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Abstract: The formation of amide bonds represents one of the most fundamental processes in
organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an
increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated
twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich
Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available
cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene),
promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-
nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional
amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated
methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization
of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming
protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions.

Keywords: transamidation; twisted amides; NHCs; N-heterocyclic carbenes; nickel; Buchwald–
Hartwig; amidation; cyclopentadienyl; nickel–NHCs; amide bonds; N–C activation; [CpNi(NHC)X]

1. Introduction

The amide bond represents one of the most fundamental and important functional
groups in organic synthesis [1–3]. It is estimated that amide bonds are the common
structural motif in more than 75% of new pharmaceuticals, while new methods for the
formation of amide bonds have been intensively investigated [4,5]. In this context, transami-
dation reactions represent a highly attractive, unconventional method for the synthesis
of amide bonds by transforming a more reactive amide bond into a new, more thermo-
dynamically stable amide counterpart [6–10]. In recent years, the selective activation of
C(acyl)–N amide bonds has been achieved by the controlled metal insertion into the reso-
nance activated bonds in twisted amides (i.e., non-planar amides) [11–13]. This general
approach circumvents the low reactivity of amides resulting from nN→π*

C=O conjugation
(resonance of 15–20 kcal/mol in planar amides), while providing a powerful platform
for organic synthesis [14,15]. Transamidation reactions of twisted amide N–C(O) bonds
have been achieved using well-defined Pd(II)–NHC catalysts as well as by using air-
sensitive Ni(cod)2 in combination with NHC ligands [16–21]. These reactions provide
a variety of novel methods for the synthesis of ubiquitous amide bonds and have been
extended to catalytic amidation reactions of activated phenolic and unactivated methyl
esters by O–C(O) cleavage [22–25]. In continuation of our studies on activation of amide
bonds and organometallic catalysis, in this Special Issue of Editorial Board members of the
Organometallic Section of Molecules, we report transamidation of N-activated amides by
selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC
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(NHC = N-heterocyclic carbenes) complexes [26–33]. Most importantly, we demonstrate
that readily available cyclopentadienyl complex extensively developed by Chetcuti, namely
[CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) [34–43], promotes
highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-
nucleophilic anilines (Figure 1). The reaction provides access to secondary anilides via the
non-conventional amide bond-forming pathway. Furthermore, the amidation of activated
phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study
sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC
complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and
C(acyl)–O bond cleavage reactions.
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Figure 1. Transamidation of N-activated amides by selective N–C(O) cleavage.

2. Results

Although we have identified well-defined Pd(II)–NHC complexes for transamida-
tion reactions of activated amides and esters [18–21], we have been investigating air-
and moisture-stable Ni(II)–NHCs based on naturally more abundant Ni as 3d transi-
tion metal [26–28]. We were attracted to the well-defined, air- and moisture-stable, half-
sandwich, cyclopentadienyl [CpNi(IPr)Cl] complex (Figure 2) owing to its ready availability,
ease of handling and the potential to prepare more reactive cyclopentadienyl Ni(II)–NHC
analogues [29–33]. Notably, [CpNi(IPr)Cl] has emerged as a highly attractive catalyst for
several classes of cross-coupling reactions [29–33]; however, transamidations and amida-
tion reactions using this well-defined catalyst have been elusive.
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Figure 2. Structure of the air- and moisture-stable, well-defined, half-sandwich, cyclopentadienyl
[CpNi(IPr)Cl] complex.

We initiated our studies by evaluating the reaction conditions for the [CpNi(IPr)Cl]-
catalyzed transamidation of N-Boc activated amide 1a with 4-methoxyaniline 2a (Table
1). Of note, twisted N-Boc amides are readily prepared from the corresponding sec-
ondary amides by N-chemoselective tert-butoxycarbonylation. The N-carbamate activation
permits for decreasing amidic resonance (RE, resonance energy, 7.2 kcal/mol), while
providing a thermodynamic pathway for transamidation by rendering the leaving group
non-nucleophilic [14,15]. After optimization, we have identified conditions for the transami-
dation in quantitative yield using [CpNi(IPr)Cl] (10 mol%) as a catalyst in the presence
of K2CO3 as a base in toluene at 140 ◦C (Table 1, entry 1). We found that K3PO4 is also
an effective base under these conditions (Table 1, entry 2). Furthermore, decreasing the
catalyst loading to [CpNi(IPr)Cl] (5 mol%) resulted in lower conversions (Table 1, entries
3–4). Importantly, control reactions in the absence of the [CpNi(IPr)Cl] catalyst resulted
in the recovery of the starting material, thus demonstrating that the catalyst is required
for the reaction (Table 1, entries 5–6). Several other optimization conditions are worth
noting (not shown): (1) lowering the reaction temperature resulted in significantly lower
conversion (110 ◦C, 26%); (2) reactions at low catalyst loading resulted in low conversion
(1 mol%, 13%).

Table 1. Optimization of the transamidation of amide 1a using [CpNi(IPr)Cl].1
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Entry Catalyst [Ni] (mol%) Base Solvent Yield (%) 2

1 [CpNi(IPr)Cl] 10 K2CO3 toluene >98
2 [CpNi(IPr)Cl] 10 K3PO4 toluene >98
3 [CpNi(IPr)Cl] 5 K2CO3 toluene 74
4 [CpNi(IPr)Cl] 5 K3PO4 toluene 52
5 [CpNi(IPr)Cl] - K2CO3 toluene <10
6 [CpNi(IPr)Cl] - K3PO4 toluene <10

1 Conditions: amide (1.0 equiv), 4-MeO-C6H4-NH2 (2.0 equiv), base (3.0 equiv), [Ni] (0–10 mol%),
toluene (0.25 M), 140 ◦C, 18 h. 2 Determined by 1H-NMR.

With the optimized conditions in hand, the scope of the transamidation reaction cat-
alyzed by the well-defined [CpNi(IPr)Cl] complex was examined with respect to the aniline
component (Table 2). As shown, the reaction performed well using electron-donating (3a),
para-substituted (3b), ortho-sterically hindered (3c), meta-substituted (3d), and electron-
withdrawing (3e–f) anilines. It is worthwhile to note that the reaction efficiency decreased
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using electron-deficient nucleophiles. Furthermore, di-ortho-substituted anilines were
unproductive substrates in the reaction, indicating excessive steric hindrance.

Table 2. Scope of anilines in the transamidation of amide 1a using [CpNi(IPr)Cl].1
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6 C6H5 4-CF3-C6H4 3f 43

1 Conditions: amide (1.0 equiv), Ar-NH2 (2.0 equiv), K2CO3 (3.0 equiv), [CpNi(IPr)Cl] (10 mol%),
toluene (0.25 M), 140 ◦C, 18 h. 2 Determined by 1H-NMR.

Next, the scope of the reaction with respect to the amide group was evaluated (Table 3).
As shown, primary and secondary alkyl amides (3g–h), electron-rich (3i–j) as well as
electron-deficient (3k) aromatic amides underwent efficient transamidation under Ni–
NHC catalysis. Furthermore, cinnamyl amide was found to be a suitable reaction partner
for the transamidation (3l). Similar to the scope of anilines, steric hindrance on the amide
component was not tolerated.

Table 3. Scope of amides in transamidation with aniline 2a using [CpNi(IPr)Cl].1
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1 Conditions: amide (1.0 equiv), Ar-NH2 (2.0 equiv), K2CO3 (3.0 equiv), [CpNi(IPr)Cl] (10 mol%),
toluene (0.25 M), 140 ◦C, 18 h. 2 Determined by 1H-NMR.

In consideration of the promising reactivity of twisted N-Boc amides using well-
defined cyclopentadienyl half-sandwich [CpNi(IPr)Cl], we further explored amidation
reactions of activated phenolic esters and unactivated methyl esters (Schemes 1 and 2).
We were pleased to find that the amidation of phenyl benzoate proceeded in quantitative
yield using K3PO4 as a base under otherwise the same reaction conditions as those used
for the transamidation of amides (Scheme 1). Importantly, control reactions in the absence
of the catalyst unambiguously verified that [CpNi(IPr)Cl] is required for the reaction.
Interestingly, we also found that amidation of unactivated methyl benzoate proceeded
in 67% yield, while a substantial enhancement of reactivity (94% yield) was observed by
increasing the reaction temperature to 160 ◦C (Scheme 2). As expected, no reaction was
observed in the absence of [CpNi(IPr)Cl] (<2%, not detected).
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To gain preliminary insight into the reaction profile, kinetic studies were performed
(Figure 3). As shown, the reaction reached 60% conversion after 3 h, while 77% conversion
was observed after 6 h. The induction period was not observed in the kinetic profiling
studies. We tentatively propose that the mechanism involves oxidative addition of the N–C
bond to nickel. Other nickel sources, such as NiCp2 or NiCl2, catalyze the reaction albeit
in lower yields. Studies on the mechanism and the expansion of the substrate scope are
ongoing and will be reported in due course.
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3. Materials and Methods

General Information. General methods have been published [18].
General Procedure for [CpNi(IPr)Cl] Catalyzed Transamidation. In a typical procedure,

an oven-dried vial was charged with a N-Boc amide or ester substrate (neat, 1.0 equiv),
aniline (2.0 equiv), K2CO3 (3.0 equiv), [CpNi(IPr)Cl] (10 mol%), placed under a positive
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pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum.
Toluene (0.25 M) was added at room temperature, the reaction was placed in a preheated
oil bath at 140 ◦C, and stirred at 140 ◦C. After the indicated time, the reaction was cooled
down, diluted with CH2Cl2 (10 mL), filtered, and concentrated. The sample was analyzed
by 1H-NMR (CDCl3, 500 MHz) and GC-MS to obtain conversion, selectivity and yield
using internal standard and comparison with authentic samples. All yields have been
determined by 1H-NMR spectroscopy (CDCl3, 500 MHz).

Representative Isolation Procedure for [CpNi(IPr)Cl] Catalyzed Transamidation. An
oven-dried vial was charged with tert-butyl benzoyl(phenyl)carbamate (neat, 29.7 mg,
1.0 equiv), 4-methoxyaniline (24.6 mg, 2.0 equiv), K2CO3 (41.6 mg, 3.0 equiv), [CpNi(IPr)Cl]
(10 mol%, 5.6 mg), placed under a positive pressure of argon, and subjected to three
evacuation/backfilling cycles under high vacuum. Toluene (0.25 M) was added at room
temperature, the reaction mixture was placed in a preheated oil bath at 140 ◦C, and
stirred for 18 h at 140 ◦C. After the indicated time, the reaction was cooled down, diluted
with CH2Cl2 (10 mL), filtered, and concentrated. A sample was analyzed by 1H-NMR
(CDCl3, 500 MHz) and GC-MS to obtain conversion, yield and selectivity using internal
standard and comparison with authentic samples. Purification by chromatography on
silica gel (hexanes/ethyl acetate) afforded the title product. Yield 88% (20.1 mg). N-(4-
Methoxyphenyl)benzamide. White solid. 1H-NMR (500 MHz, CDCl3) δ 7.86 (d, J = 7.5 Hz,
2 H), 7.76 (s, 1 H), 7.59–7.51 (m, 3 H), 7.47 (t, J = 7.4 Hz, 2 H), 6.91 (d, J = 8.9 Hz, 2 H), 3.81
(s, 3 H). 13C NMR (125 MHz, CDCl3) δ 157.00, 135.40, 132.04, 131.35, 129.10, 127.31, 122.43,
114.61, 55.86. [CpNi(IPr)Cl] has been prepared by the previously reported procedure [1].

4. Conclusions

In summary, we have reported on the transamidation reactions of N-activated amides
by selective N–C(O) cleavage mediated by the well-defined, air- and moisture-stable half-
sandwich [CpNi(IPr)Cl] complex. This class of Ni(II)–NHC cyclopentadienyl complexes
has gained significant attention in organometallic catalysis owing to the beneficial proper-
ties of this class of catalysts; however, transamidation reactions of amides and amidation
reactions of esters mediated by these complexes have been elusive. The present study
demonstrates that highly selective transamidation of the N–C(O) bond in twisted N-Boc
amides as well as activated phenolic and unactivated methyl esters with non-nucleophilic
anilines under [CpNi(IPr)Cl] catalysis is feasible, thus providing an unconventional and
unified method for the synthesis of secondary anilides by C(acyl)–N and C(acyl)–O bond
cleavage reactions. It should be mentioned that the twisted amide starting materials are pre-
pared from 2◦ amides by N-chemoselective tert-butoxycarbonylation [14], which provides a
two-step transamidation method that could potentially be applied in late-stage derivatiza-
tion of pharmaceuticals and natural products. The unique versatility of [CpNi(IPr)Cl] sets
the stage for the broad application of Ni(II)–NHC cyclopentadienyl complexes in amide
bond-forming reactions by N–C(O)/O–C(O) cleavage. Future studies will focus on the
development of new classes of [CpNi(NHC)X] complexes for selective transformations of
amide and ester bonds by N–C(O)/O–C(O) activation.
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