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Abstract: In this study, we have investigated quantitative relationships between critical temperatures
of superconductive inorganic materials and the basic physicochemical attributes of these materials
(also called quantitative structure-property relationships). We demonstrated that one of the most
recent studies (titled "A data-driven statistical model for predicting the critical temperature of a
superconductor” and published in Computational Materials Science by K. Hamidieh in 2018) reports
on models that were based on the dataset that contains 27% of duplicate entries. We aimed to
deliver stable models for a properly cleaned dataset using the same modeling techniques (multiple
linear regression, MLR, and gradient boosting decision trees, XGBoost). The predictive ability of
our best XGBoost model (R2 = 0.924, RMSE = 9.336 using 10-fold cross-validation) is comparable
to the XGBoost model by the author of the initial dataset (R2 = 0.920 and RMSE = 9.5 K in ten-fold
cross-validation). At the same time, our best model is based on less sophisticated parameters, which
allows one to make more accurate interpretations while maintaining a generalizable model. In
particular, we found that the highest relative influence is attributed to variables that represent the
thermal conductivity of materials. In addition to MLR and XGBoost, we explored the potential of
other machine learning techniques (NN, neural networks and RF, random forests).

Keywords: critical temperature; thermal conductivity; predictive modeling; QSPR; machine learning

1. Introduction

Superconducting materials are capable to conduct electric current with zero resis-
tance at or below a certain critical temperature TC [1]. Since the very first discovery of
superconductivity in mercury, thousands of elements and alloys were found to express
superconducting properties [2]. Several theories analyze how superconductivity got es-
tablished in materials. For example, the commonly accepted Bardeen–Cooper–Schrieffer
theory of superconductivity attributes the manifestation of superconductivity in a given
material to the formation of resonant states of electron pairs [3–5]. It could be discussed
in the context of the formation of ions that move through the crystalline lattice of the
superconductor [6].

The phenomenon of superconductivity is widely applied in the industry: for example,
superconductors are used to create powerful electromagnets, electrical systems, etc. Engi-
neers generally follow empirical rules to create and test new superconducting materials.
However, such an approach is not systematic and therefore could be time-consuming and
expensive. A potential solution is to apply computational techniques, such as multiphysics
simulations to study superconducting effects in materials [7]. At the same time, sophisti-
cated physics-based modeling algorithms require significant computing resources and are
not suitable for fast predictions.

In recent years, with the emergence of structured databases for materials, scholars
directed their efforts toward the development of predictive models for physicochemical
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properties and biological activities [8]. An application of methods of machine learning
could help to facilitate the discovery of novel materials based on data for known materi-
als [9]. In the field of superconducting materials, the creation of fast predictive tools will
reduce the final cost of production of superconductors with the desired critical temper-
atures. In addition to that, predictive modeling in a materials science context could aid
experimental teams in their search for superconductors with desired properties. Moreover,
the use of data-driven predictive modeling could help to reduce the number of lengthy
and expensive experiments or complex physics-based computational simulations [10–12].
Such machine learning-based models in chemistry are generally called the Quantitative
Structure-Property Relationship (QSPR) models and they usually serve as an efficient
tool for fast screenings and properties prediction [13]. Popular algorithms used in QSPR
moldings these days include multiple linear regression (MLR), principal component analy-
sis (PCA), projections to latent structures (PLS), random forests (RF), decision trees (DT),
artificial neural networks (ANN), and many others [14–16].

The most recent studies suggest that the chemical information could be successfully
integrated with techniques of machine learning [8,10–12,17–19]. A series of predictive
models that explore quantitative relationships between critical temperature and physico-
chemical properties of materials have been reported in the literature [1,6,20,21]. One of the
pioneering works directly attributes critical temperatures of 60 high-temperature supercon-
ductors to valence-electron numbers, orbital radii, and electronegativity [21]. Later, PCA
and PLA were applied to predict TC for 1212 superconductive copper oxides [20]. Most re-
cently, predictive and classification models were generated for more than 10,000 known
superconductors using the RF, MLR, and gradient boosting techniques [1,6].

The goal of this article is to deliver models that accurately predict the critical temper-
atures for inorganic superconducting materials. We used the dataset that contains infor-
mation about 21,263 inorganic superconductors, as reported by K. Hamidieh [1]. We also
aimed to compare our models to existing models developed for the same dataset, and to
provide insights into the most influential physicochemical attributes. Finally, we discussed
developed models in the context of potential applications in materials science.

2. Results and Discussion
2.1. Data Pre-Processing

At first sight, the initial dataset did not contain any duplicates. However, after careful
examination, we found that the data contained a lot of similar TC values for the same
material. Examples of duplicate measurements extracted are presented in Figure 1.
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Figure 1. Example of duplicate measurements for the same material: nominal value—a type of
material, absolute count—number of duplicate measurements, fraction—the number of duplicates
for every material in relation to the total number of entries in the dataset.

Overall, we found that 85% of materials had a single TC measurement reported (Figure 2a),
and the remaining materials had at least 1 duplicate entry reported (e.g., 1331 materials had



Molecules 2021, 26, 8 3 of 13

two values of TC reported). A total of 7982 duplicates were identified for 2261 materials in
total, and only 15,542 materials were truly unique (Figure 2b). This issue occurred because
the dataset contained a compilation of TC measurements reported by different research
teams. The variation of measurements for the same material could either happen because
measurements were conducted for different types of crystal structures or simply because
of an instrumental error. In conclusion, specific domain knowledge is likely required for
the data collection and preparation in this area of knowledge; otherwise, data science
specialists might not be able to identify quality issues.
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We have removed duplicates as discussed in the Materials and Methods section.
The dataset with removed duplicates is further referred to as a “cleaned dataset” or simply
a “dataset”. An overview of the cleaned dataset is presented in Supplementary Materi-
als (Table S2). The cleaned dataset did not contain constants or near-constant attributes,
and the variability of each attribute was adequate.

2.2. Model Development

All the models discussed in this section could be downloaded from the Supplementary
Materials file (Models S4).

First, baseline predictive models using the cleaned dataset were developed, applying
default settings of nodes. All models discussed here were validated using a 10-fold cross-
validation technique (see details in Materials and Methods section). Statistical characteristics
and observed vs. predictive plots for baseline models are presented in Figure 3. As could
be seen, baseline models for MLR and NN reported multiple cases of negative values of
TC (such values of temperatures are physically impossible). Hamidieh [1] had a similar
observation for their MLR and XGBoost models. XGBoost and RF baseline models predicted
values for TC in the positive range of temperatures (from 0 K to 140 K). At the same time,
however, XGBoost and RF baseline models overpredicted values of Tc in a zone of low-
temperature superconductors.

Next, we decreased the number of attributes as the relative importance of key at-
tributes that could be influenced by co-dependent attributes in the dataset. To reduce the
influence of unwanted co-dependencies, we used such preselection techniques, as weight
by correlation, weight by relief, and weight by PCA. For the PCA, we found that the cumu-
lative proportion of variance became optimal for 3 components (refer to Supplementary
Materials, Figure S3). Finally, we identified and removed 685 outliers and repeated the
modeling. Statistical characteristics of developed models are presented in Tables 1–4.
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Table 1. Characteristics of MLR models.

Preprocessing Attribute Selection
Performance

R2 RMSE AE

Cleaned Dataset

n/a 0.726 ± 0.012 17.664 ± 0.279 13.317 ± 0.194
weight by relief 0.611 ± 0.017 21.038 ± 0.490 16.286 ± 0.374
weight by PCA 0.606 ± 0.016 21.170 ± 0.453 16.131 ± 0.326

weight by correlation 0.618 ± 0.011 20.860 ± 0.372 16.060 ± 0.239

Correlations
Removed

n/a 0.699 ± 0.009 18.505 ± 0.348 14.185 ± 0.265
weight by relief 0.657 ± 0.021 19.771 ± 0.521 14.957 ± 0.391
weight by PCA 0.576 ± 0.011 21.957 ± 0.243 17.339 ± 0.243

weight by correlation 0.610 ± 0.006 21.063 ± 0.236 16.760 ± 0.165

No Outliers

n/a * 0.734 ± 0.007 17.414 ± 0.251 13.124 ± 0.241
weigh by relief 0.607 ± 0.013 21.199 ± 0.349 16.351 ± 0.342
weight by PCA 0.616 ± 0.012 20.936 ± 0.289 15.927 ± 0.262

weight by correlation 0.626 ± 0.014 20.682 ± 0.347 15.882 ± 0.239

Correlations
Removed,

No Outliers

n/a 0.708 ± 0.016 18.244 ± 0.435 13.983 ± 0.411
weight by relief 0.603 ± 0.017 21.310 ± 0.378 16.631 ± 0.347
weight by PCA 0.585 ± 0.010 21.761 ± 0.367 17.163 ± 0.270

weight by correlation 0.619 ± 0.016 20.867 ± 0.323 16.578 ± 0.293

* The best model is marked in bold.
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Table 2. Characteristics of XGBoost models.

Preprocessing Attribute Selection
Performance

R2 RMSE AE

Cleaned Dataset

n/a 0.840 ± 0.011 14.376 ±0.346 10.515 ± 0.269
weight by relief 0.801 ± 0.015 15.774 ± 0.467 11.489 ± 0.366
weight by PCA 0.808 ± 0.007 15.576 ± 0.319 11.354 ± 0.143

weight by correlation 0.803 ± 0.009 15.715 ± 0.315 11.442 ± 0.231

Correlations
Removed

n/a 0.831 ± 0.012 14.718 ± 0.441 10.704 ± 0.309
weight by relief 0.810 ± 0.011 15.486 ± 0.406 11.356 ± 0.193
weight by PCA 0.799 ± 0.006 15.864 ± 0.247 11.441 ± 0.220

weight by correlation 0.814 ± 0.006 15.337 ± 0.273 11.143 ± 0.173

No Outliers

n/a* 0.847 ± 0.009 14.132 ± 0.347 10.314 ± 0.260
weigh by relief 0.810 ± 0.014 15.473 ± 0.344 11.250 ± 0.226
weight by PCA 0.812 ± 0.007 15.424 ± 0.291 11.238 ± 0.191

weight by correlation 0.810 ± 0.012 15.494 ± 0.250 11.222 ± 0.181

Correlations
Removed,

No Outliers

n/a 0.839 ± 0.012 14.428 ± 0.428 10.472 ± 0.301
weight by relief 0.817 ± 0.014 15.237 ± 0.349 11.113 ± 0.245
weight by PCA 0.803 ± 0.015 15.756 ± 0.428 11.337 ± 0.266

weight by correlation 0.820 ± 0.016 15.114 ± 0.463 10.969 ± 0.280

* The best model is marked in bold.

Table 3. Characteristics of RF models.

Preprocessing Attribute Selection
Performance

R2 RMSE AE

Cleaned Dataset

n/a 0.863 ± 0.010 12.614 ± 0.466 8.351 ± 0.300
weight by relief 0.836 ± 0.005 13.745 ± 0.239 9.105 ± 0.171
weight by PCA 0.844 ± 0.007 13.410 ± 0.315 8.815 ± 0.150

weight by correlation 0.851 ± 0.007 13.119 ± 0.194 8.643 ± 0.166

Correlations
Removed

n/a 0.855 ± 0.011 12.965 ± 0.490 8.591 ± 0.315
weight by relief 0.830 ± 0.014 13.987 ± 0.470 9.308 ± 0.249
weight by PCA 0.837 ± 0.011 13.715 ± 0.354 9.010 ± 0.203

weight by correlation 0.846 ± 0.009 13.331 ± 0.391 8.788 ± 0.202

No Outliers

n/a* 0.868 ± 0.007 12.399 ± 0.247 8.180 ± 0.165
weigh by relief 0.848 ± 0.011 13.278 ± 0.439 8.748 ± 0.276
weight by PCA 0.849 ± 0.010 13.224 ± 0.496 8.670 ± 0.313

weight by correlation 0.856 ± 0.007 12.893 ± 0.251 8.431 ± 0.134

Correlations
Removed,

No Outliers

n/a 0.859 ± 0.014 12.790 ± 0.371 8.426 ± 0.177
weight by relief 0.848 ± 0.017 13.266 ± 0.558 8.789 ± 0.277
weight by PCA 0.843 ± 0.010 13.497 ± 0.415 8.827 ± 0.229

weight by correlation 0.853 ± 0.015 13.063 ± 0.474 8.579 ± 0.230

* The best model is marked in bold.

The interpretation of Tables 1–4 reveals that R2 values for developed models were in
the range of 0.603–0.868. The preliminary removal of correlated attributes led to a decrease
in quality. Similarly, the prioritization of attributes using weighting techniques did not
improve the quality of models. A potential reason for that is an ineffective selection of
attributes or dissatisfactory selection of modeling parameters. At the same time, the models
that used the top-20 attributes selected by weighing by correlation filter were of higher
quality compared to the models generated using weighting by PCA and weighting by relief
filters. Once outliers were removed, the quality of some models improved. In fact, the best
models for each algorithm were obtained for a dataset with removed outliers (marked in
bold in Tables 1–4).
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Table 4. Characteristics of NN models.

Preprocessing Attribute Selection
Performance

R2 RMSE AE

Cleaned Dataset

n/a 0.837 ± 0.012 14.194 ± 0.696 9.619 ± 0.426
weight by relief 0.746 ± 0.013 17.685 ± 0.603 12.667 ± 0.755
weight by PCA 0.763 ± 0.012 16.902 ± 0.866 11.906 ± 1.058

weight by correlation 0.769 ± 0.011 16.857 ± 1.009 12.028 ± 1.167

Correlations
Removed

n/a 0.831 ± 0.009 14.637 ± 0.848 10.379 ± 0.999
weight by relief 0.783 ± 0.019 16.496 ± 1.023 11.700 ± 1.117
weight by PCA 0.766 ± 0.016 17.086 ± 0.942 12.249 ± 0.987

weight by correlation 0.780 ± 0.012 16.746 ± 1.231 12.054 ± 1.343

No Outliers

n/a* 0.842 ± 0.007 14.186 ± 0.794 10.021 ± 1.137
weigh by relief 0.755 ± 0.013 17.460 ± 0.773 12.497 ± 1.069
weight by PCA 0.773 ± 0.013 16.888 ± 0.942 12.287 ± 1.019

weight by correlation 0.774 ± 0.013 16.805 ± 0.937 12.004 ± 1.007

Correlations
Removed,

No Outliers

n/a 0.834 ± 0.010 13.996 ± 0.332 9.369 ± 0.305
weight by relief 0.777 ± 0.010 16.541 ± 0.599 11.817 ± 0.726
weight by PCA 0.775 ± 0.012 16.858 ± 1.206 12.016 ± 1.566

weight by correlation 0.793 ± 0.012 16.394 ± 1.532 11.916 ± 2.028

* The best model is marked in bold.

Next, we used aggregated parameters to develop predictive models (Table 5).
The predictive ability of models that contained aggregated attributes was only lower
compared to the models discussed earlier. As can be seen, the statistical quality of the
majority of MLR models was below acceptable limits (R2 > 0.6), while the quality of RF
models was closer to models developed for the cleaned dataset. One of the reasons for
decreased quality is the decline of the natural complexity of the data after aggregation.
In other words, aggregated parameters are not fully capable to capture the hidden patterns
of explored data. We then merged the aggregated attributes with the initial set of attributes,
and the quality of models has improved and reached a level similar to the quality of models
reported in Tables 1–4. Unfortunately, this rather means that aggregated attributes did not
add much value to the predictive ability.

Table 5. Characteristics of models that use aggregated attributes.

Preprocessing Performance
Algorithm

MLR XGBoost RF NN

Aggregation
Only 1

R2 0.542 ± 0.014 0.768 ± 0.014 0.825 ± 0.008 0.688 ± 0.013
RMSE 0.677 ± 0.012 0.501 ± 0.013 0.421 ± 0.012 0.566 ± 0.018

AE 0.535 ± 0.008 0.364 ± 0.011 0.278 ± 0.007 0.408 ± 0.023

Aggregation
Only 1,

No outliers

R2 0.530 ± 0.013 0.780 ± 0.012 0.834 ± 0.012 0.691 ± 0.021
RMSE 0.673 ± 0.017 0.492 ± 0.012 0.412 ± 0.015 0.574 ± 0.023

AE 0.551 ± 0.016 0.356 ± 0.009 0.270 ± 0.010 0.419 ± 0.024

Aggregation,
Merged

Attributes

R2 0.726 ± 0.011 0.840 ± 0.012 0.863 ± 0.011 0.836 ± 0.009

RMSE 17.657 ±
0.421

14.376 ±
0.433

12.615 ±
0.433

14.224 ±
0.591

AE 13.312 ±
0.263

10.490 ±
0.293 8.339 ± 0.261 9.932 ± 0.836

Aggregation,
Merged

Attributes,
No outliers

R2 0.735 ± 0.006 0.846 ± 0.012 0.867 ± 0.012 0.844 ± 0.011

RMSE 17.409 ±
0.300

14.126 ±
0.378

12.405 ±
0.524

13.624 ±
0.391

AE 13.121 ±
0.293

10.279 ±
0.318 8.186 ± 0.377 9.469 ± 0.504

1 These models are based on normalized attributes.
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2.3. Optimization of the Best Models

After careful examination of the discussed models, we can conclude that the quality
of MLR models will not likely improve. MLR generates linear equations, and with the
reduced number of attributes, the predictive ability will only decline. Our best MLR model
is similar to Hamidieh’s model [1] in terms of statistical quality: R2 = 0.735 and RMSE =
17.409 K (our model) versus R2 = 0.74 and RMSE = 17.6 K (Hamidieh’s model).

At the same time, XGBoost, RF, and NN methods could potentially be improved
with parameter tuning. For this article, we decided to focus on the XGBoost algorithm.
There were two reasons for that. First of all, we aimed to use the least unambiguous
algorithm for further mechanistic interpretation [22]. Secondly, as we aimed to outperform
the XGBoost model developed by Hamidieh [1] using the smaller number of attributes and
less sophisticated tuning parameters. The model reported in the literature and optimized
models for both cleaned and uncleaned dataset are presented in Table 6.

Table 6. Characteristics of optimized XGBoost models.

Preprocessing Attribute selection
Performance

R2 RMSE AE

Original Dataset
(with Duplicates)

n/a (XGBoost model
from [1]) 0.92 9.5 -

n/a 0.926 ± 0.004 9.344 ± 0.289 5.142 ± 0.147
weight by relief 0.922 ± 0.005 9.544 ± 0.372 5.313 ± 0.160
weight by PCA 0.922 ± 0.007 9.551 ± 0.357 5.346 ± 0.107

weight by correlation 0.923 ± 0.007 9.494 ± 0.504 5.297 ± 0.168

Cleaned Dataset

n/a 0.923 ± 0.005 9.365 ± 0.329 5.168 ± 0.110
weight by relief 0.914 ± 0.009 9.882 ± 0.518 5.504 ± 0.221
weight by PCA 0.917 ± 0.009 9.737 ± 0.476 5.513 ± 0.248

weight by correlation 0.917 ± 0.009 9.683 ± 0.492 5.510 ± 0.141

Correlations
Removed

n/a 0.925 ± 0.005 9.265 ± 0.244 5.170 ± 0.190
weight by relief 0.920 ± 0.009 9.557 ± 0.511 5.377 ± 0.256
weight by PCA 0.918 ± 0.008 9.665 ± 0.442 5.463 ± 0.189

weight by correlation 0.919 ± 0.009 9.613 ± 0.544 5.424 ± 0.235

No Outliers

n/a * 0.930 ± 0.012 8.927 ± 0.689 4.975 ± 0.259
weight by relief 0.921 ± 0.007 9.497 ± 0.417 5.334 ± 0.169
weight by PCA 0.920 ± 0.007 9.557 ± 0.388 5.408 ± 0.211

weight by correlation 0.922 ± 0.010 9.444 ± 0.593 5.354 ± 0.285

Correlations
Removed,

No Outliers

n/a 0.929 ± 0.005 9.012 ± 0.319 5.030 ± 0.121
weight by relief 0.924 ± 0.004 9.336 ± 0.242 5.296 ± 0.121
weight by PCA 0.922 ± 0.006 9.413 ± 0.379 5.332 ± 0.196

weight by correlation 0.921 ± 0.011 9.477 ± 0.659 5.334 ± 0.279

* The best model is marked in bold.

Hamidieh’s XGBoost model was developed on data with duplicates; it included all 81
attributes and was tuned using 374 trees with the maximum depth of trees equal to 16 [1].
Table 6 shows that our models (even for a dataset with duplicates) generally outperformed
the model by Hamidieh [1]. Specifically, our best model had lower RMSE and AE by
6.03% and 9.12%, respectively (Table 6, in bold). We suggest that there is still room for
improvement, as optimization XGBoost models were built using a relatively small number
of trees and the predictive quality could potentially be improved.

The optimal tuning parameters for XGBoost models were as follows: 20 attributes
mapped to 50 trees of 16 maximal. We observed that, for optimized models, the quality
has improved when highly correlated attributes have been preliminarily removed. The
situation was the opposite in non-optimized models (Tables 1–4). Next, the decrease
of quality was insignificant when we switched from the full set of attributes to top-20
attributes. Hence, we can conclude that the reduced number of attributes is still capable to
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preserve and represent hidden patterns in data. Removal of outliers has slightly increased
the quality of models.

For the data with no duplicates, the best optimized model was developed using all
attributes with removed outliers (Table 6, in bold). Among the models with a reduced
number of attributes, the best results were obtained with weight by relief for data with
removed correlations, absence of outliers, weight by relief. It is clear from the observed-
predicted plot (Figure 4) that there is still room for improvement, as some values were
not predicted adequately (see dots located far from the ideal fit line in red). However,
this model could still serve for a preliminary selection of superconducting materials.
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2.4. Interpretation of Optimized Model and Potential Real-World Applications

The list of top-20 attributes and their importance are presented in Table 7. In order
to generalize the interpretation, selected attributes were combined into groups (Figure 5).
We found that the most influential attributes were related to thermal conductivity. This ob-
servation is in agreement with the observation by the author of the original dataset [1].
This is quite an expected outcome, as both superconductivity and thermal conductivity are
driven by lattice phonons and electrons transitions [3]. The contribution of the first ioniza-
tion energy could be explained with the Bardeen–Cooper–Schrieffer theory of supercon-
ductivity [3,4]. At the same time, ionic properties (related to the first ionization energy, and
electron affinity) could likely reflect the capability of superconductors to form ions, that be-
came involved in the movement through the crystalline lattice [6]. This interpretation also
aligns well with Bardeen–Cooper–Schrieffer theory of superconductivity [3,4]. Attributes
related to atomic properties and density represent intensive properties; their properties do
not change when the amount of material in the system changes. Considering the nature
of these attributes, they do not directly represent a physical process in superconductors,
but rather reflect unique fingerprint-like features of chemical compounds [23].

Equipped with the knowledge about the physicochemical features that seem to be
responsible for the Tc (Figure 5), the researchers working in the area of superconducting
materials could prioritize materials with desired critical temperatures. This is especially
important for the development of hybrid ferromagnetic/superconductor materials for
spintronic applications [24,25].
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Table 7. Importance of attributes in the best XGBoost model.

Attribute 1 Relative Importance Scaled Importance

range_ThermalConductivity 47,722,904.0 1.000
wtd_gmean_ThermalConductivity 10,336,861.0 0.217

range_atomic_radius 3,051,781.3 0.064
range_atomic_mass 2,503,977.0 0.052

range_fie 2,469,144.3 0.052
wtd_range_fie 1,768,628.4 0.037

wtd_mean_atomic_mass 1,551,901.4 0.033
mean_Density 1,533,498.8 0.032

gmean_atomic_radius 1,522,213.5 0.032
wtd_range_atomic_radius 1,455,983.8 0.031

wtd_mean_Density 890,073.5 0.019
wtd_std_fie 832,274.6 0.017

wtd_mean_atomic_radius 832,100.6 0.017
mean_fie 792,180.4 0.017

range_Density 744,477.6 0.016
range_ElectronAffinity 720,590.1 0.015

gmean_ThermalConductivity 670,280.3 0.014
mean_atomic_mass 664,245.5 0.014

gmean_atomic_mass 412,535.3 0.009
wtd_gmean_Density 344,775.4 0.007

1 in names of attributes: wtd = weighted, gmean = geometric mean, std = standard deviation, fie =
first ionization energy.
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The Supplementary Materials section contains the RapidMiner archive (Model S4 file),
so that those readers interested in predicting TC of the compound could benefit from using
our models. It worth noting that our models are not without limitations: since the analyzed
dataset did not contain doped and other hybrid materials, the prediction of TC values might
not be accurate enough. However, we encourage our readers to challenge our models with
such predictions.

3. Materials and Methods
3.1. Dataset

The studied dataset was taken from the original research article by K. Hamidieh [1],
deposited in the University of California Irvine data repository [26]. The original data were
retrieved from the online database for superconducting materials called SuperCon, which
is a comprehensive compilation of hundreds of research reports [27]. The dataset contains



Molecules 2021, 26, 8 10 of 13

information on 82 physicochemical features (including critical temperature) for 21,263
superconductors [26]. All attributes are numeric and represent simplified physicochemical
properties, calculated based on the chemical formula, such as a number of unique elements
in a material, and sets of attributes that represent atomic mass, first ionization energy,
atomic radius, density, electron affinity, fusion heat, thermal conductivity, and valence.
In this dataset, the values of the first ionization energy were retrieved from http://www.
ptable.com. The remaining attributes were generated with function ElementData in from
Mathematica Version 11.1 by Wolfram and Research [28]. For more details on calculated
attributes please refer to the original article [1]. A basic overview of the initial dataset is
presented in Supplementary Materials (Table S1).

3.2. Duplicates Removal

The duplicates were first isolated from the dataset. For each material that contained a
series of duplicate values of TC, we have analyzed the distribution of TC measurements and
removed data points with a standard deviation >5 K (for high-temperature superconductors
with TC > 10) or >2 K (for low-temperature superconductors with TC < 10). For the
remaining measurements, we have calculated the mean and then used that as a new TC
value. The procedure of duplicates removal was performed with the use of Python 3.5 [29].

3.3. Attribute Selection

Data were prepared for modeling using various attribute selection techniques. First,
we have identified intercorrelations between attributes. We suggested that the removal
of highly correlated attributes could help reducing redundancy. Once the desired level
of intercorrelations (measured by the Pearson correlation coefficient) was set to <0.95,
the number of attributes decreased from 81 to 60.

To further reduce the number of attributes for the modeling, we have pre-selected
attributes using weighting by relief, by PCA, and by correlation. All preselection techniques
were set to select the top-20 attributes to deliver a predictive model. Filtering by correlation
is one of the most popular techniques [16]. Weighting by relief was selected, as this
technique is both one of the most easily interpretable and successful algorithms to assess
the quality of feature selection. Finally, PCA was selected as the author of the initial
version of the dataset tried to apply this technique to reduce the number of attributes [1].
However, the author of the original article has abandoned this approach, explaining that
the application of PCA was not beneficial.

We also attempted to reduce the number of attributes by introducing new aggregated
attributes that represent a certain category of physical properties (e.g., atomic mass-related
aggregation, thermal conductivity-related aggregation, etc.). As values of attributes are
in different scales, we first normalized the dataset and then applied an average function
to create aggregated attributes. The performance of models was tested using both initial
attributes, aggregated attributes, and their mix.

Finally, we have analyzed if the dataset contained any outliers using the local outlier
factor approach with a cut-off set at 3. These outliers were potentially a subject of removal.

3.4. QSPR Modeling

To develop the best QSPR model, we followed recommendations by OECD, consid-
ering the following five criteria: (i) a defined endpoint; (ii) an unambiguous algorithm;
(iii) a defined domain of applicability; (iv) appropriate measures of goodness-of-fit, robust-
ness, and predictive ability and (v) a mechanistic interpretation [22].

Similarly to the author of the initial dataset [1], we applied MLR and gradient-boosted
decision trees (XGBoost) to develop predictive models. MLR expresses the dependency
between attributes and target activity/property in a form of a simple mathematical func-
tion [30]. XGBoost delivers a model in a forming consensus of predictive decision trees
ranked by the loss function [31].

http://www.ptable.com
http://www.ptable.com
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In addition to the mentioned algorithms, we evaluated the performance of two other
techniques: random forest (RF) and neural networks (NN). RF generates a collection of
decision trees in the same way as XGBoost, however, the RF algorithm does not discriminate
between trees, so all the trees contribute equally [32]. Finally, NN transforms input data
into the hidden layers using different fitting techniques [30].

All models were validated using a 10-fold cross-validation technique: the dataset
was split iteratively (10 times) into training and test subsets in a 9:1 ratio and the average
performance of 10 resultant models was reported. Results were evaluated using squared
correlation (R2), root mean squared error (RMSE), and absolute error (AE):

R2 = 1 − ∑N
i=1(ŷi − yi)

2

∑N
i=1(yi − ỹi)

2 (1)

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(2)

AE = (ŷi − yi)
2 (3)

where N is the size of the test set, and ŷi, yi, and ỹi are the correspondingly predicted,
observed, and mean superconducting temperatures.

Relative importance for each variable in the best model was calculated as the average
of the selected feature importance. All models were developed using RapidMiner 9.3 [33].

4. Conclusions

In this paper, we analyzed a recently published dataset and related predictive models
for the critical temperatures of inorganic superconductors. We have found that the initial
dataset contained duplicates because the dataset contained a compilation of Tc measure-
ments reported by different research teams and the data were not thoroughly cleaned and
annotated. We suggested that collected data shall not be used in a present form along with
the reported model because of the mentioned quality issues. We have profiled and cleaned
the dataset and compared the efficiency of different attribute selection techniques.

Developed models allowed us to effectively predict specific critical temperatures of
superconducting materials. We suggest that the models could be used to guide a data-
informed search for new superconductors with a tailored value of the superconductivity
temperature.

We demonstrated that the predictive quality of our models surpassed the quality of
models by the author of the initial dataset. Specifically, our best model had a lower root-
mean-square error and an absolute error (by 6.03% and 9.12%, respectively). We primarily
focused on the optimization of XGBoost models, however, even without fine-tuning, we
observed that random forest and neural networks are also promising approaches for this
data set. In our future endeavors, we plan to develop a set of superconductivity models
using these techniques.

Supplementary Materials: The following are available online, Table S1: Description of the initial
data set, Table S2: Description of the cleaned data set, Figure S2: Cumulative variance of added
variables in PCA modeling, Model S4: RapidMiner archive.
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formal analysis, N.S.; data curation, N.S.; writing—original draft preparation, N.S. and M.H.; writing,
revision, and editing, N.S. and M.H.; visualization, N.S.; project administration, M.H. All authors
have read and agreed to the published version of the manuscript.
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Abbreviations

AE absolute error
MLR multiple linear regression
NN neural network
PCA principal component analysis
RF random forests
PLS projections to latent structures
RMSE root mean squared error
XGBoost gradient boosted decision trees
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