

Supplementary Material

Caption of Figures:

Figure S1. Preparation of the microcolumn packed with sol-gel PDPS coated glass fiber: a) cutting of glass fibers; b) packing with GF coated with sol-gel PDPS.

Figure S2. Installation of the GFSE microcolumn in the FIAS-400 system.

Figure S3. Effect of sample flow rate on the absorbance of 100.0 μ g·L⁻¹ Pb(II) and 100.0 μ g·L⁻¹ Cr(VI). All other experimental parameters as in Table 1.

Figure S4. Effect of elution flow rate on the absorbance of 100.0 $\mu g \cdot L^{-1}$ Pb(II) and 100.0 $\mu g \cdot L^{-1}$ Cr(VI). All other experimental parameters as in Table 1.

Figure S5. Effect of preconcentration time on the absorbance of 100.0 $\mu g \cdot L^{-1}$ Pb(II) and 100.0 $\mu g \cdot L^{-1}$ Cr(VI). All other experimental parameters as in Table 1.

Figure S1. Preparation of the microcolumn packed with sol-gel PDPS coated glass fiber: a) cutting of glass fibers; b) packing with GF coated with sol-gel PDPS.

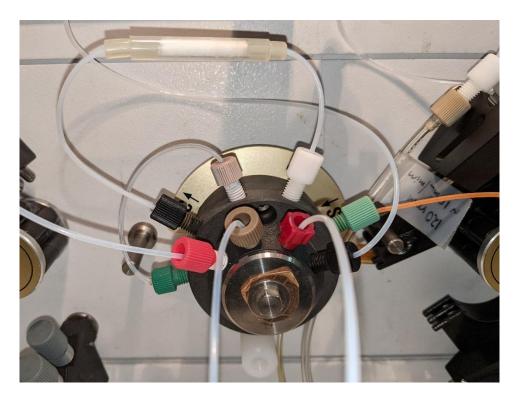


Figure S2. Installation of the GFSE microcolumn in the FIAS-400 system.

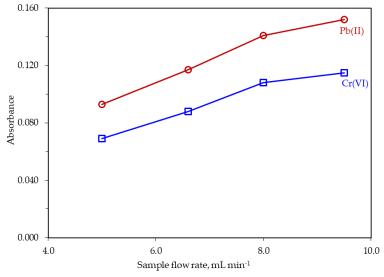
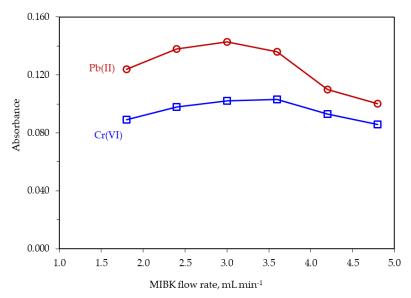
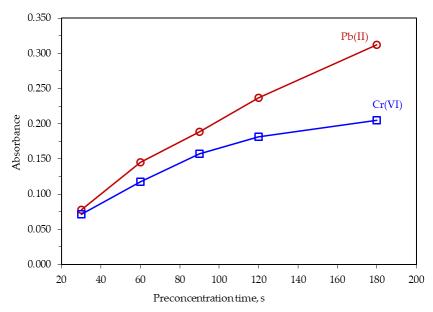




Figure S3. Effect of sample flow rate on the absorbance of 100.0 $\mu g \cdot L^{-1} Pb(II)$ and 100.0 $\mu g \cdot L^{-1} Cr(VI)$. All other experimental parameters as in Table 1.

Figure S4. Effect of elution flow rate on the absorbance of 100.0 μ g·L⁻¹ Pb(II) and 100.0 μ g·L⁻¹ Cr(VI). All other experimental parameters as in Table 1.

Figure S5. Effect of preconcentration time on the absorbance of 100.0 μ g·L⁻¹ Pb(II) and 100.0 μ g·L⁻¹ Cr(VI). All other experimental parameters as in Table 1.