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Abstract: We study the application of Optimal Control Theory to Ion Cyclotron Resonance. We test
the validity and the efficiency of this approach for the robust excitation of an ensemble of ions with a
wide range of cyclotron frequencies. Optimal analytical solutions are derived in the case without any
pulse constraint. A gradient-based numerical optimization algorithm is proposed to take into account
limitation in the control intensity. The efficiency of optimal pulses is investigated as a function of
control time, maximum amplitude and range of excited frequencies. A comparison with adiabatic
and SWIFT pulses is done. On the basis of recent results in Nuclear Magnetic Resonance, this study
highlights the potential usefulness of optimal control in Ion Cyclotron Resonance.

Keywords: optimal control; robust protocol; Ion Cyclotron Resonance

1. Introduction

Performing efficient and robust state control by means of external time-dependent
system parameter is a fundamental challenge in many technological developments at
macroscopic or microscopic scale [1–4]. In this latter case, open-loop control protocol, i.e.,
without any real time feedback from the experiment during the control process, is generally
used for practical and technical reasons. The controls are only designed from a modeling of
the system dynamics and the efficiency of the control scenario may suffer from the accuracy
of the theoretical description. The robustness of a control process with respect to experi-
mental imperfections is therefore a key parameter in view of experimental implementation.
Different techniques extending from adiabatic pulses to optimal control theory (OCT)
have been developed in this open-loop framework to find the pulse parameters [1,3,5–8].
Optimal control tackles the question of bringing a dynamical system from one state to
another with minimum expenditure of time and resources [1–4]. The modern version of
OCT was born in the 1960s with the Pontryagin Maximum Principle (PMP), which provides
a general and rigorous mathematical framework for optimal control techniques [9–13].
OCT has become nowadays a key tool in many different domains extending from space
dynamics to robotics or quantum mechanics [1,3,11]. Optimal process is defined from a
cost functional (to minimize) which can depend on the state of the system and the control
field. For systems with complex dynamics and optimization targets which are difficult to
reach, it is necessary to use optimal control algorithms converging iteratively towards the
optimal solution. The flexibility of this approach makes it possible to adapt this tool to any
experimental situation. Generally, it is possible to include constraints in the algorithms to
account for requirements related to a specific material or device [1,3]. The only relative
limitation concerns the accuracy of the modeling, even if robustness can be improved by
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controlling simultaneously an ensemble of systems which differ by the values of one or
several constant parameters [14–17]. OCT has been applied to quantum systems first in
the context of physical chemistry to steer chemical reactions or control specific degrees of
freedom [5,18], followed by control of spin dynamics [19,20] for applications in Nuclear
Magnetic Resonance (NMR) [15,17,21–25] and Magnetic Resonance Imaging [26–29]. It has
become a key tool in this domain to improve the efficiency and the sensitivity of standard
experimental setups [3]. In NMR and quantum physics, a well-known optimization method
is GRAPE [30], which is a gradient-based algorithm [1]. This approach has been applied
with success in many different contexts.

Fourier-Transform Ion Cyclotron Resonance (ICR) Mass Spectrometry [31,32] is a type
of mass spectrometry based on cyclotron frequency of ions in a fixed magnetic field [33–35].
Ions are excited at their resonant cyclotron frequencies to larger cyclotron radii by an
electric field orthogonal to the magnetic field. After the excitation pulse, the ions rotate
freely with a frequency characteristic of their mass. The image current induced by the ions
on a pair of electrodes is detected. The Fourier transform of the resulting transient signal
leads to the mass spectrum after a proper calibration. In a homogeneous magnetic field,
ICR allows accessing the highest resolution available in mass spectrometry, while leading to
extreme sensitivities. This spectrometry has experienced a recent renewal based on several
methodological improvements and the search for very high resolutions, which are required
to study complex biological or environmental mixtures. Several techniques developed and
used in ICR have been inspired by equivalent approaches in NMR. An example is given by
two-dimensional ICR [36–41] which was proposed in analogy to two-dimensional NMR
spectroscopy [19,20]. Following this fruitful approach and given the success and efficiency
of optimal control techniques in NMR, a question which naturally arises is the application
of this method in ICR. This paper aims at taking a step toward the answer to this open
issue. ICR Mass Spectrometry can provide very high resolution mass spectra over a large
range of mass to charge ratio. In the ICR experiment, ions are initially at rest in the center
of the trap, and they have to be excited to generate a resonant signal which can cover, in
broad band experiments, frequencies from a few 10 s kHz for high m/z up to 1 MHz or
higher for the fastest species. However, this implies that all ions have to be excited over
this frequency range in an even and controlled manner.

We explore in this study how optimal control can be used to design efficient and
robust excitation pulses in ICR. To the best of our knowledge, this has never been studied.
Due to the wide bandwidth of ICR signal, excitation pulses are usually simple chirped
adiabatic pulses with a frequency sweep. Some variations have been proposed such as
off-resonance monochromatic pulses for selective excitation of given ions. Based on the
linearity of ion dynamics, it has also been proposed to generate pulses by Fourier synthesis
from a given excitation profile, in an approach called SWIFT (for Stored-waveform Inverse
Fourier Transform) [42–44]. Optimal control is expected to allow a much wider range of
possibilities such as the control of trajectory for given initial and final positions of the ion
packet and for a given range of frequencies. To evaluate the contribution of OCT in ICR,
we consider in this study the simplest modeling which is experimentally relevant. The
experiment is considered in a simplified environment, with a constant magnetic field and a
time-dependent homogeneous electric field oriented along a single axis orthogonal to the
magnetic field and with no static component. This geometry is unrealistic, as there is no
trapping potential, but allows to consider the dynamics of the ions restricted to a plane with
a pure cyclotron trajectory and a zero magnetron component. The time-dependent electric
field aims at exciting in a robust manner an ensemble of different ions from the center of the
cell to a final position which depends in a controlled way of the ion frequency. The linearity
of ion dynamics simplifies drastically the derivation of the optimal control law [10,45,46].
If there is no constraint on the intensity of the electric field, linear quadratic optimal control
theory (LQOCT) can be applied. Many mathematical results have been established in
this case [10,47] and the optimal solution can be derived analytically. When constraints
are accounted for, a numerical algorithm has to be used to solve the optimal equations.
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Note that very few studies have solved optimal control problems of linear systems at
the microscopic scale [47–51]. ICR is an interesting example, relevant experimentally, to
stimulate further work in this direction.

The remainder of this paper is organized as follows. The formulation of the control
problem and the description of the model system are outlined in Section 2. After a brief
introduction to the principles of OCT, we apply OCT to ICR in Section 3. We describe the
optimal control algorithm which allows taking into account experimental constraints on the
control field. Numerical results in different experimental situations are given in Section 4.
A comparison is made with the adiabatic and the SWIFT approaches. We conclude in
Section 5 with an outlook and future perspectives. The Rotating Wave Approximation
(RWA) is discussed in Appendix A. Technical details about the adiabatic and SWIFT
techniques are presented, respectively, in Appendices B and C. The application of LQOCT
is described in Appendix D.

2. Formulation of the Control Problem
2.1. The Model System

We consider the simplest modeling of ion trajectories in ICR. The different ions in the
experimental cell are confined in the (x, y)-plane and are subjected to a constant magnetic
field ~B and a time-dependent electric field ~E, respectively, along the z- and x-axes of the
laboratory frame. Note that optimal control techniques can also be used if two control
fields along the x- and y-directions are available. The dynamics are governed by the
Lorentz’s equation:

mk~̇vk = qk~E + qk(~vk × ~B), (1)

where mk, qk and ~vk are the mass, charge and speed of the ion k. ~̇vk denotes the time
derivative of ~vk. Equation (1) can be expressed as:

ẋk = vxk

ẏk = vyk

v̇xk = ωk(ex + vyk )

v̇yk = −ωkvxk .

(2)

with the cyclotron frequency ωk =
qk B
mk

and~e = ~E/B. The coordinates (xk, yk) and (vxk , vyk )

describe, respectively, the position and the speed of the ion k in the (x, y)-plane. We assume
that the frequency ωk belongs to the interval [ωmin, ωmax], which is defined by the ion
packet under study. As described below, the aim of the control process is to excite the
different ions in a robust way with respect to the parameter ω.

The control problem can be defined as follows. Starting from the center of the cell
(xk = 0, yk = 0) with a zero speed (vxk = 0, vyk = 0), the goal is to reach at a fixed control
time t f a given radius r f and phase ϕ f . As an illustrative example, we force the phase to
vary linearly with ω, contrary to the standard result obtained with chirp pulses, where a
quadratic phase dependence is observed (see Appendix B for details). We denote by rk(t)
and ϕk(t), respectively, the radius and the phase of ion k at time t. We assume in a first
step that there is no constraint on the electric field. A limitation on the maximum pulse
intensity is accounted for in Section 3.2.

To simplify the notations, we omit below the index k. Using Equation (2), it is straight-
forward to show that Ω = ωx + vy is a constant of motion. At t = 0, since x(0) = 0 and
vy(0) = 0, we deduce that Ω = 0 so vy(t) = −ωx(t). One of the two coordinates vy(t) or
x(t) can be eliminated. This also means that we cannot control simultaneously the position
and the speed of the ion with only one control. We arrive at:

ẏ = vy

v̇y = −ω2Vx

V̇x = vy + ex
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where Vx = vx/ω. We introduce the vector X = (y, vy, Vx) whose dynamics are governed by:

Ẋ = AX + Cex, (3)

with

A =

0 1 0
0 0 −ω2

0 1 0

, C =

0
0
1


The dynamics of this linear system can be explicitly integrated as follows. The eigen-

values of A are (0, iω,−iω) and the corresponding eigenvectors can be written as:

X0 =

1
0
0

, X+ =

 1
iω
1

, X− =

 1
−iω

1


At time t f , the state of the system is given by:

X(t f ) =
∫ t f

0
eA(t f−s)Cex(s)ds.

We have:
eAt = PeDtP−1,

where D = diag(0, iω,−iω) and

P =

1 1 1
0 iω −iω
0 1 1

, P−1 =

1 0 −1
0 −0.5i/ω 0.5
0 0.5i/ω 0.5


We deduce that:

eAt =

1 sin(ωt)/ω −1 + cos(ωt)
0 cos(ωt) −ω sin(ωt)
0 sin(ωt)/ω cos(ωt)


and

X(t f ) =
∫ t f

0
dsex(s)

−1 + cos[ω(t f − s)]
−ω sin[ω(t f − s)]

cos[ω(t f − s)]

 (4)

2.2. The Rotating Wave Approximation

The oscillating excitation field ex applied only along the x- axis can be expressed
as the sum of two rotating fields, one in the same direction as the ions and the other in
the opposite direction. We introduce the Rotating Wave Approximation (RWA) which
assumes that the field rotating in opposite direction to the ions has a negligible effect on
their trajectories. This approximation is verified if the range of frequencies around the
central frequency ωo is not too large, as discussed in Appendix A. Note that RWA is a
standard tool in NMR [20,52,53] where it is derived in a similar but different way due to
the non-linearity of the system [54]. In particular for ICR, this approximation does not
depend on the amplitude of the excitation. Using RWA, we show below that the control of
ions is equivalent to the control of an ensemble of springs of different frequencies [47,51].

The derivation starts with the control of speeds which fulfill:{
v̇xk = ωkvyk + ωkex

v̇yk = −ωkvxk



Molecules 2021, 26, 2860 5 of 22

In complex coordinates, we have:

v̇k = −iωkvk + ωkex(t), (5)

where vk = vxk + ivyk. We consider that ωk ∈ [ω0 − δω, ω0 + δω] where ω0 is the carrier
frequency of the electric field, ex(t) = e0(t) cos(ω0t + φ(t)), and δω is small compared
to ω0. We also assume that the amplitude e0(t) and the phase φ(t) vary slowly in time
with respect to the frequency ω0. We express the speed as: vk = ṽke−iω0t, where ṽk is the
complex speed in the frame rotating at frequency ω0. We deduce that:

˙̃vk = −i∆ωkṽk + ωk
e0

2
(e−iφ + e2iω0t+iφ),

where ∆ωk = ωk −ω0 is the detuning term. In the RWA, we neglect the rapidly oscillating
term exp(2iω0t) and we arrive at:

˙̃vk ' −i∆ωkṽk + ωk
e0

2
e−iφ. (6)

It is worth noting here that, in the rotating frame, the dynamics are driven by two
control parameters, e0 cos φ and e0 sin φ. Note that we recover the control of an ensemble
of springs. An additional step can be done for the position of the ion k, xk = xk + iyk. We
set xk = x̃ke−iω0t. It is then straightforward to show that:

˙̃xk − iω0x̃k = ṽk(t)

Since x̃k varies slowly with respect to eiω0t, we can neglect the time derivative ˙̃xk, which gives:

x̃k =
i

ω0
ṽk(t).

If the RWA is valid, we deduce that the speed control leads also to the control of the
position of ions. In this study, the validity of RWA is verified in the different examples by a
numerical integration of Equation (4).

3. Optimal Control Theory
3.1. A Short Introduction to Optimal Control Theory

We briefly introduce in this section the tools of optimal control theory used in this paper. To
keep the introduction as accessible as possible, some mathematical details are not specified. We
refer the interested reader to the specialized literature on the subject [1,2,10,13]. We consider a
control system described by the following differential equation:

q̇(t) = f (q(t), u(t)),

where q(t) ∈ Rn is the state of the system at time t, f a smooth function and u(t) ∈ R the
control law. We assume here that there is no constraint on the control amplitude. The goal
of a control problem is to bring the state of the system from the initial state q(0) = q0 as
close as possible to a target state q f in a time t f while minimizing a given cost functional
J . For a distance to the target state defined by ||q(t f )− q f ||, a standard functional is:

J =
1
2
||q(t f )− q f ||2 + λ

∫ t f

0
u(t)2dt,

where λ is a positive constant which expresses the relative weight between the distance
to the target state and the second term. This latter can be interpreted as the energy of
the control. We formulate the optimal control from the Pontryagin Maximum Principle
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(PMP) which gives necessary conditions for a control solution to be optimal [2,4,9,11]. We
introduce the Pontryagin Hamiltonian HP (the index P corresponds to Pontryagin) as:

HP = p(t) · f (q(t), u(t))− λu(t)2

2
,

where p(t) ∈ Rn is the adjoint state. This state plays qualitatively the role of a Lagrange
multiplier for the optimization problem [10,13]. The state and the adjoint state of the
dynamics fulfill the Hamilton’s equation:{

q̇ = ∂HP
∂p = f (q, u)

ṗ = − ∂HP
∂q = −p · ∂ f (q,u)

∂q

with the following initial and final conditions q(0) = 0 and p(t f ) = − ∂J
∂q(t f )

= q f − q(t f ),

while the optimal control u∗ is given by ∂Hp
∂u = 0, i.e.,

u∗ =
p
λ
· ∂ f (q, u∗)

∂u
.

In the non-linear case, these conditions can be solved only for simple low-dimensional
systems [4,11,25] and numerical algorithms are used for more complex dynamics [1,30,55].
For linear systems, the optimal solutions can be derived explicitly if there is no additional
constraint on the control field. This approach is known in the literature as Linear Quadratic
Optimal Control [2,10,47] and is applied to ICR in Appendix D. When experimental limita-
tions such as maximum pulse intensity are accounted for in the numerical optimization
process, the optimal control law is derived numerically from iterative algorithms, which
are described in Section 3.2.

3.2. Optimal Gradient-Based Algorithm

The goal of this section is to develop a first-order gradient-based algorithm suited to
this control problem [1]. We use a numerical optimization algorithm to take into account
field amplitude constraint of the form |ex(t)| ≤ emax. Note that this algorithm can be seen
as the counterpart of the GRAPE algorithm in NMR [30] and that other limitations such
as spectral constraints or bandwidth limitations could be added [56–63]. In the numerical
simulations, the control field is described as a piece-wise constant function. Rapid time
variations leading to high frequencies may appear in the optimization process. For question
of numerical stability and precision, we apply the algorithm in the system with the RWA
and then we use the derived control law in the original dynamical system.

We start from the differential system (6) written in the rotating frame for the ion k as:{
˙̃v(k)x = ∆ωk ṽ(k)y + ux

˙̃v(k)y = −∆ωk ṽ(k)x + uy

where ux = ω0
2 e0 cos φ and uy = −ω0

2 e0 sin φ. The two controls satisfy the limitation

ux(t)2 + uy(t)2 ≤ u2
max with umax = ω0

2 emax. The corresponding target state is (ṽ(k)x f , ṽ(k)y f ).
We consider a cost functional J with no penalty on the control field defined as:

J =
1
2 ∑

k
[(ṽ(k)x f − ṽ(k)x (t f ))

2 + (ṽ(k)y f − ṽ(k)y (t f ))
2]. (7)

The Pontryagin Hamiltonian can be expressed as:

HP = ∑
k
[∆ωk(−p(k)y ṽ(k)x + p(k)x ṽ(k)y ) + ux p(k)x + uy p(k)y ].
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The adjoint states fulfill the following relations:{
ṗ(k)x = ∆ωk p(k)y

ṗ(k)y = −∆ωk p(k)x .
(8)

The gradients are given by:

∂HP
∂ux

= ∑
k

p(k)x ,
∂HP
∂uy

= ∑
k

p(k)y

The correction to the control fields δux(t) and δuy(t) at each step of the algorithm is
proportional to these gradients [1]. The final adjoint states can be expressed as:p(k)x (t f ) = ṽ(k)x f − ṽ(k)x (t f )

p(k)y (t f ) = ṽ(k)y f − ṽ(k)y (t f ).

and Equation (8) can be directly integrated backward in time. We thus consider the
following gradient-based algorithm.

1. Choose guess fields ux(t) and uy(t).

2. Propagate forward the state of every ion k and compute (v(k)x (t f ), v(k)y (t f )).
3. Propagate backward the adjoint state of the system from Equation (8).

4. Compute the corrections δux(t) and δuy(t) to the control fields, δux(t) = ε ∑k p(k)x ,

δuy(t) = ε ∑k p(k)y where ε is a small positive constant.
5. Define the new control fields ux(t) 7→ ux(t) + δux(t) uy(t) 7→ uy(t) + δuy(t).
6. Truncate the new control fields ux(t) and uy(t) to satisfy the constraint√

ux(t)2 + uy(t)2 ≤ umax:

ux(t) 7→
ux(t)umax√

ux(t)2 + uy(t)2
, uy(t) 7→

uy(t)umax√
ux(t)2 + uy(t)2

.

7. Go to Step 2 until a given accuracy is reached.

Similar algorithms are used in NMR for taking into account pulse constraints [15–17].
Note that the use of a gradient causes this type of algorithm to converge towards a local
maximum of the optimization problem. Numerical simulations with different guess fields
allow partly overcoming this limitation, even if the global maximum is not reached with
certainty. The efficiency of this algorithm in ICR is illustrated numerically in Section 4.

4. Numerical Results

We present numerical results obtained either with LQOCT (see Appendix D for details)
or with the gradient-based algorithm. A comparison with the SWIFT approach described
in Appendix C is also done. Different experimental constraints have to be satisfied by the
control pulse. The objective is to excite ions in a wide range of frequencies around a central
frequency of the order of 500 kHz. The excitation has to be as uniform as possible in radius
and phase in the range [ fmin, fmax] and close to zero outside. As a benchmark example, we
choose in this section to consider the interval [400, 600] kHz. Using the linearity of the
dynamics, these results can be transposed to another range of frequencies by a scaling of
the excitation pulse duration and of the pulse amplitude. For instance, if the total process
time is increased by a factor α, then the range of frequencies and the amplitude of the
electric field are divided by the same parameter α. The description of the optimal control
of this infinite dimensional dynamical system is mathematically quite intricate, even if
some results can be established [47,50]. For practical and numerical reasons, it is more
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convenient to consider a finite set of N systems by discretizing the frequency interval.
We thus consider the simultaneous control of each element of this set. In this paper, we
consider a regular discretization, but other choices could be possible, and the frequency
step is chosen small enough to avoid the discretization effect. Note that the same approach
is used in NMR to control a spin ensemble [15–17]. The required sharp excitation profile is
modeled by the following function:

r( f ) =
r0

2
[tanh(µ( f − fmin)) + tanh(µ( fmax − f ))],

where µ is a free parameter allowing to adjust the slope of the excitation gate. In the
numerical simulations, µ is fixed to 0.1. We impose that the final radius is r f = 5 cm
and a final phase varying linearly with the frequency, with a maximum variation of the
order of 1◦/1 Hz, which corresponds to 17.45 rad/kHz. The final phase ϕ

(k)
f of the ion k is

expressed as ϕ
(k)
f = −aωkt f , where a is a parameter characterizing the slope of the angular

variation. The magnetic field is set to 7 T and the maximum electric field amplitude that
can be generated is of the order of 103 V·m−1. The control time can be very long, of the
order of few hundred ms, but more stable numerical results were achieved for duration of
the order of few ms.

We first present in Figure 1a series of simulations without limitation on the field
intensity. The excitation pulse duration is chosen to be equal to 1 ms. The electric field
is computed from a set of the order of 500 frequencies regularly spaced in the interval
under study. Since the derived solutions are very sharp, this duration can be modified to
some extent without changing the control pulse. Figure 1 compares the results achieved
by LQOCT and by the SWIFT approach. The optimal solutions can be computed by using
or not the RWA. Note that the pulse computed in the RWA is then applied without any
approximation to the original system. In the case displayed in Figure 1, very similar
efficiencies are obtained for the two optimal excitations. The optimal pulses have a shape
similar to that of the SWIFT solution, even if their amplitudes and durations are different.
We recall that the analytical expressions of the pulses are different, but that, for a contin-
uous set of frequencies, the control field is expected to be unique. This statement can be
rigorously shown in the case of an ensemble of springs under some specific mathematical
assumptions [47,50]. However, the optimal control method offers greater flexibility since
one can play with different parameters such as the cost functional or the number of discrete
frequencies to adjust the final result.

We study in Figure 2 the role of the phase slope of the excitation profile on the structure
of the pulse. Figure 2 shows that this slope changes the position of the peak of the pulse.
This position can be deduced from a Fourier transform of the profile. Very good results
were obtained for slopes in the range [0.05, 0.95] with a maximum pulse amplitude almost
constant. Pulse distortion appears when the slope parameter a is close to 0 or 1. For a = 0,
it becomes very difficult to control all the ions which have to reach a fixed target state
in a space-fixed frame, independently of their own frequency. Note that similar results
were achieved in NMR [64,65], which highlights the similarities between the control of the
two dynamics.

We now focus on ion control with amplitude constraint. The numerical simulations
were carried out by assuming the RWA. The same set of discretized frequencies is chosen.
We optimize piecewise constant functions with a time step lower than 1 µs to avoid
discretization effect. The dynamics are integrated numerically through the formulas given
in Section 2. More than 1000 iterations are usually needed to converge to an efficient
solution. In a first step, we apply the gradient-based algorithm described in Section 3.2
with only one control field, namely E0(t) = e0(t)B, and the phase φ(t) of the electric field
is set to 0. We consider the same control problem as before and the optimal solutions
derived above are used as guess field for the optimization algorithm. Figure 3 displays the
best result achieved with this limitation. The maximum field amplitude can be reduced
from 130 to 100 V·m−1 while maintaining an almost ideal excitation profile. This reduction
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was made possible by a distribution of the energy along the control interval. Outside of
t ' 0.5 ms, the amplitude of the optimized field is much larger than the one of the guess
pulse. As a comparison, Figure 3 also presents the profile obtained from the optimal
pulse of Figure 1 whose amplitude has been arbitrarily limited to 100 V·m−1, showing the
non-trivial transformation made by the algorithm.
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Figure 1. Cont.
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-800
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0

(e)

Figure 1. Comparison between the optimal and the SWIFT approaches for the robust control of an
ensemble of ions in the frequency range [400, 600] kHz. The small insert is a zoom of the profile
around the frequency f = 600 kHz. (a,e) The evolution of the final radius and phase as a function of
f . Note that an arbitrary constant has been added to the phase in order to superimpose the curves
(the three lines are practically indistinguishable in (e)). The black, blue (dark gray) and red (light
gray) solid lines depict, respectively, the optimal solutions computed without and with the RWA
and the SWIFT pulse. The SWIFT and optimal control laws are plotted in (b,c) (optimal without
RWA) and (d) (optimal with RWA). The number of discretized frequency points is set to 601 in the
optimization process in the range [350, 650] kHz.
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Figure 2. Cont.
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Figure 2. Same as Figure 1 but for different slopes of the excitation profile. The parameter a is fixed,
respectively, to 0.25 and 0.75 in (a,b). The optimal pulses without RWA are represented.
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(a)
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-100

-50

0
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100 (b)

Figure 3. (a) The final radius r as a function of the frequency f . The black, blue (dark gray) and red
(light gray) curves represent, respectively, the ideal profile, the one obtained with the optimization
algorithm and the one corresponding to the optimal pulse of Figure 1 whose amplitude has been
abruptly limited (see the text for details). Note that the black and blue lines in (a) are almost
superimposed. The amplitude E0 of the optimal fields in the rotating frame with (black curve) and
without (red or light gray curve) constraints are depicted in (b).

The optimization algorithm fails to converge towards a very good excitation profile,
when the maximum amplitude is much smaller than 100 V·m−1. Note that more advanced
optimal algorithms could be tested in this case to verify these convergence issues [66]. This
obstacle can be partly overcome by considering in a second step two control fields (in the
rotating frame) denoted E0x = e0B cos φ and E0y = e0B sin φ. An example is displayed in
Figure 4 for a maximum amplitude of 100 and 50 V·m−1. An almost perfect excitation
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profile is achieved in these two cases. Note the different structures of the fields along the x-
and y-directions, namely even and odd functions. This observation was also made in some
optimal control problems in NMR [17].

0 0.25 0.5 0.75 1
-50

0

50

100

(a)

0 0.25 0.5 0.75 1
-50

0

50

(b)

0 0.25 0.5 0.75 1
0

50

100

(c)

Figure 4. Plot of the optimal amplitudes E0x (blue or dark gray) and E0y (red or light gray) for a
maximum amplitude of 100 V·m−1 (a)) and 50 V·m−1 (b). (c) The corresponding total amplitude
E0 =

√
E2

0x + E2
0y.

A systematic analysis of the efficiency of the optimized control fields with respect to
the maximum pulse amplitude and to the control duration is provided in Figure 5. The effi-
ciency of the control process is measured from the cost functional J given in Equation (7).
As could be expected, we observe that better results are achieved for larger maximum
amplitude and control time. However, the final fidelity varies in a quite complex way with
the control time. A saturation is observed for times of the order of few milliseconds. It is not
clear if this point is due to an intrinsic limitation of the control protocol or to convergence
problems of the algorithm. Further investigations are needed to clarify this issue.
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Figure 5. Evolution of the logarithm of the cost functional J as a function of the control time for
different maximum amplitudes (black, 30 V·m−1; blue or dark gray, 50 V·m−1; red or light gray,
70 V·m−1).

5. Conclusions

We applied optimal control techniques to the robust excitation of ions in ICR. We
considered the simplified but realistic conditions of a two-dimensional trajectory and of a
homogeneous magnetic field. In this model system, we propose different ways to solve
the optimal control problems. Such methods are directly inspired from NMR in which
OCT is a standard and efficient tool. In the case without pulse limitation, the linearity
of the dynamical equations allows using LQOCT, which has the advantage to lead to an
analytical formula of the control law. Very good results were obtained both for the final
radii and phases of the ions. A specific range of frequencies was considered in this study,
but the same approach can be extended to broadband excitation from 100 to 900 kHz.
However, this solution is both in shape and in amplitude very similar to the SWIFT pulse.
The two solutions are expected to be equal for a continuous range of frequencies. More
original control laws are derived when the pulse intensity is limited. Due to this constraint,
optimal iterative algorithms have to be used, and we adapt to ICR the standard GRAPE
algorithm, well-known in NMR. Even if this algorithm has some limitations, it allows
reducing the pulse intensity, by a factor larger than three in the examples under study.
On the basis of NMR results, this algorithm is expected to be very efficient in the case
of other excitation profiles. The very encouraging and promising results obtained in
this investigation must now be confirmed by experimental implementation. Numerical
simulations of this study are not fully realistic. Effects such as the magnetron motion,
field geometry, field inhomogeneities or ion collisions are neglected. However, the model
system we consider describes quite faithfully the main cyclotronic behavior and permits
to grasp rapidly the main features of ion trajectories. Numerical codes were developed
to account for such experimental details. The relative simplicity of the application of
numerical optimal algorithms makes it possible to adapt it straightforwardly to a new class
of control problems. They could thus be combined with such codes. We are therefore quite
confident about the extension of optimization procedures to these additional experimental
constraints and limitations. Work is in progress on these different issues.

All pulse shapes are available upon request to the corresponding author.
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Appendix A. The Rotating Wave Approximation

We discuss in this section the validity of the Rotating Wave Approximation described
in Section 2.2. We consider the following dynamical system:

ż = −iωz + u cos(ω0t) (A1)

which corresponds to Equation (5) of the main text. Equation (A1) describes a spring of
frequency ω/(2π) excited by an external field of constant amplitude u and of frequency
ω0/(2π). Introducing the frame rotating at ω0 with the transformation z = z̃e−iω0t, we
arrive at:

˙̃z = −i∆ωz̃ +
u
2
(1 + e2iω0t),

where ∆ω = ω−ω0 is the detuning. In the RWA, we neglect the fast oscillating term and
we get:

˙̃zr = −i∆ωz̃r +
u
2

.

where z̃r denotes the approximate z̃- variable. We set δz̃ = z̃− z̃r and obtain:

δ ˙̃z = −i∆ωδz̃ +
u
2

e2iω0t.

This differential system can be exactly integrated:

δz̃(t) =
∫ t

0
e−i∆ω(t−τ) u

2
e2iω0τdτ.

This leads to:

δz̃(t) = ei(ω0− ∆ω
2 )t u

2ω0 + ∆ω
sin((ω0 +

∆ω

2
)t).

We deduce that the relative error due to the RWA can be expressed as:

| δz̃
z̃r
| = |∆ω|

2ω0 + ∆ω
| sin((ω0 + ∆ω/2)t)

sin(∆ωt/2)
|.
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A rough approximation gives:

| δz̃
z̃r
| ' |∆ω|

2ω0 + ∆ω

RWA is therefore justified if |∆ω| � 2ω0. Numerical simulations show that this
formula overestimates the error and that RWA can be used in a quite wide interval around
the carrier frequency of the excitation pulse.

Appendix B. Adiabatic Excitation of ICR Process

The goal of this paragraph is to compute the final states of the ions in the case of an
adiabatic excitation of the form ex = e0 cos(ωit + s

2 t2) where ωi is the initial frequency and
s the sweep rate. We recall that integrals of the form

I(α, β) =
∫ t f

0
exp[iαt2 + iβt]dt

can be computed from the Erfi function. This result allows computing exactly the dynamics
of the system. Starting from Equation (4), the final state of the ICR process can be expressed
as follows:

X(t f ) = e0

∫ t f

0
dt

− cos(ωit + st2/2) + cos(st2/2 + (ωi −ω)t + ωt f )/2 + cos(st2/2 + (ωi + ω)t−ωt f )/2
−ω[sin(st2/2 + (ωi −ω)t + ωt f )/2− sin(st2/2 + (ωi + ω)t−ωt f )/2]

cos(st2/2 + (ωi −ω)t + ωt f )/2 + cos(st2/2 + (ωi + ω)t−ωt f )/2


and we finally obtain:xω(t f )/e0 = =[ e

iωt f

2 I(
s
2 , ωi −ω)− e

−iωt f

2 I( s
2 , ωi + ω)]

yω(t f )/e0 = <[−I( s
2 , ωi) +

e
iωt f

2 I(
s
2 , ωi −ω) + e

−iωt f

2 I( s
2 , ωi + ω)]

An approximation of the dynamics can be derived by using the stationary phase approx-

imation. For that purpose, we start from Equation (5) and we assume that
∫ t f

0 ex(t)dt = 0.
We have:

vk(t f ) = ωke−iωkt f

∫ t f

0
dtex(t)eiωkt.

The stationary phase approximation can be stated as follows. We consider the follow-
ing integral:

ĥ(ω) =
∫ +∞

−∞
h(t)eiφ(t)dt,

where φ is a smooth function, which is assumed to be rapidly varying with respect to h. A
stationary point t0 is defined by φ(1)(t0) = 0, where φ(n) denotes the nth time derivative of
φ. A Taylor expansion around t = t0 leads to:

φ(t) = φ(t0) + (t− t0)φ
(1)(t0) +

(t− t0)
2

2
φ(2)(t0) + · · ·

We arrive at:

ĥ(ω) ' h(t0)eiφ(t0)
∫ +∞

−∞
ei ξ2

2 φ(2)(t0)dξ

'
√

2π

φ(2)(t0)
h(t0)ei(φ(t0)+

π
4 ).
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For a chirp excitation, the phase φ(t) is defined by φ(t) = ωit + st2

2 . The instantaneous
frequency ω(t) can be expressed as:

ω(t) = φ̇(t) = ωi + st,

where s = ω̇(t). In the example under study, the rate s is given by s = (ω f −ωi)/t f . We
assume that s > 0 and we deduce that the Fourier transform of the control field is given by:

êx(ω) =
∫ t f

0
ex(t)eiωtdt

=
e0

2

∫ t f

0
[e−i(ωit+ st2

2 −ωt) + ei(ωit+ st2
2 +ωt)]dt.

We denote by φ1 and φ2 the arguments of the two exponential terms. It is straightfor-
ward to verify that φ̇1(t) = 0 for t = t(ω)

1 = ω−ωi
s and that φ̇2(t) = 0 for t = t(ω)

2 = −ω−ωi
s .

Neglecting the second contribution since t(ω)
2 < 0 and assuming that t(ω)

1 is not too close to
0 and t f , we can consider that the integral is defined from −∞ to +∞. We finally get:

êx(ω) = e0

√
π

2s
ei( π

4 +φ1(t
(ω)
1 )).

The phase spectrum φ(ω) = π
4 + φ1(t

(ω)
1 ) can be written as:

φ(ω) =
π

4
+

(ω−ωi)
2

2s
.

Coming back to the original control problem, we obtain:

vk(t f ) ' ωke0

√
π

2s
exp[i(

π

4
−ωkt f +

(ωk −ωi)
2

2s
)].

In the range of validity of this approximation, we observe that the final radius of ions
at time t = t f is a constant, while the phase varies quadratically with the frequency ω. A
numerical example is given in Figure A1. The frequency of the chirped pulse goes from
400 to 600 kHz.

Figure A1. Excitation of an ensemble of ions by an adiabatic pulse: Evolution of the final radius as a
function of the frequency. The parameters are set to t f = 10 ms, E0 = 3.2 V/m and B0 = 7 T. The red
(light gray) solid line represents the stationary phase approximation. The vertical blue (dark gray)
solid lines indicate the range of frequency of the pulse.
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Appendix C. Excitation by the SWIFT Approach

In this paragraph, we describe the application of the SWIFT method to the model
system. We consider a specific approach in which the control law and the corresponding
dynamics can be expressed analytically.

The dynamics are governed by the differential system (2). In the RWA described in
Section 2.2, the dynamics can be approximated as:

˙̃vk = −i∆ωkṽk +
ω0

2
e0e−iφ,

where ṽk = ṽxk + iṽyk and the control field is expressed as ex(t) = e0(t) cos(ω0t + φ(t)).
The differential equation can be integrated and leads to:

ṽk(t f ) =
∫ t f

0
e−i∆ωk(t f−t) ω0

2
e0e−iφdt

We deduce that:

ṽ∗k (t f )e
−i∆ωkt f =

∫ t f

0
e−i∆ωkt ω0

2
e0eiφdt.

Introducing u(t) = e0eiφ and assuming that u is different from zero only in the interval
[0, t f ], we obtain:

√
2π

ω0

2
û(∆ωk) = ṽ∗k (t f )e

−i∆ωkt f .

where we use the following definition for the Fourier transform:

f (t) =
1√
2π

∫ +∞

−∞
f̂ (ω)eiωtdω; f̂ (ω) =

1√
2π

∫ +∞

−∞
f (t)e−iωtdt.

The target states are defined as:{
r∆ωk = r0Π(∆ωk

δω )

φ∆ωk = a∆ωk + φ0

where Π is the gate function, with Π(x) = 1 if |x| ≤ 1
2 and 0 otherwise. The parameter δω

is the width of the distribution and φ0 is an arbitrary constant. We have:

xk = r∆ωk ei(a∆ωk+φ0).

In the RWA, starting from ṽk = −iω0x̃k, we arrive at:

ṽk(t) = −iω0r∆ωk ei(a∆ωk+φ0)eiω0t

and
û(∆ω) =

2i√
2π

r∆ωk e−i∆ωk(t f +a)e−iφ0−iω0t f ,

which gives

u(t) = FT−1[
2i√
2π

r∆ωk e−i∆ωk(t f +a)e−iφ0−iω0t f ].

Since
1√
2π

∫ +∞

−∞
Π(

ω

δω
)eiωtdω =

δω√
2π

sinc(
δωt

2
),

we obtain:

u(t) =
r0δωeiφ1

π
sinc[

δω

2
(t− t0)],
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with t0 = t f + a and φ1 an arbitrary phase. The original control field ex(t) = e0(t) cos(ω0t+
φ(t)) is then given by:

ex(t) =
r0δω

π
sinc(

δω

2
(t− t0)) cos(ω0t + φ1).

Since the choice of the initial phase φ1 is arbitrary, we finally get:

ex(t) =
r0δω

π
sinc(

δω

2
(t− t0)) cos(ω0(t f − t)).

The next step consists in integrating exactly the system dynamics using the original
system and Equation (4). We have to compute terms of the form:{

Ic(t, ωs, ω) =
∫

sinc(ωs(t− t0)) cos(ω(t f − t))dt
Is(t, ωs, ω) =

∫
sinc(ωs(t− t0)) sin(ω(t f − t))dt.

For that purpose, we use the sine and the cosine integral functions Si and Ci, which
are defined by:

Si(x) =
∫ x

0
sinc(t)dt, Ci(x) = −

∫ ∞

x

cos t
t

dt, x > 0.

We have the following results:

Ic(t, ωs, ω) =
sin[(t0 − t f )ω]

2ωs

(
Ci[(t0 − t)(ω + ωs)]−Ci[(t0 − t)(ω−ωs)]

)
+

cos[(t0 − t f )ω]

2ωs

(
Si[(t0 − t)(ω−ωs)]− Si[(t0 − t)(ω + ωs)]

)

Is(t, ωs, ω) =
cos[(t0 − t f )ω]

2ωs

(
Ci[(t0 − t)(ω + ωs)]−Ci[(t0 − t)(ω−ωs)]

)
+

sin[(t0 − t f )ω]

2ωs

(
Si[(t0 − t)(ω + ωs)]− Si[(t0 − t)(ω−ωs)]

)
The final state of the dynamics is given by the following expressions:{

xω(t f ) =
∫ t f

0 dtex(t) sin[ω(t f − t)]

yω(t f ) =
∫ t f

0 dtex(t)(−1 + cos[ω(t f − t)]).

We then deduce:
xω(t f ) =

r0δω

2π
[Is(t f , ωs, ω0 + ω)− Is(0, ωs, ω0 + ω)− Is(t f , ωs, ω0 −ω) + Is(0, ωs, ω0 −ω)]

and

yω(t f ) =
r0δω

2π
[−2Ic(t f , ωs, ω0) + 2Ic(0, ωs, ω0)

+Ic(t f , ωs, ω0 + ω)− Ic(0, ωs, ω0 + ω) + Ic(t f , ωs, ω0 −ω)− Ic(0, ωs, ω0 −ω)]

with ωs =
δω
2 . The results achieved with this approach are described in Section 4.

Appendix D. Application of LQOCT to ICR

We apply in this section the PMP to ICR processes in the case without any amplitude
constraint. We denote by Xk the state associated with the frequency ωk as defined in
Equation (3) of Section 2.1 and by (X(k)

1 , X(k)
2 , X(k)

3 ) the coordinates. {ωk} is the set of
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discrete frequencies used in the numerical optimization. The optimal problem is defined
through the cost functional J to minimize:

J =
1
2 ∑

k
[(X(k)

1 (t f )− X(k)
1 f )

2 + (X(k)
2 (t f )− X(k)

2 f )
2] +

λ

2

∫ t f

0
e2

xdt.

Since there is no final condition on X3(t f ), this term does not appear in the expression
of J . The Pontryagin Hamiltonian is given by:

HP = ∑
k
[p(k)1 X(k)

2 −ω2
k p(k)2 X(k)

3 + p(k)3 X(k)
2 + p(k)3 u]− λ

2
e2

x.

For the adjoint state, we have:
ṗ(k)1 = 0

ṗ(k)2 = −p(k)1 − p(k)3

ṗ(k)3 = ω2
k p(k)2

with the final conditions: 
p(k)1 (t f ) = X(k)

1 f − X(k)
1 (t f )

p(k)2 (t f ) = X(k)
2 f − X(k)

2 (t f )

p(k)3 (t f ) = 0

(A2)

Note that p(k)1 is a constant of the motion. We deduce the dynamics of the adjoint state:
p(k)1 (t) = p(k)1 (t f )

p(k)2 (t) = A(k) cos(ωkt) + B(k) sin(ωkt)

p(k)3 (t) = −p(k)1 (t f ) + ωk[A(k) sin(ωkt)− B(k) cos(ωkt)]

(A3)

with A(k) = sin(ωkt f )
p(k)1 (t f )

ωk
+ p(k)2 (t f ) cos(ωkt f )

B(k) = sin(ωkt f )p(k)2 (t f )−
p(k)1 (t f )

ωk
cos(ωkt f )

The optimal control e∗x can be expressed as:

e∗x(t) =
1
λ ∑

k
p(k)3 (t) (A4)

which can be transformed into:

e∗x(t) =
1
λ ∑

k
[−p(k)1 (t f ) + p(k)1 (t f ) cos(ωk(t f − t))− p(k)2 (t f )ωk sin(ωk(t f − t))].

The last step consists in computing the trajectory corresponding to this optimal control
field. We obtain for an ion of frequency ω:

X1(t f ) =
1
λ ∑

k

[
p(k)1 (t f )(t f −

sin(ωt f )

ω
−

sin(ωkt f )

ωk
) + p(k)2 (t f )(1− cos(ωkt f )

+
p(k)1 (t f )

2
[
sin((ωk + ω)t f )

ωk + ω
+

sin((ωk −ω)t f )

ωk −ω
] +

ωk p(k)2 (t f )

2
[
cos((ωk + ω)t f )− 1

ωk + ω
+

cos((ωk −ω)t f )− 1
ωk −ω

]

]
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and

X2(t f ) =
−ω

λ ∑
k

[
p(k)1 (t f )

cos(ωt f )− 1
ω

+
p(k)1 (t f )

2
[
1− cos((ωk + ω)t f )

ωk + ω
+

cos((ωk −ω)t f )− 1
ωk −ω

]

+
ωk p(k)2 (t f )

2
[
sin((ωk + ω)t f )

ωk + ω
−

sin((ωk −ω)t f )

ωk −ω
]

]

Such results can be written in a compact form as follows:{
λX(j)

1 (t f ) = ∑k[Rjk p(k)1 (t f ) + Sjk p(k)2 (t f )]

λX(j)
2 (t f ) = ∑k[Tjk p(k)1 (t f ) + Ujk p(k)2 (t f )]

where the matricesR, S , T and U are known explicitly and the index j labels the ion of the
ensemble. We finally arrive at the following system to fulfill:∑k[RjkX(k)

1 f + SjkX(k)
2 f ] = λX(j)

1 (t f ) + ∑k[RjkX(k)
1 (t f ) + SjkX(k)

2 (t f )]

∑k[TjkX(k)
1 f + UjkX(k)

2 f ] = λX(j)
2 (t f ) + ∑k[TjkX(k)

1 (t f ) + UjkX(k)
2 (t f )]

In matrix form, for N = 2, we have:
∑kR1kX(k)

1 f + S1kX(k)
2 f

∑k T1kX(k)
1 f + U1kX(k)

2 f

∑kR2kX(k)
1 f + S2kX(k)

2 f

∑k T2kX(k)
1 f + U2kX(k)

2 f

 =


λ +R11 S11 R12 S12
T11 λ + U11 T12 U12
R21 S21 λ +R22 S22
T21 U21 T22 λ + U22




X(1)
1 (t f )

X(1)
2 (t f )

X(2)
1 (t f )

X(2)
2 (t f )


This linear system allows computing the final state of the system Xk(t f ), then the ad-

joint state from Equations (A2) and (A3) and the optimal control field with Equation (A4).
We observe that the control law is expressed as a linear combination of cosine and sine func-
tions of the frequencies ωk of the finite discretized set. Numerical results are presented in
Section 4. Note that the same method can be applied in the RWA starting from Equation (6)
(see [50] for details).
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