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Abstract: The liquid-phase adsorption of toluene in cyclohexane and hexane solutions on modified
activated carbons was evaluated; the energy involved in the interaction between these solutions and
the solids was determined by immersion enthalpies of pure solvents and their mixtures, and the con-
tribution of the system constituents was calculated by differential enthalpies. The thermal treatment
generated modifications that favored adsorption and interaction with the evaluated solutions, since
it increased the textural parameters and the basic character of the samples. Cyclohexane could create
greater competition with the adsorption sites compared to hexane, but it favored the increase in
adsorption capacities (0.416 to 1.026 mmol g−1) and the interactions with the solid evaluated through
the immersion enthalpies. The immersion enthalpies of pure solvents (−16.36 to −112.7 J g−1) and
mixtures (−25.65 to−104.34 J g−1) had exothermic behaviors that were decreasing due to the possible
displacement of solvent molecules when increasing the solute concentration in the mixtures. The
differential enthalpies for toluene were negative (−18.63 to−2.14 J), mainly due to the π–π interaction
with the solid, while those of the solvent–solid component tended to be positive values (−4.25 to
55.97 J) due to the displacement of the solvent molecules by those of toluene.

Keywords: liquid phase adsorption; enthalpy of immersion; activated carbon; toluene; cyclohex-
ane; hexane

1. Introduction

Adsorption from liquid phase has been useful in processes such as removing com-
pounds from effluents such as heavy metals, dyes, pharmaceuticals; oil recovery; purifying
products (fuels); recovering valuable metals from leachates (Au, Ag, Cu); water treatment;
separation of substances present in solutions or mixtures; and determination of surface area
of certain materials, among others. To accomplish the liquid phase adsorption, there is an
adsorbent (porous solid) and, in the liquid phase, there is generally a solute and a solvent.
When they are put into contact, due to an imbalance of forces, the adsorbate is attracted
by the porous material, causing the degrees of freedom to decrease. This continues until
the equilibrium is reached; the adsorbent–adsorbate affinity defines the distribution of the
solute and solvent in the solid and liquid phase [1,2].

In this kind of process, there is a competition between the solute and solvent where the
“apparent adsorption” of the solute at the solid–liquid interface is frequently determined by
quantifying the diminution of its concentration once it is put into contact with the porous
material. According to an adsorption isotherm classification for liquid phase proposed by
Giles et al. [3,4] (Figure 1: Adapted and modified from [4]) the curves of equilibrium are
categorized in agreement with the shape of the initial slope: S, L, H and C; these shapes
have subtypes: 1, 2, 3, 4, and mx which are related to the shapes of the upper sections and
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slope changes (s), where s is related to the slope, and I or II correspond to a sharp (I) or
sharper (II) slope variation for the flat section of the graph for the C type isotherms.
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Figure 1. Isotherm classification for liquid phase proposed by Giles. Adapted and modified from [4].

S curves are convex at first, but later they become concave to the concentration axis
(similar to type III or IV, according to the IUPAC classification [5]); L curves are concave to
the axis of concentration (similar to type I isotherm, in line with the IUPAC classification [5]);
H curves are similar to the L type, but they show higher affinity with the adsorbate, because
the isotherm with the H type starts vertically oriented (similar to type Ia isotherm—IUPAC
classification [5]); C curves possess linear behavior up to the maximum adsorption where
an horizontal plateau is formed [1,6].

According to Limousin et al. [7] concave-shaped isotherms can be fitted to the Lang-
muir and Freundlich models which description is in Table 1:

Table 1. Description of Langmuir and Freundlich models [8–16].

Model Langmuir [8–12] Freundlich [8,11–16]

Statements

The surface has finite active centers with the equal
probability to adsorb a single molecule.

The energy of adsorption in monolayer is the highest.
More pressure is needed for formation of

successive layers.

Empirical model for reversible and
non-ideal adsorption.

Different energies of adsorption for the active sites.
Heterogeneous surface where multilayer can

be formed.

Equation

n = nm
bCe

(1 + bCe)
(1)

n (mmol g−1): adsorbed amount at an
equilibrium concentration

nm (mmol g−1): maximum adsorption capacity
b (L mmol−1): Langmuir constant associated with

adsorption energy
Ce (mmol L−1): Concentration at equilibrium

n = K f C1/n
e (2)

n (mmol g−1): adsorbed amount at an
equilibrium concentration

Kf (mmol g−1 * mmol L−1): Freundlich constant
related to adsorption capacity

Ce (mmol L−1): Concentration at equilibrium
1/n: related to surface heterogeneity
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Although adsorption in liquid phase has been widely used in the processes men-
tioned at the beginning of the introduction, it has been studied mainly for the aqueous
phase [17–20], but little has been investigated about liquid phase adsorption for hydro-
carbons when the solvent is another nonpolar organic substance [18], due to the research
found is related to the usage of water as a solvent [17–20]; therefore, the study of systems
of this type is interesting, since low-molecular-weight hydrocarbons are within the Volatile
Organic Compounds (VOCs) which, due to their characteristics, can be in the environment
in the gas and liquid phase.

Among these VOCs are toluene, cyclohexane and hexane, which are hydrocarbons that
have been used in the manufacture of solvents, adhesives, oils, lacquers, cleaning products,
paints, resins, coatings, inks, fats, synthetic fragrances, waxes, polymers for nylon and
plastic soda bottles, colorants, rubber, drying glues and cement, polyurethanes, bitumen,
nail cosmetics and pharmaceuticals [21–27]. These compounds have many uses, but it is
interesting to study their adsorption because they can also generate adverse health effects
such as harming the central nervous system; irritating the eyes, mucous membranes and
skin; nausea, lightheadedness, dizziness, headaches, fainting, throat and respiratory tract
disorders; vomiting; and lack of coordination; in the case of toluene, this is a carcinogenic
and neurotoxic mutagenic agent [21,24,28–34].

Given the nonpolar nature of these contaminants, one of the most suitable adsorbents
for their removal is activated carbon, since it also has a nonpolar nature. It is also used
because it is a material that can generate a high content of microporosity and its surface
chemistry can be modified in order to evaluate its affinity and adsorption capacity with
compounds of this type.

According to the aforementioned outline of the topic, this research will work with
activated carbon, and some modifications will be made to its porous structure and surface
chemistry to evaluate the influence of these changes on the adsorption capacity of these
modified solids. Since toluene is the most harmful of the three, it was chosen as the solute,
while cyclohexane and hexane were chosen as solvents to evaluate the influence of size,
molecular arrangement, and type of compound on the adsorption of toluene, since both
they have six carbons in their structure, but one of them is an aliphatic with a chain closed
and the other is a hydrocarbon with a chain opened with differences in the arrangement
and size of their atoms.

To complement this study of adsorption of nonpolar solutions, an evaluation of the
energy involved in the interaction of the toluene–hexane and toluene–cyclohexane mixtures
with the activated carbons of different physicochemical characteristics will be carried out,
through the thermodynamic parameter of enthalpy. A very interesting process that allows
determining this variable is the immersion calorimetry since it establishes the energy that is
released or required in the process of immersing the solid in the liquid phase of the system,
allowing us to calculate the immersion enthalpy—which is related to the solid properties,
such as the surface chemistry and porosity—and also the properties of the liquid as polarity,
size, molecular arrangement and affinity to the carbonaceous solid [35,36].

For a closed system of solid–liquid interaction with one solute and one solvent at a
determined pressure (P) and temperature (T), the variation of a thermodynamic parameter
can be described by [37]:

dX =

(
∂X
∂P

)
T, nt

dP +

(
∂X
∂T

)
P, nt

dT +

(
∂X
∂nq

)
P,T, nr

dnq +

(
∂X
∂nr

)
P,T, nq

dnr (3)

where X can be the immersion enthalpy (H), and(
∂X
∂nq

)
P,T, nr

=

(
∂H
∂nq

)
P,T, nr

= Hq (4)

(
∂X
∂nr

)
P,T, nq

=

(
∂H
∂nr

)
P,T, nq

= Hr (5)
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where Hq and Hr are the partial molar enthalpies for the components q and r; this process
is performed at constant P and T, then the contribution of every component of the system
to the enthalpy can be determined.

As there is a difference among the partial molar enthalpy of any component, Hq and
Hr, and the pure component molar enthalpy, Hq

· and Hr
·, this difference allows us to

determine the differential enthalpy change, ∆HDe, for each component of the mixture,
derived from the interaction between the solution and the adsorbent.

∆HDe = Hq − H.
q (6)

The absolute values for the enthalpy are not able to be evaluated; however, the
contribution of the component to the system can be determined. The differential enthalpy
change can be expressed as follows:

∆HDe =

(
∂∆Hexp

∂nq

)
P,T,nr

(7)

This parameter is interesting because it is useful to see the changes in the mixture
and its properties when the quantities of the components are modified, since each of them
contributes to the enthalpy of the mixture. This differential enthalpy and its variations
could be expressed per mole; but if the changes in this parameter are calculated for a
solution that interacts with an activated carbon, it is better to determine grams instead of
moles of the component [38–40].

Additionally, for the determination of the solid differential enthalpy and solvent the
Gibbs–Duhem equation is used:

Xsolute

(
∂∆HDesolute

∂Xsolute

)
+ Xsolid−solvent

(
∂∆HDesolid−solvent

∂Xsolute

)
= 0 (8)

It allows us to determine the change of the partial quantities (related to the differential
enthalpy) in regard to the composition of the system; this depends on T and P, but they
are considered constant during the process. Through this mathematical relationship,
the differential enthalpy variations for solvent and solid in the solid could be evaluated
according to the solute fraction [38,39].

According to the above, this research will study the influence of the modifications
in the physical and chemical characteristics of the adsorbent and the influence of each
solvent, open chain hydrocarbon (hexane) and closed chain one (cyclohexane) in the toluene
adsorption process; therefore, a study of a solid–liquid system will be made where the
liquid phase is composed of two nonpolar compounds with affinity between them and, in
turn, will be complemented with the evaluation of the interaction between the modified
solids with toluene–hexane or toluene–cyclohexane mixtures expressed in terms of the
thermodynamic parameter of the immersion enthalpy; on the other hand, the contribution
of each component of the mixture will also be determined as the concentration of the solute
increases.

So, the interesting aspect of this work is that nonpolar solutions are evaluated; this
is a field that is not so commonly studied because it is more usual to find research that
investigates aqueous systems [17–20].

In addition to the above, the calorimetry immersion technique offers added value
because, besides being an unconventional technique, it allows us to calculate important
thermodynamic parameters, such as the immersion enthalpy, both for pure solvents and
for mixtures, going from the pure solvent immersion enthalpy (hexane or cyclohexane)
to the enthalpy of immersion of the pure solute (toluene). This, in order to: (i) determine
how the solid–liquid interactions change when the binary mixtures are put in contact
with the adsorbent and (ii) analyze the contribution of the components of the solution
and the activated carbon through the differential enthalpy change. Thus, the work of
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this manuscript is relevant since little has been studied in this aspect, because it has been
evaluated for other materials such as graphite, zeolites [41–43] and some carbonaceous
materials, but only for aqueous solutions [38,39].

2. Results and Discussion

Regarding the physical characterization for OAC (activated carbon prepared from
coconut shell by physical activation subjected to an oxidization process at 358 K with 6 M
HNO3 solution), OAC723 (oxidized sample “OAC” subjected at heat treatment up to 723 K
under N2 atmosphere) and OAC1023 (oxidized sample “OAC” subjected at heat treatment
up to 1023 K under N2 atmosphere); the solids do not show noticeable differences, but
there is a trend, since the surface area (BET model, C positive) and the micropore volume
(Dubinin–Radushkevich model) are: OAC 819 m2 g−1, 0.33 cm3 g−1 < OAC723: 873 m2 g−1,
0.35 cm3 g−1 < OAC1023: 908 m2 g−1, 0.37 cm3 g−1; this was also supported with the pore
size distribution showed in another work [37], which demonstrated a pore volume for
OAC<OAC723<OAC1023 with highly microporous behavior of the samples, where most
of the pores had widths smaller than 20 Å.

This was quite favorable, since the molecules of this research had sizes smaller than
20 Å which, when entering porous structures of these dimensions, will generate a high
affinity with the adsorbent, since the adsorption potential is greater for micropores [44]. The
fact that OAC was the sample with the smallest surface area and the smallest pore volume
was due to modification with nitric acid which generated incorporation of surface groups
(mostly acidic) that could decrease the textural parameters of the solid, while samples
subjected to heat treatment slightly increase these characteristics, due to the possible
transformation of some surface groups to CO and CO2. This is due to the modification
temperatures 723 and 1023 K, which are also increasing the basicity of samples [37,45–47].

This corroborated the relationship between the micropore volume and the surface area
with the total acidity and basicity content (the determination of acidity and basicity was
shown in [48]) that can be seen in Figure 2. There was a directly proportional relationship
between the textural parameters and basicity, but the relationship with total acidity was
inverse, showing the dependence of these physical characteristics on surface chemistry.
There were also greater changes in the values of acidity and basicity with respect to the
surface area and the volume of the micropore, indicating a greater sensitivity of the surface
groups to the thermal and chemical modifications carried out. The behavior of the graph
may be due to the fact that oxidation with HNO3 increased the content of acid groups
(mainly carboxylic [46]), possibly developed at the entrance of the pores, obstructing the
entrance to certain regions of the porosity. This prevented the nitrogen from having access
to these regions, decreasing the area and the volume to which the adsorbate had entry,
while the total basicity increased the surface parameters because it was developed with the
thermal treatment: when treating the sample at 723 K, acid groups such as carboxylic and
lactonic were removed and, at 1023 K, the carboxylic, lactonic and phenolic groups [47];
this removal could enable entry to porosity that was not previously available, causing a
greater amount of N2 to enter the porous solid, indicating a rise in micropore volume and
surface area.
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Figure 2. Relationship between the micropore volume and the surface area with the total acidity and
basicity content of samples.

With regard to the characteristics of the surface chemistry, Table 2 shows the ranges
and peaks of the pKa distributions of the activated carbons and their content in mmol g−1.
In regard to pKa < 7, the sample with ranges of lower values of pKa and the peak with the
highest acid character was OAC; later, the thermal modification generated a shift to the
right of those ranges and peaks; this was quite interesting, since in pKa between 2 and 4 the
presence of carboxylic groups was detected. In pKa between 4 and 7 the lactonic groups
were detected [49,50]. Therefore, probably the oxidation with HNO3 favored the formation
of these acid groups (on OAC), and then the acidity and content of these groups decreased
as the temperature of thermal modification increased (sample OAC723); after, again, there
was an increase in the functional groups content for OAC1023 but now at pKa greater
than 4, which could show that the surface chemistry changed, since at this treatment
temperature the carboxylic groups (those with the highest acidic character evaluated)
decomposed generating CO2; this removal was reflected in the range of the peak (3.6–4.8),
which was very close to the limit of the pKa for carboxylic acids (2 to 4); on the other hand,
the presence of bands for all samples in the range between 4 and 7, but mostly for thermal
modified samples (with shifted ranges and peaks to the right), made the presence of less
acidic groups such as lactonics (pKa: 4–7 [50]) and pyrone-type groups (pKa: 5–6 [49])
more evident, since almost the entire range of the bands of samples was subjected to a
temperature that corresponded to the pKa of these functional groups, which might be
present in higher concentration since, due to their thermal stability, they can still remain on
the surface without transforming into CO2 up to temperatures close to 923 K [47].
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Table 2. Ranges and peaks of the pKa distributions of the activated carbons and their content in
mmol g−1.

Samples OAC OAC723 OAC1023

pKa < 7

pKa 2–4
Range 2.7–3.5 3.2–4.0 3.6–4.8
Peak 3.15 3.58 4.16

Content (mmol g−1) 0.08 0.02 0.07

pKa 4–7
Range 4.7–5.6 4.8–5.8 5.4–6.4
Peak 5.14 5.29 5.95

Content (mmol g−1) 0.03 0.04 0.04

pKa > 7

pKa 7–8
Range 7.0–8.0
Peak 7.43

Content (mmol g−1) 0.05

pKa 10–12
Range 10.2–11.2 10.6–11.6 10.8–11.8
Peak 10.7 11.09 11.27

Content (mmol g−1) 0.59 1.02 1.01

For the pKa > 7, the sample with the lowest content of groups of this type and less
basic range was OAC since it contained 0.59 mmol g−1; when it was subjected to heat
treatment, this amount practically doubled for OAC723 and OAC1023, and, for the latter,
the content of the functional groups in the range 7–8 was also detected. The species that
could be related to these ranges were the phenolic groups, since their pKa > 7 [51,52],
etheric cycles and ketones were separated by aromatic molecules whose pKa were between
10 and 14 [49,53]; these rings have π electrons that also contributed to the basic character
of activated carbons [49] and the content of these electrons could increase with increasing
temperature, because the thermal treatment generated the removal of oxygenated groups,
while the aromatic rings were more stable [47].

After knowing information related to the textural parameters and the possible surface
groups of the solids, the adsorption isotherms in liquid phase were carried out for the
solutions of toluene in hexane and toluene in cyclohexane. In Figure 3, the experimental
data of the isotherms in the liquid phase for the adsorption of the solutions for the samples
OAC (a), OAC723 (b) and OAC1023 (c) were shown; they were separated in that way to
better evidence their behavior. The three graphs show that the isotherms are the L type with
concave form, according to Giles’ classification [1,3,4], and that there was greater adsorption
when the solvent was cyclohexane and the trend of the slope was steeper for these systems;
this could indicate that there was greater competition at high concentrations between
cyclohexane and toluene for the entry of the pores, because they had close molecular
dimensions in x and z for toluene and in x and y for cyclohexane (toluene: x = 6.625 Å,
y = 4.012 Å, z = 8.252 Å; cyclohexane: x = 7.168 Å, y = 6.580 Å, z = 4.982 Å [54]), having
similar probabilities of entering to the pores if they were oriented in these ways. However, if
hexane was the solvent, there was a lower inclination towards the end points, which could
be due to the fact that it had some much larger dimensions in x (x = 10.344 Å, y = 4.536 Å,
z = 4.014 Å [54]) compared to any dimension of toluene in any orientation. Therefore, if
it is located in this way, it will hardly be able to enter, causing reduced competition for
adsorption sites, which made it easier to reach a plateau due to the monolayer formation of
the solute [1].
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Figure 3. Experimental data of liquid-phase isotherms for the adsorption of solutions of toluene in hexane and cyclohexane
for OAC (a), OAC723 (b) y OAC1023 (c).

Due to the fact that isotherms showed a concave form, they were adjusted to the
models of Langmuir and Freundlich, according to the suggestion of Limousin et al. [7]; the
results are shown in Figure 4 and Table 3. According to the adsorbed amounts, they were
within the ranges found in other studies (only one was found where toluene–cyclohexane
adsorption was studied, but in polymeric resins) [55–59] and if toluene solutions were
compared in hexane and cyclohexane, adsorption was higher when the solvent was cyclo-
hexane for all samples; as for activated carbons, the adsorbed amount was much lower
for the oxidized sample without heat treatment and increased for samples that were ex-
posed to heat treatment. The same occurred with Freundlich’s constant, which was also
associated with the adsorption capacity; this parameter presented the lowest values for
the OAC sample and increased for OAC723 and OAC1023 and the highest values were
for the toluene–cyclohexane systems. On the other hand, the parameter 1/n was less
than 1 in all the samples, indicating that they were activated carbons with heterogeneous
surfaces [8,11–16].
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Figure 4. Liquid-phase isotherms for the adsorption of solutions of toluene in hexane (T-H) and cyclohexane (T-CH) for
OAC (a), OAC723 (b) y OAC1023 (c) adjusted to Freundlich and Langmuir models.

Table 3. Fitting of liquid-phase isotherms to Langmuir and Freundlich model.

Model↓ System→ Toluene–Hexane Toluene–Cyclohexane

OAC OAC723 OAC1023 OAC OAC723 OAC1023

Langmuir
nm (mmol g−1) 0.416 0.714 0.903 0.724 1.026 0.910
b (L mmol−1) 0.007 0.004 0.002 0.005 0.004 0.006

R2 0.986 0.977 0.970 0.915 0.974 0.967

Freundlich

Kf (mmol g−1)
(mmol L−1)

0.004 0.009 0.006 0.003 0.016 0.022

1/n 0.795 0.652 0.715 0.968 0.636 0.580
R2 0.993 0.993 0.986 0.979 0.992 0.992

Regarding the correlation constants, the solutions where hexane was the solvent fitted
better to Langmuir model, while those where the solvent was cyclohexane fitted better to
Freundlich’s. This might be due to the energetic heterogeneity of the surface, given the
diverse surface chemistry of the samples described above that generated adsorption sites
of different nature and energy, and also the possibility of formation of multilayer that both
the solvent and the solute had.

The mentioned behavior was an indication of what was described above, where it
was said that, since there was less competition between toluene and hexane due to their
molecular dimensions, there was a greater possibility of monolayer filling for the solute,
which would decrease the slope of the isotherm (approaching to Langmuir-type isotherm
shape).
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On the other hand, the similar dimensions of toluene and cyclohexane generated
greater competition for adsorption sites, mainly at higher concentrations because there were
fewer adsorption sites, making it a little more difficult for toluene to generate a monolayer
on the solid surface. This caused that the slope of the isotherm did not reach a plateau
and it was more evident in the OAC sample because, as it contained a smaller volume
of micropore, there was greater competition for entering the porous system, showing a
greater slope than the other samples.

What could happen is that, according to references, at low concentrations, all these
molecules were oriented perpendicular to the surface [60–62]. Additionally, in pore sizes
less than 10 Å, both toluene and cyclohexane did not have any restriction regarding the
type of orientation; then, at sizes greater than 12 Å, hexane had no longer restrictions in
its orientation, toluene could form two layers in parallel, while cyclohexane was oriented
vertically or inclined to the surface; from 14 Å, the orientation of toluene changed and more
layers could be formed to place one molecule in parallel and another perpendicular, while
cyclohexane, by forming more layers, made hexagonal lattice packaging [60–62]. This type
of organization of the hydrocarbons in the porous structure is what could have generated
the behaviors of the adsorption isotherms.

After characterizing the isotherms in the liquid phase, the study was complemented
with the calculation of the immersion enthalpies of the solids in the pure solvents and their
mixtures. The immersion enthalpy changes of the pure solvents are in Figure 5.

Figure 5. Immersion enthalpies of samples into toluene, cyclohexane and hexane.

Since the immersion enthalpy was related to the energy released or required in
the immersion of a porous solid into a liquid, all processes were exothermic (∆H < 0:
in the plot −∆H > 0), as shown in Figure 5, where the intensity of the interaction is
toluene>cyclohexane >hexane for all samples; this could occur because toluene is an aro-
matic molecule, so it had delocalized π electrons that interacted with the structure of
activated carbon, increasing the immersion enthalpy values, while cyclohexane and hexane
were aliphatic compounds but differed in their dielectric constant (hexane: 1.89, cyclohex-
ane 2.02 [63,64]). This indicated that, despite being nonpolar compounds, the distribution
of the cyclohexane electron cloud is more sensitive to an electric field [65]. As there was
a force field in the solid present in the micropores, it caused the electronic cloud of the
closed-chain compound to be distorted more easily, increasing the dispersive attractions
with respect to the open-chain aliphatic, which would make the intensity of the interaction
higher for cyclohexane and much lower for hexane, as shown by the magnitudes of the
enthalpies. Likewise, it was seen that the least exothermic immersions were those of the
sample modified with nitric acid, which occurred because the presence of acidic groups,
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could reduce the interaction with nonpolar compounds. Furthermore, in another work [48],
the hydrophobic factors for these samples were shown, and it was demonstrated that the
oxidized sample without heat treatment presented the lowest hydrophobic factor of the
evaluated solids (OAC: 1.43; OAC723: 2.02; OAC1023: 3.44), meaning that there was less
affinity for hydrocarbons.

After evaluating the enthalpies in the pure solvents, Figure 6 shows the immersion
enthalpies of solids into the mixtures of toluene–cyclohexane (a) and toluene–hexane (b).

Figure 6. Immersion enthalpies of samples into toluene–cyclohexane (a) and toluene–hexane (b) mixtures.

Regarding the samples, it was observed how the interaction was OAC<OAC723
<OAC1023, because the increase in temperature generated the removal of groups such
as carboxylics and this created unsaturations on the surface, which increased the basic
character of the solids. This basicity was highly related to delocalized π electrons located at
the edges of the graphene layers [49]; due to the fact that toluene was also a compound
with these unsaturations, the interaction with these types of compounds increased with
the basicity of solids; in addition, the samples treated at 723 and 1023 K had greater pore
volume and surface area, generating the possibility that more molecules could have contact
with the solid and therefore there was more energy involved in the process.

With respect to the mixtures, they showed differentiated behavior between them; this
may be due to the size and orientation of the solvents. As cyclohexane was the solvent
with smaller sizes than 10 Å in all its dimensions, if it entered the porous structure it would
allow more toluene molecules to enter to the system with respect to hexane, which meant
that as the molar fraction increased, the immersion enthalpy increased too, as shown in
Figure 6, since the enthalpy increased up to a molar fraction of 0.55 for cyclohexane and
only approximately to 0.3 for hexane, starting to decrease slightly; then, when the porous
structure became saturated, a displacement of the cyclohexane or hexane molecules by
toluene molecules occurred, which implied an endothermic process that was reflected in
the decrease in the immersion enthalpy values for the higher values of molar fraction of
toluene.

Finally, Figure 7 shows the changes in the differential enthalpies of toluene and
cyclohexane–solid (a) and hexane–solid (b) component as function of the mass fraction of
C7H8 (gtoluene/gmixture+solid).
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Figure 7. Differential enthalpies of toluene and solvent–solid component: cyclohexane–solid (a) and hexane–solid (b) in
function of the mass fraction of C7H8.

In Figure 7, the solute exhibited an exothermic behavior throughout the entire range
of mixtures; this indicated that the intensity of the interaction increased with the concen-
tration. This might be due to the fact that, at the beginning, there was an entrance of
C7H8 into the porous structure and then, the solvent molecules displacement occurred.
Therefore, although energy was required to remove these molecules, once toluene entered
to that adsorption site, its interaction was greater than that of cyclohexane or hexane,
since its dielectric constant was higher (2.38 [63]); in turn, toluene could also arrange in
multilayers, which would imply greater interaction in the system, since the electron density
would increase due to the adsorbate, generating more CH–π and π–π interactions with the
surface [61].

This was corroborated by the outcome of the samples, since the enthalpy was lower
for the sample modified with nitric acid in both systems and increased for the samples
thermally modified which had higher basicity, and, therefore (as previously discussed),
higher content of delocalized π electrons. Furthermore, the interaction with toluene had an
additional contribution due to the methyl that was the electron donor, which increased the
electronegativity of the aromatic ring, creating interactions of greater intensity with the
nucleophilic part of the basal plane of the activated carbon [17,64–66].

With respect to the solvent–solid component, an contrasting behavior was evident,
since as the mass fraction of toluene increased, the process became endothermic, raising its
magnitude towards that direction; this could imply that, from these amounts of toluene, the
process of displacement of the solvent molecules by those of the solute started, requiring
energy to achieve it. It was also seen that the values are more positive for cyclohexane than
for hexane. This could be due to the fact that the interaction with the closed chain aliphatic
could be stronger than with hexane because more molecules could have been adsorbed
(cyclohexane can form a multilayer from 12 Å [62]) requiring more energy to remove them
or because the interaction with the attractive field of the micropores was greater due to its
dielectric constant when it is compared to that of the open-chain aliphatic.

3. Materials and Methods
3.1. Samples

The conditions and modifications of the samples are shown in Figure 8:
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3.2. Physical Characterization of Samples

To determine surface area, micropore volume and cumulative pore volume N2 gas-
phase isotherms were performed in an Autosorb 3B equipment from Quantachrome.
Approximately 80 mg of activated carbon were degassed at 10−5 mbar at 473 K during 24 h.
After, the sample was placed in station for the adsorption, adjusting the temperature at
77 K, and N2 was supplied at relative pressures for the adsorption branch from 7 × 10−5

up to 0.99 and the desorption was performed up to a relative pressure of 0.3 (equilibrium
time: 3 min) [48].

3.3. Chemical Characterization of Samples

Different surface groups according to their pKa value were determined through
potentiometric titrations which were carried out by mixing 100 mg of solid (previously
dried −378 K, 24 h) with standardized solutions of NaNO3 (50 mL, 0.01 mol L−1) and
HCl (1 mL, 0.1 mol L−1) under stirring and nitrogen atmosphere for 24 h. Then, a blank
(HCl, 0.1 mol L−1) was titrated with NaOH 0.1 mol L−1 in a Metrohm AG automatic
titrator, ref. 905 Titrando - tiamo V2.2 software [67,68], after the system of interest under N2
(hydroxide flow: 0.01 mL every four minutes). The titration curves were then transformed
to proton binding curves, data were smoothed, the proton binding curve was deconvolved
and the pKa spectrum was obtained by SAIEUS method [68–71]; then, this spectrum was
decomposed into a sum of Gaussian functions [72].

3.4. Hydrocarbons Adsorption from Liquid Phase

The solid (100 mg) was mixed with 10 mL of toluene–hexane or toluene–cyclohexane
solutions of different concentrations (20–500 mg L−1) at 273 K (solute: toluene; solvents:
hexane and cyclohexane) for the time required to achieve the equilibrium. Then, the final
concentration of each solution was evaluated with a gas chromatograph (GC-2010).

3.5. Calorimetric Evaluation of the Immersion Enthalpy for Hydrocarbons and Their Mixtures

The evaluation of the enthalpy of immersion was performed in a heat conduction
microcalorimeter (Figure 9) [73]. A total of 100 mg of activated carbon was deposited in
the glass bulb (1, in Figure 9) that had a small and fragile brittle end, and then this cell
was assembled to the device; on the other hand, 10 milliliters of the liquid of interest was
placed in a cell made of stainless steel (2, in Figure 9: Adapted and modified from [73]) that
was also inserted into the calorimeter. Then, the change in potential over time measured by
the sensors (3, in Figure 9) was captured until the system reached equilibrium (a straight
line was observed in the calorimetric curve); later, downward pressure was applied to the
glass cell to break the tip for performing the immersion of the carbonaceous material in
the liquid phase; this created a change in the potential that was captured until it reached
equilibrium again, so the calibration was made with a resistance of 100 Ω (4, in Figure 9) to
determine the constant of the calorimeter [37].



Molecules 2021, 26, 2839 14 of 18

Molecules 2021, 26, x FOR PEER REVIEW 14 of 18 
 

 

it reached equilibrium again, so the calibration was made with a resistance of 100 Ω (4, in 
Figure 9) to determine the constant of the calorimeter [37]. 

The liquids of immersion were: toluene, cyclohexane and hexane each separately and 
then mixtures of toluene–cyclohexane (T-CH) and toluene–hexane (T-H) with molar frac-
tions from 0.2 to 0.8, for example: T-CH(0.2) means 0.2 mol C7H8/0.2 mol C7H8 + 0.8 mol 
C6H12 or T-H(0.4) means 0.4 mol C7H8/0.4 mol C7H8 + 0.6 mol C6H14 [37]. 

 
Figure 9. Scheme of the heat conduction microcalorimeter: 1. Glass bulb with fragile brittle end; 2. 
Cell for the liquid of immersion; 3. Sensors; 4. Resistance; 5. Output connection to power source; 6. 
Output connection to the multimeter; 7. Cover for insulation; 8. Heat dissipator. Adapted and mod-
ified from [73], p. 171. 

4. Conclusions 
Toluene adsorption capacities from the liquid phase using hexane and cyclohexane 

as solvents were between 0.416 and 1.026 mmol g−1, where the highest values were ob-
tained when the solvent was cyclohexane and if the sample had a higher surface area, 
micropore content and higher basicity (with respect to the ranges and groups content ac-
cording to the pKa); there was possibly greater competition for the adsorption sites with 
cyclohexane than with hexane, given the characteristics of size and molecular arrange-
ment within the porous structure. 

Figure 9. Scheme of the heat conduction microcalorimeter: 1. Glass bulb with fragile brittle end;
2. Cell for the liquid of immersion; 3. Sensors; 4. Resistance; 5. Output connection to power source;
6. Output connection to the multimeter; 7. Cover for insulation; 8. Heat dissipator. Adapted and
modified from [73], p. 171.

The liquids of immersion were: toluene, cyclohexane and hexane each separately
and then mixtures of toluene–cyclohexane (T-CH) and toluene–hexane (T-H) with molar
fractions from 0.2 to 0.8, for example: T-CH(0.2) means 0.2 mol C7H8/0.2 mol C7H8 +
0.8 mol C6H12 or T-H(0.4) means 0.4 mol C7H8/0.4 mol C7H8 + 0.6 mol C6H14 [37].

4. Conclusions

Toluene adsorption capacities from the liquid phase using hexane and cyclohexane as
solvents were between 0.416 and 1.026 mmol g−1, where the highest values were obtained
when the solvent was cyclohexane and if the sample had a higher surface area, micropore
content and higher basicity (with respect to the ranges and groups content according to
the pKa); there was possibly greater competition for the adsorption sites with cyclohexane
than with hexane, given the characteristics of size and molecular arrangement within the
porous structure.

The enthalpies of immersion of the pure solvents were exothermic for all samples and
all solutes with values between −16.36 and −112.7 J g−1, where the highest values were
for toluene and the samples subjected to heat treatment due to the π–π interaction between
the solid and the aromatic compound.

The enthalpies for the mixtures had exothermic values in a range between −25.65
and −92.05 J g−1 for toluene–hexane and between −44.24 and −104.34 J g−1 for toluene–
cyclohexane, where the interaction was greater, with OAC1023 for being the most hy-
drophobic sample and with cyclohexane because it had smaller sizes than 10 Å in all its
dimensions, allowing a greater entry of solute to be achieved than the hexane that had
larger dimensions in x.

The differential enthalpies showed values for toluene between −18.63 and −2.14 J,
being exothermic throughout all the concentration because of CH–π and π–π interactions
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with the surface and the methyl radical that was the electron donor. This created interac-
tions with the nucleophilic part of the basal plane of the activated carbon; this interaction
became higher in the samples with higher basicity due to their higher content of delocal-
ized π electrons. For the solvent–solid component, the range was from −4.25 to 55.97 J,
being more endothermic for cyclohexane because it could form multilayer and also greater
interactions with the attractive field of micropores than hexane due to its dielectric constant,
causing more energy to be required to its displacement.
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