fe2+ centers in DPD protein.
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First and foremost, we reported the generation of force field parameters using the
original Seminario method [56]. We went further and exploited the collation features
of the VFFDT Seminario method for obtaining the force field parameters of the same
Fe2+ ions as a supportive measure [57]. This was performed by considering the dimeric
functionality of the human DPD protein, which relies on the well-organized inter-chain
electron transfer across an eight Fe2+

4S2−
4 cluster complex. A double displacement reaction

across the two chains leads to the activation and deactivation of the third most commonly
prescribed anticancer (5-FU) drug globally [111]. It was remarkable that we successfully
derived the desired force constants and bond distances for the Fe2+ centers using both
Seminario approaches. The parameters obtained from other studies [54] did not address
the coordinating geometry of the clusters in this study. Moreover, none of the studies
focused on force field parameters for multiple clusters in a protein. Therefore, from the
range of force field parameters generated from both approaches, it would be best to obtain
averages of such force fields for future use in other similar systems. These averaged values
will allow for some degree of transferability.

Above all, the derived parameters could easily be incorporated into consolidated MM
packages. Furthermore, we ascertained that irrespective of the DFT (B3LYP HF/6-31G* and
(LSDA/LANL2DZ and GFN1-xTB) logarithm application, the original Seminario approach
is not inferior to the modified Seminario (collation features VFFDT) approach. Despite
the role of DFT calculations (such as B3LYP) in deciphering the reactivity mechanisms of
the DPD systems, the method is faced with the major limitation of neglecting dispersion
interactions [112]. As a result, additional correction approaches, such as DFT-D3 [113], DFT-
D [114], and BJ-damping [115] methods, are included in the calculations. In calculations
where the dispersion interactions were most critical in Model 2, the DFT-D3 correction,
which is part of the Grimme’s GFN1-xTB, was used. However, for Model 1, consideration
of the most DFT correction method will be applied in future calculations. Owing to the
possible occurrence of paramagnetism effects, due to the presence of unpaired electrons in
the non-trivial DPD system Fe2+

4S2−
4 clusters, an attempt at implementing unrestricted

calculations in Model 2 resulted in a higher energy compared to under restricted conditions.
The validation of the Fe2+ force field parameters obtained from this study using MD

simulations produced satisfactory results. This will provide more insight into atomistic
or electronic information, regarding the effects of site-specific interactions on the reaction
path, in the DPD protein and the detrimental mutants [26,31,32].

Most importantly, concerning the generation of AMBER force field parameters, the
authors acknowledge no other compatible parameters for this unique system. The derived
novel force field parameters have paved the way for further simulations and enhanced the
mechanistic understanding of metal cluster function in the human DPD protein through
higher-level MD simulation methods. Additionally, the derived parameters are currently
being applied to study the structural and changes in stability effects due to existing muta-
tions in the human DPD protein. Together, the results from these studies will provide the
atomistic details of mutation effects involving the DPD protein. This will open a platform
for the implementation of in silico cancer pharmacogenomics and drug discovery research
on 5-FU drug efficacy and toxicity effects.

Supplementary Materials: Figure S1: An illustration Fe2+ center parameterization in the native
human DPD Model 2, utilizing automated (VFFDT) Seminario approach, Figure S2: An illustration
of charge allocation to all the atoms coordinating with the metal center of subset clusters 1026A
and 1027A for Model 1, Figure S3: A representation of the root mean square of fluctuation (RMSF)
for ligand bound (complex) and non-ligand bound (holo) DPD Model 1 during 150 ns simulation.
(A) Fe2+

4S2−
4 clusters in 1026 and 1027 located in domain 1. (B) Fe2+

4S2−
4 clusters in 1028 and

1029 located in domain 5. The area of fluctuation coincides to the protein loop area while the iron
cluster remains intact, Figure S4: 3D structures of Model 2 MD simulations snapshots (timeframes)
from regions exhibiting higher conformational changes with atomistic details represented (A) at
110.0 ns for drug bound protein and (B) at 70.4 ns for holo proteins (without 5-fluorouracil drug).
The Fe2+ clusters remained intact throughout the different conformation timelines, Figure S5: Color
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coded violin plots showing the crystal structure bond distances between the Fe2+ and S2− derived
by original (Model 1) and VFFDT [automated] (Model 2) Seminario method during 150 ns MD
simulation. In Model 1, the orange and pink violin plots represent the holo and holo-drug bound
complexes, respectively. In Model 2, the yellow and grey violin plots represent the holo and holo
–drug complexes, respectively. The two clusters (1026 and 1027) represent the crystal structures
(1H7X) unique Fe2+4S2−4 clusters coordination, Table S1: Quality assessment of Human DPD protein
modeled structures, Table S2: Titratable residues in the human DPD protein and their respective
pKa values, Table S3: A representation of human DPD parameters and coordinate files for Model 1
(B3LYP/6-31G*): AMBER parameter file, Table S4: A representation of human DPD parameters and
coordinate files for Model 2 (LSDA/LANL2DZ): AMBER_VFFDT parameter file, Table S5: Listing
of charge allocation to all the atoms interacting with the metal center (B3LYP/6-31G*), Table S6:
Comparison of A bond length, B internal and C external angles (Å) calculated with X-ray, DFT (B3LYP)
and (LSDA/LANL2DZ) method for the molecular cluster model ([Fe2+

4S2−
4 (S-Cys)3(S-Gln)]) 1026A

of Native DPD protein, Table S7: Comparison of A bond length, B internal and C external angles (Å)
calculated with X-ray, DFT (B3LYP) and (LSDA/LANL2DZ) method for the molecular cluster model
([Fe4S4(S-Cys)4]) 1027A of native DPD protein, Table S8: Dihedral related force constants for X-ray
and post-MD simulation for both models’ clusters ([Fe4S4(S-Cys)3(S-Gln)]) and ([Fe4S4(S-Cys)4]) of
Native DPD protein, Table S9: DPD pir sequence file used for modeling human dihydropyrimidine
dehydrogenase structure based on pig crystal structure template and human target sequence.
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Abbreviations

3D Three-dimensional
5-FU Five-fluorouracil
ACPYPE Ante-Chamber Python Parser interface
CHPC Center for high performance computing
CPU Central processing unit
DPD Dihydropyrimidine dehydrogenase
FAD Flavin adenine dinucleotide
FMN Flavin mononucleotide
MCBP Metal center parameter builder
MD Molecular dynamics
MM Molecular mechanics
NADP Nicotinamide adenine dinucleotide phosphate
PBC Periodic boundary conditions
PDB Protein Data bank
PME Particle mesh Ewald
RESP Restricted electrostatic potential
QM Quantum mechanics
URF Five fluorouracil
VFFDT Visual force field derivation toolkit
WT Wild type
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