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Abstract: The effects (chemical, thermal, transport, and radiative) of CO2 added to the fuel side and
oxidizer side on the flame temperature and the position of the flame front in a one-dimensional
laminar counterflow diffusion flame of methane/N2/O2 were studied. Overall CO2 resulted in a
decrease in flame temperature whether on the fuel side or on the oxidizer side, with the negative
effect being more obvious on the latter side. The prominent effects of CO2 on the flame temperature
were derived from its thermal properties on the fuel side and its radiative properties on the oxidizer
side. The results also highlighted the differences in the four effects of CO2 on the position of the
flame front on different sides. In addition, an analysis of OH and H radicals and the heat release rate
of the main reactions illustrated how CO2 affects the flame temperature.

Keywords: CH4 counterflow diffusion flame; CO2 dilution; temperature; flame front

1. Introduction

Natural gas is a relatively clean fuel with the potential to replace traditional coal fuel;
it has advantages in adjusting energy structure and controlling pollution control, as well as
effectively improving the fuel combustion efficiency [1]. Unfortunately, the main bottle-
neck problem in the application of natural gas combustion technology is related to NOX
emissions. In recent decades, various low-nitrogen natural gas combustion technologies
have been proposed to mitigate NOX emissions, among which the most widely used is the
exhaust gas recirculation technique (EGR), which mixes an additional diluent (CO, CO2,
and H2O) in the unburned gas mixture or in the oxidizer, thereby reducing gas temperature
and NOx formation [2]. In practical applications, the effects of EGR on the performance of
the combustion process and its efficiency are similar to dilution combustion [3]. Therefore,
dilution combustion has drawn unprecedented attention in recent years since it can be
easily and economically implemented. As the main product of hydrocarbon fuel, CO2 is
usually selected as the diluent for diluted combustion [1,4–7].

Several researchers have conducted numerous studies on the effect of CO2 dilution
on different fuels. Xu et al. [8] conducted experiments and simulations to determine the
effects of CO2 replacement of N2 in air on the structure and shape of laminar coflow
syngas, with the results showing that CO2 addition to the oxidizer decreased the flame
temperature, thereby increasing the flame height and radius. Shih et al. [6,9] carried out
a numerical study on the effects of CO2, H2O, and N2 additions to a one-dimensional
counterflow diffusion flame composed of a H2/CO synthetic mixture. The above three
dilutants were added to the fuel side. CO2 dilution showed the greatest effect in terms of
a decrease in flame temperature compared to the other two dilutants, and the large drop
in flame temperature resulted from a combined effect of flame radiation and chemical
kinetics. Fotache et al. [10] and Jia et al. [7] studied the ignition of CH4 diluted with
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N2 and CO2 in a counterflow ignition facility, with the results showing that the ignition
temperature in CH4/N2 was lower than that in CH4/CO2, which was mainly attributed
to the higher heat capacity of CO2 compared to N2. Galmiche et al. [11] investigated the
effects of dilutants (CO2, H2O, and N2) on the laminar burning velocities of premixed
methane/air combustion through experiments and numerical simulations, while they also
analyzed the kinetic and thermal effects of CO2 on the laminar burning velocities. The
authors proposed an explicit correlation between the heat capacity of the diluent and the
laminar burning velocity as a function of the heat capacity possessing a predominant
effect on the laminar flame. Jithin et al. [12] and Xie et al. [13] also carried out a series of
experimental and numerical studies on the effect of CO2 dilution on the laminar burning
velocity. Hu et al. [14] conducted numerical studies on the effect of diluents on the laminar
burning velocity of premixed methane/air/diluent flames. They categorized the effects
of diluents into a dilution effect, thermal diffusion effect, and chemical effect, concluding
that, for CO2 dilution, the dilution effect had a dominant effect on the laminar burning
velocity. The chemical effect of CO2 on the laminar flame speeds of O2/CH4 mixtures was
numerically studied in a range of oxygen concentrations and equivalence ratios by Hu
et al. [4], with the results showing that the chemical effect on the laminar flame speeds was
smaller than the thermal effect, but much bigger than the radiative effect in the calculation
domain. They also identified the important reactions involving the third-body efficiency
of CO2. Yang et al. [15] obtained the chemiluminescent distributions of OH* and CH* in
CH4/O2 diffusion flames diluted with CO2. Both Gascoin et al. [16] and Ren et al. [17]
investigated the effect of CO2 dilutant on NOX emissions in a methane flame. The former
authors numerically investigated the quantitative thermal effects of CO2, by replacing N2
on the oxidizer side, on NOx formation in a counterflow diffusion flame configuration
at atmospheric pressure. The latter authors studied the effect of CO2 on NOX emission
in one-dimensional premixed freely propagating flames. Both sets of results showed a
significant reduction in NO emissions due to the CO2 dilutant. Wang et al. carried out
a numerical study on the radiation reabsorption of CO2 on NO formation in CH4/air
counterflow diffusion flames [18] and premixed flames [19]. Various other studies [20–24]
investigated the effects of CO2 on soot or NOX emissions in different fuels. Moreover,
some researchers studying CO2 dilution combustion focused on the influence of CO2 on
other characteristics of the gas flame, such as the adiabatic flame temperature (AFT) [17,25],
extinction limits [6,26–28], flame instability [29–33], H2 intermediate formation [34,35], and
CO concentration [36] using various fuels.

According to the literature review, most studies in the field of CO2 dilution only
focused on the synergistic effects of CO2 on the flame structure, flame characteristic pa-
rameters, and NOX emissions in a premixed flame or diffusion flame. Knowledge of the
effects of CO2 dilution on the flame can be categorized into four aspects, chemical effect,
thermal effect, transport effect, and radiative effect, due to the special properties of CO2.
However, few studies [4,14] placed emphasis on a comparison of these four effects of CO2,
especially with respect to the diffusion flame. In this regard, CO2 can not only dilute the
oxidizer side [9] but also the fuel side [8]. Systematic investigations and comparisons of
CO2 dilution of the oxidizer and fuel sides as a function of these four effects on the diffu-
sion flame are still lacking. Moreover, far too little attention has been paid to the isolated
effects of these four properties of CO2 dilution on the oxidizer and fuel sides. Previous
studies [6,8,9] revealed that the CO2 dilutant can reduce the flame temperature; however,
the authors did not demonstrate how the CO2 reduces the flame temperature. The above
review highlights the importance and significance of the current research. Exploring the
various uncoupled effects of CO2 provides a theoretical basis for in-depth exploration
of the overall nature effect of CO2. Determining the uncoupled effects of CO2 provides
important theoretical basis and technical support for the application and development of
flue gas recycling technology.

In light of the discussion above, the present study carried out a series of numerical
simulations describing one-dimensional counterflow diffusion flames, with the following
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specific objectives: (1) to isolate and quantify the four effects (chemical effect, thermal effect,
transport effect, and radiative effect) of CO2 dilution on the flame temperature and the
position of the flame front; (2) to compare the four effects of CO2 dilution on the flame
temperature and the flame front on the fuel side and oxidizer side; (3) to determine the
differences in the contribution of these four effects; (4) to reveal how CO2 affects the flame
temperature in terms of the OH and H radicals, as well as the heat release rate (HRR) of
the main reactions.

2. Numerical Method

An axisymmetric, counterflow laminar diffusion flame with two opposite coaxial
jets in models of a fuel and oxidizer was applied in this study. The configuration of the
counterflow flame is displayed in Figure 1. The flame is stabilized near the stagnation plane
of two opposing jet flows. By assuming the stagnation point flow approximation [37,38],
the flame and the flow can be considered as being one-dimensional. A complete math-
ematical description of this numerical model (including mass, momentum, energy, and
composition equations, as well as boundary conditions on the fuel side and oxidizer side)
can be found in [39]. The OPPDIF [39] code was used in the current study to solve the
mathematical equations of the counterflow diffusion flame. The convection term adopted
the upwind difference scheme, and the multicomponent diffusion and thermal diffusion
models were used to calculate the diffusion coefficient. An adaptive refinement grid was
applied in the calculation process, and the damped Newton method was used to solve the
equation. The relative and absolute errors of the iteration process were less than 10−6.
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For the radiative heat loss
.
qr in the energy equation, the optically thin model (OTM)

was applied to calculate the heat loss contributed by CO, CO2, H2O, and CH4. The
corresponding equations describing the radiative effect on the basis of the optically thin
approximation are as follows:

.
qr = − 4σKP

(
T4 − T∞

4
)

(1)

KP= P ∑ xiKp,i (2)

where σ is the Stefan–Boltzmann constant, and KP is the Planck mean absorption coefficient
of the flame mixture. T and T∞ denote the local and environmental temperature, respec-
tively. In Equation (2), P is the total pressure, whereas KP,i and xi denote, respectively, the
mean absorption coefficient and mole fraction of the absorbing and emitting species.
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In order to ensure that the stagnation surface of the counterflow flame does not deviate
from the center of the fuel and oxidizer nozzles, the calculation limited the two opposing
gases to satisfy the following momentum balance equation [20]:

ρoV2
o = ρFV2

F (3)

The global strain rate α_s was defined as follows [40]:

αs =
2(−VO)

L

[
1+

VF

(−VO)

√
ρF
ρO

]
(4)

where the subscripts O and F represent the oxidizer and fuel flow streams, respectively. ρ
and V denote the density and the velocity of the flow streams. L is the distance between
the fuel and oxidizer nozzles. In Equations (3) and (4), when only considering the absolute
values, the expressions describing the velocity on both sides can be expressed as follows:

|VF| = |Vo|
√

ρo

ρF
(5)

|VO| =
L
4

αS (6)

In the present study, the distance between the fuel and oxidizer nozzles L was specified
as 4 cm, the inlet temperature of both the fuel and the oxidizer was specified as 300 K, the
strain rate αS was set to 10 s−1, and the pressure was 0.1 MPa. The velocities of the oxidizer
side were maintained at a constant value of 0.1 m/s, allowing the velocities of the fuel side
to be obtained according to Equations (3)–(6) on the basis of the composition of the fuel
and oxidizer.

The purpose of this study was to compare the influence of CO2 dilution on the fuel
and oxidizer sides by decoupling the thermal, chemical, transport, and radiative properties
of CO2. Several pairs of artificial and chemically inert species were introduced to isolate
the effect of CO2: FCO2, TCO2, XCO2, and RCO2 as shown in Table 1. The method used to
dissociate the effects of CO2 was explained as followed:

1. The chemical effect. FCO2, which has the same thermal, transport, and radiative
properties as CO2, but does not participate in the chemical reaction, was introduced to
evaluate the chemical effect of CO2. Therefore, any differences in the results between
FCO2 and CO2 were entirely contributed by the chemical effect of CO2.

2. The thermal effect. TCO2, which has the chemical, transport, and radiative properties
as FCO2, but owns the same thermal properties as normal N2, was employed. Thus,
any differences in the results between FCO2 and TCO2 were totally caused by the
thermal effect of CO2.

3. The transport effect. XCO2, which has the same chemical, thermal, and transport
properties as FCO2, but owns the same transport properties as N2. The transport
effect of CO2 was revealed by the difference in results between FCO2 and XCO2.

4. The radiative effect. RCO2, which has the same chemical, thermal, and transport
properties as FCO2, but is hot transparent body and cannot contribute to radiative
heat transfer. Therefore, the radiative effects of CO2 were determined as a function of
the difference in results between FCO2 and RCO2.

As is known, the thermodynamic properties of a gas specie are mainly derived from
its enthalpy, entropy, and specific heat capacity. These properties were obtained from
polynomial fitting parameters provided in the THERMDAT file. On the other hand, the
transport properties of a gas specie are derived from its viscosity, thermal conductivity,
and thermal diffusion coefficient, which were calculated as a function of the parameters
provided in the TRANDAT file. As shown in Table 1, the TCO2 features the same thermo-
dynamic properties as N2; thus, the same polynomial fitting parameters were adopted to
calculate their thermodynamic coefficient. This was achieved by modifying the TCO2 raw
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input in the THERMDAT file. XCO2, with the same transport properties as N2, could also
be obtained by modifying the XCO2 raw input in the THERMDAT file.

Table 1. The specific properties of the artificial species [41].

Chemical Thermal Transport Radiative

CO2
√ √ √ √

FCO2 —
√ √ √

TCO2 — N2
√ √

XCO2 —
√

N2
√

RCO2 —
√ √

—

The mole fraction of CO2 was set to 30% on both the fuel side and the oxidizer side,
as the aim of the present study was to compare the difference in CO2 effects on each side
of the counterflow flame, as opposed to the dilution ratio. The numerically simulated
conditions taken into account in this study are summarized in Table 2. GRI-Mech 3.0 was
implemented to carry out the simulations in this study, as it is the most popular approach
used to characterize CH4 and has been validated by numerous research studies.

Table 2. The conditions for each case of CO2 added to both sides of the counterflow flame.

Flame
Case

Strain
Rate (s−1)

Distance
(m)

Fuel
Composition

(Mole Fraction)

Oxidizer
Composition

(Mole Fraction)
VO(m/s) VF(m/s)

1 10 0.04 70% CH4 + 30% N2 79% N2 + 21% O2 0.10 0.1309
2 10 0.04 70% CH4 + 30% CO2 79% N2 + 21% O2 0.10 0.1087
3 10 0.04 70% CH4 + 30% FCO2 79% N2 + 21% O2 0.10 0.1087
4 10 0.04 70% CH4 + 30% TCO2 79% N2 + 21% O2 0.10 0.1087
5 10 0.04 70% CH4 + 30% XCO2 79% N2 + 21% O2 0.10 0.1087
6 10 0.04 70% CH4 + 30% RCO2 79% N2 + 21% O2 0.10 0.1087
7 10 0.04 100% CH4 79% N2 + 21% O2 0.10 0.1341
8 10 0.04 100% CH4 30% CO2 + 49% N2 + 21% O2 0.10 0.1449
9 10 0.04 100% CH4 30% FCO2 + 49% N2 + 21% O2 0.10 0.1449
10 10 0.04 100% CH4 30% TCO2 + 49% N2 + 21% O2 0.10 0.1449
11 10 0.04 100% CH4 30% XCO2 + 49% N2 + 21% O2 0.10 0.1449
12 10 0.04 100% CH4 30% RCO2 + 49% N2 + 21% O2 0.10 0.1449

3. Results and Discussion
3.1. The CO2 Effect on the Flame Temperature

Figure 2 depicts the flame temperature profile when diluted with CO2 and various other
artificial species on both sides of the counterflow diffusion flame. The dashed line represents
the position of the flame front. As clearly seen in this figure, the flame temperature increased
and then decreased with distance from the fuel side, reaching its maximum at the flame
front (peak value temperature). By comparing cases 1 and 2 and cases 7 and 8, it can be seen
that the maximum temperature was decreased due to CO2 dilution, whether on the fuel
side or the oxidizer side. Additionally, there was an obvious difference in the shift of the
flame front position upon dilution of the two sides, with the flame front offset toward the
side which was not diluted [16]. Regardless of whether CO2 was added to the fuel side or
oxidizer side, the maximum flame temperature always resided on the oxidizer side of the
configuration, which is consistent with the findings in [42].
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Figure 2 also shows that the chemical properties, thermal properties, transport proper-
ties, and radiative properties of CO2 had an effect on the flame temperature distribution
whether it was diluted on the fuel side or the oxidizer side. Figure 3, therefore, individually
presents these four effects of CO2. When the fuel side was diluted, the effects due to the
chemical and transport properties could be neglected. However, the thermal properties
and the radiative properties of CO2 had a different influence on the flame temperature
and the flame front. The thermal properties decreased the flame temperature ahead of
the flame front, whereas it increased the flame temperature behind the flame front. The
radiative properties of CO2 resulted in a slight overall decrease in flame temperature
distribution. When the oxidizer side was diluted, no significant changes in temperature
distribution occurred as a result of the transport properties of CO2, whereas the overall
flame temperature distributions were slightly lower due to the chemical and radiative
properties of CO2. Lastly, the thermal properties had a different influence on the flame
temperature distribution on either side of the flame front: a bit higher than the undiluted
gas mixture ahead of the flame front but apparently lower than the undiluted gas mixture
behind the flame front. It is necessary to note that “no significant change” does not mean
that “no change occurred”; a detailed analysis of the four effects is presented later.

In summary, CO2 affected the flame temperature distribution as a function of the
side which was diluted. A comparison of the four properties allowed distinguishing their
primary and secondary effects on the counterflow diffusion flame.

Before analyzing and comparing the effects of the chemical, thermal, transport, and
radiative properties of CO2 on the flame temperature peak value, their contributions were
individually defined as follows:

∆T max
Chem= Tmax[CO2]− Tmax[FCO2] (7)

∆T max
therm= Tmax[FCO2]− Tmax[TCO2] (8)

∆T max
Trans = Tmax[FCO2]− Tmax[XCO2] (9)

∆T max
Radia= Tmax[FCO2]− Tmax[RCO2] (10)

where a positive ∆T max represents an increase in flame temperature peak value, while a
negative ∆T max denotes a decrease.

Similarly, the shift in position of the flame front as a function of the four properties of
CO2 was described using similar equations.
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(b)-Right oxidizer side.

Figure 4 shows a comparison of the four effects on the maximum flame temperature,
where plain and patterned columns represent the change in maximum flame temperature
on the fuel side and oxidizer side, respectively. In this figure, it can be seen that, whether
on the fuel side or oxidizer side, the chemical properties, thermal properties, and radiative
properties decreased the maximum flame temperature, whereas the transport properties
increased the maximum flame temperature. Furthermore, on the fuel side with 30% CO2
dilution, the radiative properties had the primary negative effect, while the chemical and
thermal properties had a roughly equivalent effect. The transport properties had the small-
est influence on the maximum flame temperature. On the oxidizer side, with 30% CO2
dilution, the thermal properties had the most prominent effect on the maximum flame tem-
perature, whereas the chemical and radiative properties effects contributed approximately
one-half and one-third the effect of the thermal properties effect, respectively. Once again,
the transport properties had the smallest influence on the maximum flame temperature.
Lastly, the effect of the chemical, thermal, and transport properties on the maximum flame
temperature was greater on the oxidizer side than the fuel side under 30% CO2 dilution.
However, the effect of the radiative properties was slightly lower on the oxidizer side.
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Figure 4. The four effects of CO2 on the maximum counterflow flame temperature upon dilution of
the two sides.

Figure 5 presents a comparison of the chemical, thermal, transport, and radiative effects
on the position of the flame front under the same CO2 dilution ratio. The legends of Figure 5
are the same as those in Figure 4. A positive value represents a deviation of the flame front
position toward the oxidizer side, while a negative value represents a deviation toward the
fuel side. It can be seen in Figure 5 that the effects of CO2 on the position of the flame front
differed as a function of which side was diluted. When the fuel side was diluted with CO2,
the chemical and radiative effects moved the position of the flame front toward the fuel side,
whereas the thermal and transport effects moved the position of the flame front toward the
oxidizer side. However, when the oxidizer side was diluted with CO2, the chemical, transport,
and radiative effects moved the position of the flame front toward the oxidizer side, with
the opposite outcome seen due to the thermal effect. Consistently, the thermal effect on the
position of the flame front was the most conspicuous regardless of which side was diluted.
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3.2. The CO2 Effect on the H and OH Radicals

H and OH radicals are very important for the continuation of chain reactions; more-
over, the first step in a combustion reaction starts with the fuel being attacked by free
radicals such as OH and H [43], whereby their mole fraction can also indicate the combus-
tion intensity.

As discussed above, CO2 had a strong influence on the flame temperature and the
position of the flame front, as well as on the reaction zone (the thickness of the flame).
The distributions of intermediate species and highly active radicals of combustion are
associated with the flame temperature and the reaction zone. To illustrate the influence
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of the chemical, thermal, transport, and radiative properties of CO2 on the two most
important highly active radicals (H and OH), a comparison of their effects on the mole
fraction of H and OH radicals is depicted in Figure 6. As expected, the obtained profiles
were consistent with the temperature distribution (Figures 3 and 4), i.e., an initial increase
followed by a decrease, with the maximum value of the mole fraction of H and OH radicals
being near the flame front. Taking the CO2 dilution on the fuel side as an example without
considering the four effects on the mole fraction of H and OH radicals, the maximum H
and OH mole fractions were located at 2.26 and 2.31 cm, respectively, while the flame front
was located at 2.24 cm.
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Figure 6. Comparison of the four effects on the distribution of H and OH radicals in the counterflow diffusion flame on the
fuel side and oxidizer side (a)-Chemical effect; (b)-Thermal effect; (c)-Transport effect; (d)-Radiative effect.

The previous temperature curves allow for analysis and understanding of the changes in
H and OH radicals under the influence of the four properties of CO2. As shown in Figure 6a,d,
both the chemical and the radiative properties of CO2 lowered the H and OH mole fractions
regardless of the side which was diluted; however, their peak positions showed no significant
change. Similarly, the thermal properties of CO2 (Figure 7b) significantly decreased the H and
OH mole fractions upon dilution of the oxidizer side, whereas a weaker effect was identified
when CO2 was added to the fuel side. Furthermore, the thermal properties of CO2 also had
an effect on the peak position of H and OH radicals, which notably moved toward the side
which was not diluted. The transport effects (derived from the difference between FCO2 and
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XCO2) contributed least to the overall distribution of the mole fraction and peak position of H
and OH radicals.
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the fuel side (a)-Chemical effect; (b)-Thermal effect; (c)-Transport effect; (d)-Radiative effect.

In summary, CO2 dilution on either side of the counterflow diffusion flame led to a
decrease in the concentration of H and OH radicals and, thus, a reduction in combustion
intensity. Moreover, the peak position of free radicals represents the combustion area
with the highest intensity, which moves toward the center of the domain. The analyses of
the mole fraction of H and OH radicals were consistent with the change in temperature
distribution as a function of CO2 dilution.

The origin of the effects of CO2 dilution on the temperature distribution can be
attributed to the behavior of the combustion heat release rate of the involved reactions.
To clearly elucidate the effect of the addition of CO2 to different sides of the counterflow
diffusion flame on its temperature, a heat release rate analysis was carried out. The top ten
elementary reactions with the largest heat release rate were selected to show the uncoupled
effects of CO2 on the HRR.
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3.3. The CO2 Effect on the Heat Release Rate (HRR)
3.3.1. Comparison of the Four Effects upon Dilution of the Fuel Side

Wei et al. [44] pointed out that the addition of CO2 to the CH4 fuel side will reduce the
global heat release rate significantly. The four effects of CO2 on the profiles of heat release
rate are plotted in Figure 7. As shown in Figure 7a, before the flame front (2.23 cm), the
chemical properties of CO2 had a great effect on R84 (positive effect: less heat absorbed),
R99 (negative effect: more heat absorbed), and R153 (positive effect: more heat released).
However, it can be clearly seen that the negative impact was greater than the two positive
impacts at the same position. Behind the flame front, the chemical properties of CO2 also
had an effect on R35 (negative effect: more heat absorbed), R84 (negative effect: more heat
absorbed), R287 (negative effect: more heat absorbed), and R99 (positive effect: more heat
released). Similarly, the negative influence was stronger than the positive influence at the
same position. Therefore, the synergistic influence of the chemical properties of CO2 on the
heat release rate was negative, thereby leading to a decrease in temperature. The effects
of the thermal, transport, and radiative properties on HRR are depicted in Figure 7b–d,
respectively, and their influence can be analyzed in a similar manner. It is worth noting that
the chemical, transport, and radiative properties of CO2 declined or improved the HRR at
the same position for the target elementary reaction, as well as decreased or increased the
peak value. However, the thermal properties did not affect the peak value of HRR for each
target elementary reaction. As shown in Figure 4, the distribution of the flame temperature
with FCO2 dilution (considering the thermal properties of CO2) moved toward the oxidizer
side compared with TCO2 dilution, which can be explained by the change in distribution
of the HRR.

3.3.2. Comparison of the Four Effects upon Dilution of the Oxidizer Side

The effects of the four properties of CO2 on the HRR when the oxidizer side was
diluted were also investigated. As shown in Figure 8, both the chemical and the thermal
properties of CO2 moved the HRR distribution of the main target elementary reaction
toward the fuel side, leading to a change in the HRR peaks of the exothermic and endother-
mic elementary reactions. On the other hand, the transport and radiative properties only
affected the HRR peak of each elementary reaction, with no obvious effect on its distribu-
tion. When comparing FCO2 (without a chemical effect) with CO2, a decrease occurred in
the HRR of the exothermic reactions R35, R84, R287, and R52 involving H and OH radicals.
Figure 6a previously presented the distribution of H and OH radicals with CO2 and FCO2,
whereby a decrease in their molar fraction inhibited the relevant elementary reactions,
thus resulting in a reduction in the heat release rate. Furthermore, a noticeable thermal
effect was reflected in the position of the flame front in Figure 5. The positions of the flame
front with FCO2 (with thermal properties) and TCO2 (without thermal properties) were
at 2.3 cm and 2.36 cm, respectively. According to Figure 8b, the overall distribution of the
FCO2 HRR was shifted toward the fuel side compared with TCO2.
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4. Conclusions

In this paper, a numerical study of CO2 dilution on different sides of a laminar
counterflow diffusion flame was conducted using the OPPDIF code of ANSYS CHEMKIN-
PRO. In order to isolate the CO2 effects on the flame temperature, the position of the flame
front, the H and OH mole fractions, and the heat release rate, the authors introduced four
pairs of artificial CO2 species to uncouple the chemical, thermal, transport, and radiative
effects of CO2 on the above characteristics of the flame. The numerical results demonstrated
that the effects of the four properties of CO2 were often contrasting, as summarized below.

1. The synergistic effects of CO2 on the flame temperature were negative regardless of
which side was diluted, with a greater effect seen upon dilution of the oxidizer side.
The chemical, thermal, and radiative properties led to a decrease in flame temperature,
whereas the transport properties increased the flame temperature. Moreover, the
thermal properties had a more prominent effect on the flame temperature upon
dilution of the fuel side, whereas the radiative properties had a predominant effect on
the flame temperature upon dilution of the oxidizer side.
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2. The effects of CO2 showed great differences with respect to the position of the flame front.
When the fuel side was diluted with CO2, the chemical and radiative effects moved the
position of the flame front toward the fuel side, whereas the thermal and transport effects
moved the position of the flame front toward the oxidizer side. However, when the
oxidizer side was diluted with CO2, the chemical, transport, and radiative effects moved
the position of the flame front toward the oxidizer side, with the opposite outcome seen
due to the thermal effect. Consistently, the thermal effect on the position of the flame
front was the most conspicuous regardless of which side was diluted.

3. The chemical and radiative effects of CO2 resulted in a slight decrease in the mole
fraction of H and OH radicals regardless of which side was diluted. The thermal
properties of CO2 only affected the distribution of H and OH radicals upon dilution
of the fuel side, with no significant effect on its peak. However, the thermal properties
of CO2 not only affected the distribution of OH and H radicals upon dilution of the
oxidizer side, but also reduced their maximum mole fraction, whereas the effect of
transport properties on OH and H radicals could be neglected.

4. The influence of CO2 on the heat release rate was consistent with its influence on
temperature and free radical concentration regardless of which side was diluted.
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