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Abstract: Ferulic Acid (FA) is a highly abundant phenolic phytochemical which is present in plant
tissues. FA has biological effects on physiological and pathological processes due to its anti-apoptotic
and anti-oxidative properties, however, the detailed mechanism(s) of function is poorly understood.
We have identified FA as a molecule that inhibits apoptosis induced by hydrogen peroxide (H2O2)
or actinomycin D (ActD) in rat pheochromocytoma, PC12 cell. We also found that FA reduces
H2O2-induced reactive oxygen species (ROS) production in PC12 cell, thereby acting as an anti-
oxidant. Then, we analyzed FA-mediated signaling responses in rat pheochromocytoma, PC12
cells using antibody arrays for phosphokinase and apoptosis related proteins. This FA signaling
pathway in PC12 cells includes inactivation of pro-apoptotic proteins, SMAC/Diablo and Bad. In
addition, FA attenuates the cell injury by H2O2 through the inhibition of phosphorylation of the
extracellular signal-regulated kinase (ERK). Importantly, we find that FA restores expression levels of
brain-derived neurotrophic factor (BDNF), a key neuroprotective effector, in H2O2-treated PC12 cells.
As a possible mechanism, FA increases BDNF by regulating microRNA-10b expression following
H2O2 stimulation. Taken together, FA has broad biological effects as a neuroprotective modulator
to regulate the expression of phosphokinases, apoptosis-related proteins and microRNAs against
oxidative stress in PC12 cells.

Keywords: oxidative stress; ferulic acid; apoptosis; cell signaling

1. Introduction

Oxidative stress-mediated cellular injury has been implicated in various diseases,
such as cancer [1], cardiovascular diseases [2], and neurodegenerative diseases including
Alzheimer’s and Parkinson’s diseases [3]. A basal level of reactive oxygen species (ROS) is
indispensable for the manifestation of cellular functions, whereas increased formation of
ROS causes damage to cellular macromolecules such as DNA, lipids and proteins, eventu-
ally leading to necrosis and apoptotic cell death. It has been shown that ROS are involved in
nervous system dysfunction and brain disorders. After brain injury, cellular functions are
impaired by the excess production of free radicals, which are generated through several dif-
ferent cellular pathways [4,5]. Therefore, the scavenging of ROS mediated by antioxidants
may be a potential strategy for retarding the diseases’ progression. Many synthetic antioxi-
dants have potential as strong radical scavengers; however, they are also carcinogenic and
cause liver damage [6]. On the other hand, the exogenous consumption of antioxidants
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from natural sources, including plant, animal, and mineral, can produce beneficial effects
on human health and reduce the incidence of free radical-induced diseases, including
neurodegenerative disorders. For this reason, much attention has been focused on the
therapeutic use of antioxidants from natural sources with neuroprotective potential [7,8].

Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a widely distributed phenolic
compound in plant tissues (e.g., seed plants, vegetables and fruits), therefore, FA is one of
the most abundant phenolic compounds in the human diet [9,10]. FA exhibits several phys-
iological functions, for example, it has both anti-inflammatory and antioxidant properties
due to its phenolic nucleus and an extended side chain [9,10]. FA readily forms a resonance
stabilized phenoxy radical which accounts for its potent antioxidant potential [11]. It has
been demonstrated that FA exerts protective effects against the impaired learning and
memory induced by ischemia reperfusion in vivo by antioxidant and anti-apoptotic mech-
anisms [5]. Moreover, oral FA treatment into Alzheimer’s disease model mouse reduces
amyloidogenic amyloid β-protein precursor metabolism by modulating β-secretase [12,13],
suggesting that the free radical scavenger activity of FA is a promising compound against
neurodegenerative disease, such as Alzheimer’s disease [9,14]. In addition to the above
bioactivities, the antioxidant effect of FA has been verified against several acute and chronic
pathologies, including cancer [15], cardiovascular disease [16], and diabetes [17]. Several
studies have reported that encapsulation of FA into a proper drug delivery system enhances
FA bioactivities because of low solubility, low stability, and short residence time [18,19].
Carbone and co-workers demonstrated that the combined delivery of FA and Lavandula
essential oils promotes cell proliferation and migration in would healing [20]. Although it
is clear that FA has therapeutic potential to treat or prevent a wide variety of diseases, the
detailed molecular mechanisms involved are not well understood.

Hydrogen peroxide (H2O2) is thought to be the major precursor of ROS and is utilized
extensively as an inducer of oxidative damage to interpret molecular mechanisms and
therapeutic potential of antioxidants. Rat pheochromocytoma PC12 cells are a well-known
model for studying neuronal signaling pathway and neuronal functions [21]. For example,
H2O2 induces cytotoxicity in PC12 cell and alters apoptosis-related proteins, including anti-
apoptosis proteins, pro-apoptosis proteins, and caspases [22,23]. In this study, we show that
the treatment of PC12 cells with FA prior to H2O2 exposure effectively inhibits cell apoptosis.
Furthermore, FA decreases the intracellular ROS, pro-apoptotic proteins, SMAC/Diablo
and Bad, and inhibits the MAPK signaling pathway. These results demonstrate that FA is
promising as a potential therapeutic candidate for neurodegenerative diseases resulting
from oxidative damage and further research on this topic should be encouraged.

2. Materials and Methods
2.1. Antibodies and Reagents

The following antibodies were used in this study: the rabbit monoclonal anti-smac/diablo
antibody (#15108), rabbit monoclonal anti-bad (#9068), rabbit polyclonal anti-phospho-
Erk1/2 (Thr202/Tyr204) antibody (#9101) and mouse monoclonal anti-Erk1/2 antibody
(#4696) were purchased from Cell Signaling Technology (Danvers, MA, USA). Mouse mon-
oclonal anti-β-actin antibody (AC-15) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). The rabbit monoclonal anti-BDNF antibody (ab108319) was purchased from abcam.
Trans-ferulic acid (FA) was obtained from Sigma-Aldrich. FA was dissolved in culture
medium at 10 mM and then used for in vitro assay. Actinomycin (ActD) was purchased
from Wako (Osaka, Japan). ActD was dissolved in ethanol at 5 mg/mL and then diluted in
culture medium.

2.2. Cell Culture

Rat pheochromocytoma PC12 cells were purchased from ATCC (CRL-1721). Cells are
grown in RPMI 1640 supplemented with 5% heat-inactivated fetal bovine serum (FBS) and
10% horse serum (HS). Cells were cultured in a humidified incubator at 37 ◦C/5% CO2.
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2.3. Apoptosis Assay

Apoptosis was detected using a commercially available kit (Annexin V-FITC kit; MBL,
Nagoya, Japan) in accordance with the protocol provided by the manufacturer. PC12 cells
were treated with FA (40 µM) in the serum-reduced (2% FBS and 10% HS) RPMI1640
medium overnight. Then, cells were treated with H2O2 (1 mM) or actinomycin (ActD,
20 µM) for 1 h. H2O2-treated cells were stained with Annexin V-FITC and PI for 15 min
at room temperature and subsequently analyzed via flow cytometry (BD Accuri C6 plus,
BD Biosciences, San Jose, CA, USA). Apoptotic cell population was analyzed by the upper
right quadrant. ActD-treated cells were stained with 7AAD (Bio-Rad, Hercules, CA, USA)
for 10 min and subsequently analyzed via flow cytometry.

2.4. ROS Assay

ROS was detected using a commercially available kit (Cell Meter Fluorimetric Intracel-
lular Total ROS Activity Assay Kit, AAT Bioquest, Sunnyvale, CA, USA) in accordance with
the protocol provided by the manufacturer. Cells were incubated with Amplite ROS Green
for 1 h and H2O2 (1 mM) for 30 min. The cells were measured using the flow cytometry
using the filters for Ex/Em = 490/520 nm.

2.5. Proteome Profiler Antibody Array

The Human Phospho-Kinase Array Kit (ARY003) and Proteome Profiler Human Apop-
tosis Array Kit (ARY009) were obtained from R&D Systems. PC12 cells were treated with
FA (40 µM) overnight. Cell lysates were collected at 30 min after H2O2 (0.5 mM) treatment
and the levels of phospho-or apoptosis-related proteins were analyzed with these arrays,
according to the manufacturer’s instructions. The intensity of each dot was measured
using Image J software. The ratios indicated were calculated by using the intensities of the
corresponding protein dots after background correction and normalization of the intensities
according to the mean of the positive controls (Supplementary Tables S1 and S2). N/D
indicates “not detected” in the paper.

2.6. Western Blotting

Samples were separated by SDS-PAGE and transferred to a nitrocellulose membrane.
The membranes were blocked with 4% skim milk in TBS-T (0.05% Tween-20 in TBS)
for 30 min, which was followed by incubation with primary antibodies. After being
washed with TBS-T, the membranes were incubated with the appropriate horseradish
peroxidase (HRP)-conjugated secondary antibodies. Immunoreactivity was detected by
using enhanced chemiluminescence detection reagents.

2.7. Isolation of RNA and Quantitative RT-PCR

RNA was isolated using the RNeasy micro kit (Qiagen, Hilden, Germany), according
to the manufacturer’s instructions. Reverse transcription of RNA was performed with
TaqMan™ MicroRNA Reverse Transcription Kit, according to the manufacturer’s protocol.
After first-strand synthesis, qRT-PCR was performed using the TaqMan™ Universal Master
Mix II with a 7300 real-time PCR system (Applied Biosystems, Foster City, CA, USA). The
microRNA-10b expression was analyzed using TaqMan™ Assays. TaqMan™ microRNA
Control Assay (U87) was used for an internal control.

2.8. Statistical Analysis

All assays were independently performed three times. The results are represented as
mean ± SEM. Analysis of variance (ANOVA) with Bonferroni post-hoc test was used for
multiple comparisons. p < 0.05 was considered statistically significant.

3. Results and Discussion

To determine the effects of FA against oxidative stress, we initially pretreated PC12
cells with FA (40 µM) overnight and subsequently cultured cells in the absence or presence
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of H2O2 (1 mM) for another 45 min. The H2O2-induced cell apoptosis was assessed by
Annexin V-FITC assays [24]. Treatment with H2O2 resulted in a marked induction of
apoptosis of PC12 cells compared to control (Figure 1a). In contrast, pretreatment of the
cells with FA had reduced levels of apoptosis induced by H2O2 (p < 0.05, Figure 1a). In
addition, treatment with FA alone without H2O2 did not significantly affect apoptosis of
PC12 cells compared to control. Of note, this effect of FA on the inhibition of apoptosis was
similar to that observed when cells are treated with actinomycin D (ActD), a potent inducer
of apoptosis (p < 0.001, Figure 1b). Importantly, when the cells are pretreated with H2O2 for
15 min and then treated with FA for another 30 min, FA failed to inhibit apoptosis of PC12
cells (Supplementary Figure S1). These data rule out the possibility that FA reacted directly
with H2O2. Altogether, these results suggest that FA is a potent inhibitor of apoptosis
induced by oxidative stress.
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Oxidative stress-induced ROS production causes cellular damage and apoptosis due
to oxidation of many essential proteins [25–27]. Moreover, ROS has been known as a
pro-apoptotic factor that activates stress-activated protein kinases. We evaluated the
accumulation of ROS after H2O2 stimulation in PC12 cells using the fluorescence probe.
The results showed that the level of ROS accumulation was higher in H2O2-treated cells. On
the other hand, pretreatment with FA attenuated the fluorescence intensity in H2O2-treated
PC12 cells (Figure 1c), suggesting that FA exerts its antioxidant effect in the intracellular
compartment. A recent study showed that FA significantly decreased ischemia-induced
apoptosis as well as ROS accumulation in PC12 cells, and increased the generation of the
cellular antioxidants, superoxide dismutase, and glutathione peroxidase [5]. Therefore,
these results confirm that FA has antioxidant activity against ROS.

To determine the effect of FA on H2O2-induced PC12 cell apoptosis, we profiled
levels of apoptosis-related proteins in PC12 cells. We found that FA inhibited H2O2-
induced apoptotic protein, notably, Bad (Figure 2a and Supplementary Table S1), which
was confirmed by Western blot analysis (Figure 2b). ROS activates p53 and/or c-Jun
N-terminal kinase (JNK), which activate pro-apoptotic Bcl-2 proteins, including Bad [27].
Bad is a member of the BH3-only family which is involved in initiating apoptosis. Under
conditions of stress, Bad forms heterodimers with anti-apoptotic proteins such as Bcl-2,
Bcl-XL, thus inhibiting their anti-apoptotic properties [27]. We also found that FA inhibited
pro-apoptotic protein Bax as well (Supplementary Table S1). Thus, these data suggest
that FA inhibits H2O2-induced PC12 cell apoptosis by regulating expression level of pro-
apoptotic proteins (Figure 2a and Supplementary Table S1). In addition, FA suppressed
SMAC/Diablo expression induced by H2O2 (Figure 2a and Supplementary Table S1).
Excessive ROS production would damage mitochondrial membrane integrity and affect
the energy production in mitochondria, resulting in mitochondrial dysfunction [27,28].
Furthermore, mitochondrial dysfunction includes a decrease in mitochondria membrane
potential, activation of caspase-3, and apoptosis. SMAC/Diablo is a mitochondria-derived
pro-apoptotic protein. In the response to diverse pro-apoptotic stimulation, SMAC/Diablo
is released from mitochondria and enters the cytosol, possibly by neutralizing the caspase-
inhibitory properties of the inhibitor of apoptosis proteins (IPA) family of proteins [29,30].
This leads ultimately to apoptotic cell death by both caspase-dependent and -independent
mechanisms. Therefore, FA might change the occurrence of mitochondrial dysfunction
after oxidative stress.

In order to further examine the effect of FA on intracellular signaling responses, we
profiled levels of phosphokinases in PC12 cells. As a result, the phosphorylation of ERK
by H2O2 was inhibited by pretreatment with FA (Figure 3a and Supplementary Table S2).
By Western blot analysis, it was found that H2O2 stimulation activated ERK in a dose-
dependent manner, whereas pretreatment with FA inhibited it (Figure 3b). Activation
of ERK inhibits apoptosis in response to several stimulations, including tumor necrosis
factor, Fas ligand, and H2O2 [31,32]. In contrast, ERK can function in a pro-apoptotic
manner. For example, ERK activation contributes to 6-hydroxydopamine (6-OHDA)-
induced dopaminergic neuronal cell death [33]. Moreover, persistent activation of ERK
is associated with glutamate-induced oxidative toxicity in neuronal cells, and inhibition
of ERK activation protects cells from glutamate toxicity [34]. Therefore, ERK contributes
to pro-apoptotic signaling in neuronal cells. Together, these results demonstrate that
FA inhibits H2O2-induced apoptosis through the regulation of intracellular ROS level,
mitochondrial-dependent pathway, and MAPK pathway in PC12 cells.
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It has been reported that FA upregulates the levels of BDNF, a neuroprotective effector,
in the prefrontal cortex and hippocampus in chronic unpredictable mild stress model
mice [35]. Therefore, we examined the effect of FA on expression of BDNF in H2O2-
treated PC12 cells. Western blot analysis revealed that FA prevented the reduced protein
expression of BDNF by H2O2 in PC12 cells (Figure 4a). Previous reports have shown
that BDNF expression is directly regulated by several microRNAs, such as microRNA-1
(miR-1), miR-9, miR-10b, miR-155 and miR-191, since these microRNAs target 3′UTR of
BDNF [36–38]. We found that the expression of miR-10b was induced by H2O2 in PC12
cells, whereas FA inhibited H2O2-induced miR-10b (Figure 4b). As a possible mechanism,
FA increased the expression of BDNF through the inhibition of miR-10b induction following
H2O2 stimulation, thereby protecting PC12 cells from apoptosis.
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4. Conclusions

In summary, our data first demonstrate that FA exerts neuroprotective effect against
oxidative cytotoxicity in PC12 cells by decreasing level of intracellular ROS and mitochon-
drial pro-apoptotic proteins, and regulating the MAPK pathway. Moreover, FA increases
the expression of BDNF in PC12 cells by possibly regulating microRNAs expression in-
duced by oxidative stress. Further studies are needed to identify FA-targeting microRNAs
to completely understand the mechanism of the neuroprotective effect of FA.

Supplementary Materials: The following are available online, Figure S1: Effect of FA against ox-
idative stress in PC12 cells, Table S1: List of apoptotic proteins modulated by FA, Table S2: List of
phospho-kinase proteins modulated by FA.
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