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Abstract: The purpose of the study was to determine the chemical composition and antibacterial
activity of Lippia multiflora Moldenke essential oils (EOs) collected in different regions of Angola.
Antibacterial activity was evaluated using the agar wells technique and vapour phase test. Analysis
of the oils by GC/MS identified thirty-five components representing 67.5 to 100% of the total
oils. Monoterpene hydrocarbons were the most prevalent compounds, followed by oxygenated
monoterpenes. The content of the compounds varied according to the samples. The main components
were Limonene, Piperitenone, Neral, Citral, Elemol, p-cymene, Transtagetone, and Artemisia ketone.
Only one of the eleven samples contained Verbenone as the majority compound. In the vapour phase
test, a single oil was the most effective against all the pathogens studied. The principal component
analysis (PCA) and hierarchical cluster analysis (HCA) of components of the selected EOs and
inhibition zone diameter values of agar wells technique allowed us to identify a variability between
the plants from the two provinces, but also intraspecific variability between sub-groups within a
population. Each group of essential oils constituted a chemotype responsible for their bacterial
inhibition capacity. The results presented here suggest that Angolan Lippia multiflora Moldenke has
antibacterial properties and could be a potential source of antimicrobial agents for the pharmaceutical
and food industry.

Keywords: Lippia multiflora Moldenke; Angola; GC/MS; antibacterial activity; vapour phase test;
agar wells technique; PCA; HCA; heat-map

1. Introduction

Lippia, dedicated to Augustine Lippi (1678–1701) [1], is a genus of typical flowering
plants belonging to the family Verbenaceae [2,3]. The group includes about 200 species
of grasses, shrubs and small trees [4], mainly distributed in South and Central American
countries and tropical African territories [3,5]. In the Americas, Lippia species are found in
the arid southwestern United States, in the deciduous rainforests of Central America and
the rock and cerrado fields of Brazil, regions with a high index of endemism, extending as
far as Uruguay and Central Argentina [6–8].

Besides, they are present in subtropical Africa, from East Africa to South Africa [3,9].
Some also coincide with centres of high endemism, in the eastern region, associated with the
highest mountains and alpine peaks [8]. The genus Lippia is of great economic importance
due to the different uses of these essential oils, as it includes several aromatic medicinal
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species [10–15]. Among those species, there is Lippia multiflora Moldenke, otherwise known
as Lippia adoensis Hochst. It is a herbaceous plant that grows in wooded savannahs where
it colonises the bush and roadsides [16,17]. The plant is widespread in West and Sub-
Saharan Africa, but also South and Central America [5,18,19]. The species is a hardy,
woody, the perennial and aromatic shrub that can reach a height of 4.0 m. It has large,
oblong, lanceolate bluish-green leaves and whitish flowers on conical heads in a terminal
panicle [20].

Known as bush tea, a healing herb, Bunsurun fadama or “godon kada” (Hausa),
L. multiflora Mold. is used in the composition of some traditional improved African
medicines, Malarial® in Mali and Tetra® in Congo, and is used to treat various dis-
eases [21–23]. It has hypotensive and diuretic properties and relieves fatigue [24]. In folk
medicine, it has widely used in the treatment of liver failure, jaundice, stomach aches, lung
infections, fever, and buccal candidiasis [5,23,25–27]. In Côte d’Ivoire, L. multiflora Mold. is
commonly used as a substitute for a drink, tea, and as a condiment [5,28]. L. multiflora Mold.
essential oils show an intraspecific variation in its composition [18,29,30]. The species con-
tains a wide range of chemotypes with different bioactivities and organoleptic profiles.
Several studies have demonstrated its sedative, anticonvulsive, anti-infectious, antipara-
sitic, and antitussive properties [31–36]. It has analgesic, antipyretic and anti-inflammatory
proprieties [30,37,38]. According to several studies, L. multiflora Mold. plant extracts have
also shown well-established biological effects. The aqueous extract of L. multiflora Mold has
vasodilating, hypotensive and cardio-moderating effects [31,39–41]. It provides significant
protection against ethanol-induced toxicity in rat livers [42]. Furthermore, other types
of extracts and their phytochemicals showed antioxidant, antimicrobial, antiplasmodial,
and anti-inflammatory activities [43,44].

Essential oils could play a very important role in bacterial infection control programs
in the future. They could offer tremendous opportunities for health sectors to develop
plant-based compounds against microorganisms and other related problems. There are
several reports on essential oils from Lippia multiflora Moldenke of multiple origins. Still, to
our knowledge, no studies have been conducted on the extraction of essential oils from
the Angolan species. The purpose of the present study was to investigate the chemical
composition and potential antibacterial activity of L. multiflora Mold. essential oils from
different regions in Angola. Moreover, the correlation between essential oils components
and their antibacterial ability were also evaluated.

2. Materials and Methods
2.1. Region of Study

Angola is the largest country in Southern Africa (1,246,700 km2) [45]. It is bordered
to the west by the Atlantic Ocean and the east by Zambia (Figure 1). It shares its borders
with Congo in the north and the Democratic Republic of Congo (DRC) in the south with
Namibia [46]. The country has more than 32 million population and is divided into eighteen
provinces with a wide range of ecosystems and habitats [47]. Indeed, Angola lies between
and within two major terrestrial biogeographic regions: the moist forests and savannas
of the Congolian region; and the woodlands, savannas, and floodplains of the Zambian
territories [48]. Our study was conducted in [49].

The municipality of M’banza Kongo (6◦16′00′′ S 14◦14′00′′ E) and Tomboco (6◦48′

33.318′′ S 13◦17′56.904′′ E), located in the province of Zaire, in the north of Angola. The mu-
nicipality of Cazengo (9◦18′ S 14◦54′′ E) of the province Cuanza Norte located in the
north-central region of the country (Figure 1).

2.2. Plant collection

The aerial part of Lippia multiflora Moldenke (Figure 2) was collected from January
2017 to September 2018 during the three different stages of the plant: L4/L5/L7/L8a/L9a
have been sampled before flowering, L1/L2/L8b/L9b during flowering, and L3/L6 after
flowering (Table 1). The plants were dried at room temperature in a place protected from
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direct sunlight and stored in bags. A reference specimen was deposited in the laboratory of
Fibber Materials and Environmental Technologies (FibEnTech), University of Beira Interior,
Covilhã, Portugal.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 31 
 

2. Materials and Methods 

2.1. Region of Study 

Angola is the largest country in Southern Africa (1,246,700 km2) 

[45]. It is bordered to the west by the Atlantic Ocean and the east by 

Zambia (Figure 1). It shares its borders with Congo in the north and the 

Democratic Republic of Congo (DRC) in the south with Namibia [46]. 

The country has more than 32 million population and is divided into 

eighteen provinces with a wide range of ecosystems and habitats [47]. 

Indeed, Angola lies between and within two major terrestrial biogeo-

graphic regions: the moist forests and savannas of the Congolian re-

gion; and the woodlands, savannas, and floodplains of the Zambian 

territories [48]. Our study was conducted in [49]. 

The municipality of M’banza Kongo (6°16′00″ S 14°14′00″ E) and 

Tomboco (6°48′ 33.318″ S 13°17′56.904″ E), located in the province of 

Zaire, in the north of Angola. The municipality of Cazengo (9°18′ S 

14°54″ E) of the province Cuanza Norte located in the north-central re-

gion of the country (Figure 1). 

 

Figure 1. The topography of Angola, indicating provincial boundaries and regions of study [49]. 

2.2. Plant collection 

The aerial part of Lippia multiflora Moldenke (Figure 2) was col-

lected from January 2017 to September 2018 during the three different 

stages of the plant: L4/L5/L7/L8a/L9a have been sampled before flow-

ering, L1/L2/L8b/L9b during flowering, and L3/L6 after flowering (Ta-

ble 1). The plants were dried at room temperature in a place protected 

from direct sunlight and stored in bags. A reference specimen was de-

posited in the laboratory of Fibber Materials and Environmental Tech-

nologies (FibEnTech), University of Beira Interior, Covilhã, Portugal. 

Figure 1. The topography of Angola, indicating provincial boundaries and regions of study [49].
Molecules 2021, 26, x FOR PEER REVIEW 4 of 31 
 

 

Figure 2. Angolan Lippia multiflora Moldenke. 

Table 1. Harvesting areas of the different parts of the plant Lippia multiflora 

Moldenke. 

Sample Part of Plant Harvesting Time Province Municipalities 

L1 Leaves F 
Cuanza Norte Cazengo 

L2 Leaves F 

L3 Leaves AF 

Zaire 

M’banza Kongo L4 Leaves BF 

L5 Leaves BF 

L6 Leaves AF 

Tomboco 
L7 Leaves BF 

L8a/b Leaves/flowers BF/F 

L9a/b Leaves/flowers BF/F 

BF = before flowering period; F = during the flowering period; AF = after flow-

ering period. 

2.3. Extraction of Essential Oil 

Lippia multiflora Moldenke essential oil was extracted using hydro-

distillation method with Clevenger apparatus following European 

Pharmacopoeia [50]. After two hours of extractions, EO collected from 

each plant was then dehydrated with Na2SO4 and stored at 4 °C until 

further analysis. The yield of the essential oil was calculated in % (v/w), 

based on dry plant weight. 

2.4. G.C.–M.S. Analysis 

The GC/MS analyses were performed with Agilent technology 

7890A apparatus equipped with column J&W DB5-ms (30 m × 0.25 mm 

i.d, film thickness 0.25 m) associated with an MS A 5975C inert XLMSD 

Figure 2. Angolan Lippia multiflora Moldenke.



Molecules 2021, 26, 155 4 of 28

Table 1. Harvesting areas of the different parts of the plant Lippia multiflora Moldenke.

Sample Part of Plant Harvesting
Time Province Municipalities

L1 Leaves F
Cuanza Norte Cazengo

L2 Leaves F

L3 Leaves AF

Zaire

M’banza KongoL4 Leaves BF

L5 Leaves BF

L6 Leaves AF

Tomboco
L7 Leaves BF

L8a/b Leaves/flowers BF/F

L9a/b Leaves/flowers BF/F
BF = before flowering period; F = during the flowering period; AF = after flowering period.

2.3. Extraction of Essential Oil

Lippia multiflora Moldenke essential oil was extracted using hydrodistillation method
with Clevenger apparatus following European Pharmacopoeia [50]. After two hours of
extractions, EO collected from each plant was then dehydrated with Na2SO4 and stored at
4 ◦C until further analysis. The yield of the essential oil was calculated in % (v/w), based
on dry plant weight.

2.4. G.C.–M.S. Analysis

The GC/MS analyses were performed with Agilent technology 7890A apparatus
equipped with column J&W DB5-ms (30 m× 0.25 mm i.d, film thickness 0.25 m) associated
with an MS A 5975C inert XLMSD mass spectrometer. Transfer-line temperature 250 ◦C,
ionization voltage 70 eV. The oven temperature was programmed isothermal at 60 ◦C for
5 min, then gradually increased to 250 ◦C at 10 ◦C/min, held isothermal at 250 ◦C for 15 min
and finally raised to 280 ◦C at 10 ◦C/min, injector temperature 250 ◦C, source temperature
230◦ C, interface temperature 280 ◦C, quadrupole temperature 180 ◦C, carrier gas He
(1.0 mL/min), automatic injection volume 1 µL, diluted samples (in dichloromethane)
spitless injector. The identification of the compounds was based on a comparison of their
retention indexes determined relative to the retention time of aliphatic hydrocarbons (C9–
C28) and the mass spectra with those of authentic compounds using NIST databases and
Wiley spectral libraries [51,52].

2.5. Preparation of the Microbial Strains

Bacterial strains of Staphylococcus aureus (ATCC 25923/Lot 902840), Escherichia coli
(ATCC 25922/Lot 931370) and Pseudomonas aeruginosa (ATCC 27853/Lot 931372) were
used in this research. The microorganisms were supplied from BR-Ambient and Food
Laboratory Lda., of the American Type Culture Collection (ATCC), distributed by Culti-
loops® (OXOID Ltd, Basingstoke, UK.) Organisms were maintained on Mueller-Hinton
agar (MH2-Ref. 43301; BioMérieux SA, Lyon, France). The microbial suspensions turbidity
was made based on 0.5 McFarland (~108 CFU/mL) [50].

2.6. Antimicrobial Vapour Phase Test

A rapid vapour phase test determined the antimicrobial activity of the different
essential oils according to the method of Lisin et al. (1999) [53]. This technique was
conducted using a suspension with a standard McFarland turbidity of 0.5. After filling
the Petri dishes with the MH2 culture medium, the bacterial suspension was inoculated
uniformly onto agar using a sterile swab and left to stand for 15 min. Then 70 µL of oil
was added to fill the lid. Petri dishes containing DMSO 5% or left untreated were used
as solvent and growth controls. The plates were inverted and incubated at an average
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temperature of 37 ◦C for 24 h. At the end of the incubation period, the effect of the oil
on bacterial growth was noted in terms of inhibition zone diameter (IZD) values (mm).
This process was carried out three times under sterile conditions.

2.7. Well Diffusion Agar

The evaluation of the antimicrobial activity was conducted by the method of agar
solid diffusion by perforation of the cylindrical cavities [54]. Briefly, the organisms were
further cultivated on nutrient broth at 37 ◦C for 24 h. The technique was conducted
using a suspension with a standard McFarland turbidity of 0.5. L1–L9 essential oils were
prepared in a suitable solvent dimethyl sulfoxide (DMSO 5%) and sterilised by a 0.22 µm
syringe filter. Wells, 4mm high and 5 mm in diameter, were dug into the MH2 plates
(55 mm). They were filled with 70 µL of the raw sample, 1:2 and 1:10 dilution of essential
oil. Negative control (DMSO 5%), and two positive controls Penicillin (0.05 mg/mL),
Gentamicin A (10 mg/mL) were also tested. The Petri dishes were incubated at 37 ◦C for
24 h. The antimicrobial effect was done in triplicate and determined in terms of IZD in mm.

2.8. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC)

To determine the MIC and MBC, the macro dilution technique in MHB broth (Muller-
Hinton Broth, Ref 724245-Oxoid Ltd, Basingstoke, UK) supplemented with 5% DMSO
was used. In one tube, 0.5 mL of inoculum (5 × 105 CFU/mL) prepared in MHB broth
(+5% DMSO) and 0.4 mL of MHB broth (+5% DMSO) were placed. Sequential dilutions of
EOs were prepared 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64 respectively in DMSO. Two bactericidal
antibiotics were used as positive controls, Penicillin G and Gentamicin A at concentrations
of 0.05 mg/mL and 10 mg/mL respectively. DMSO was used as a negative control.
After 18 h of incubation at 37 ◦C, 1 mL of resazurin was added. After 30 min, the tubes
were visually examined. The change in the colour corresponding to the transformation of
resazurin to resofurin reflects bacterial growth.

The MIC values for each EO corresponding to the highest dilution that does not
present any visible disorder to the naked eye were recorded. The MBC was determined by
quantitative subculturing. A volume of 0.1 mL of each test tube (including controls) was
spread on MH2. These plates were incubated at 37 ◦C. After incubation, colony-forming
units (CFU) were counted, and all tests were performed in triplicate. The MBC is defined
as the lowest concentration of EO that kills the bacteria tested at 99.9 to 100%.

2.9. Statistical Analysis

For GC-MS analysis, the oil components were subjected to hierarchical cluster analysis
(HCA) and principal component analysis (PCA). In the case of HCA, the dendrogram (tree)
was produced using Ward’s method of hierarchical clustering with squared Euclidean
distance between oil samples (with 95% confidence). The cluster analysis (CD) was carried
out using the Euclidean distance and the Unweighted Pair Group Method with Arithmetic
Mean cluster algorithm. The determination of the effect of Lippia multiflora Moldenke on the
growth of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was conducted
in three replications. One-way analysis of variance (ANOVA) followed by Tukey’s multiple
comparisons test was used to determine significant differences between the means of the
inhibition zone diameter. Significance for all tests was determined at a p-value of ≤0.05.
HCA, CD and PCA also studied the correlation between the essential oil chemotypes and
antibacterial activity. All statistical analyses were performed using IBM SPSS Statistics
for Windows (Version 24, IBM Corp. Armonk, NY, USA), NCSS Statistical Software (2020,
Kaysville Utah, USA) and GraphPad Prism (Version 6, San Diego, CA, USA).
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3. Results and Discussions
3.1. Yield and G.C.–M.S. Analysis

As shown in Table 2, the most considerable quantity of essential oils extracted, cal-
culated based on the dry weight of the plant (v/w), was recorded in L8b (5.20%, v/w),
followed by L9b (3.80%, v/w), L6 (1.70%, v/w) and L7 (1.30%, v/w). It is important to note
that the yield values increase at the flowering stage more than before and after flowering.
As reported by several authors, the EOs concentration in inflorescences is dependent on
the variety and environmental conditions [55–57].

Table 2. Yields of essential oils of Lippia multiflora Moldenke sampled.

Sample Part of Plant Yield (%) v/w Sample Part of Plant Yield (%) v/w

L1 Leaves 0.80 L6 Leaves 1.70

L2 Leaves 0.90 L7 Leaves 1.30

L3 Leaves 1.00 L8a/b Leaves/flowers 1.20/5.20

L4 Leaves 0.40 L9a/b Leaves/flowers 1.10/3.80

L5 Leaves 1.00

In the present study, thirty-five compounds were identified with G.C.–M.S. analyses
(Table 3). A percentage of 67.50 to 100% of the total EOs composition of the flowers/leaves
of L. multiflora M were identified. It can be observed that the content (% of essential oil) of
the determined compounds varies between EOs of the plants collected in the two provinces.

According to Table 4 and Figure 3, the main compound classes represented in all EOs
were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons,
and oxygenated sesquiterpenes. Monoterpene hydrocarbons are the most common com-
pounds in EOs, with a proportion ranging from 19.60% to 93.82%. L8b, L8a, L7, L4, L5 and
L9b respectively are the samples that contain the most of them. Next, the monoterpenes
oxygenated compounds which are present from 0.00% to 52.90% in EOs. The highest
detected concentrations of these compounds are in L1/L2. They are followed by sesquiter-
penes hydrocarbons present in proportions ranging from 0 to 17.60%. L1/L2 are the most
concentrated in these compounds. Finally, oxygenated sesquiterpenes are the least present
in the different oils. L2 and L9a are the samples that contain the most (7.90% and 5.80%
respectively).
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Table 3. Chemical composition (content %) of eleven L. multiflora Mold. EOs.

RRI 1 Compounds L1 L2 L3 L4 L5 L6 L7 L8a L8b L9a L9b

939 α-pinene 0.00 0.00 Tr Tr Tr Tr Tr 0.18 0.22 0.37 Tr

991 Myrcene 0.00 0.00 2.40 3.40 2.10 3.00 6.80 1.40 4.30 3.90 4.90

1026 p-cymene 10.40 1.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 1.20

1031 Limonene 32.80 13.30 11.20 37.20 40.60 22.60 39.60 40.70 33.30 18.70 26.00

1062 Artemisia ketone 0.00 0.00 0.00 0.00 0.00 20.30 0.00 0.00 0.00 28.30 0.00

1062 γ-terpinene 0.00 4.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 1.45

1083 Ipsenone 0.00 0.00 2.70 19.40 7.60 4.50 7.30 1.60 3.80 6.50 4.70

1093 Linalool 0.00 Tr 0.00 0.00 0.00 0.00 0.70 0.60 0.40 0.60 Tr

1122 p-mentha-trans-2,8-dien-1-ol 0.00 0.00 0.00 0.00 1.80 0.80 0.70 4.30 7.10 0.40 Tr

1146 (E)-tagetone (trans-tagetone) 0.00 0.00 0.90 12.34 10.53 7.89 6.56 1.70 8.50 2.20 0.70

1150 Vervenol 0.00 0.00 0.00 0.00 0.00 0.00 1.90 0.00 0.00 0.00 0.00

1189 α-terpineol 0.00 0.00 Tr 0.00 0.00 Tr 0.00 0.00 Tr 0.60 0.00

1204 Verbenone 0.00 0.00 55.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1217 Trans–carveol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 1.10 0.40 Tr

1228 Neral 25.30 24.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1240 Citral 21.70 28.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1242 Carvone 0.00 0.00 0.00 0.00 0.00 0.00 Tr 0.90 0.40 0.00 0.00

1255 Geraniol 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1277 Trans-carvyl acetate 0.00 0.00 Tr 0.00 0.69 0.00 0.60 1.00 0.00 0.00 0.00

1290 Thymol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.30 1.40

1299 Carvacrol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.50 0.00

1342 Piperitenone 0.00 0.00 Tr 14.00 28.00 16.40 28.70 34.80 34.30 11.60 15.50

1355 Thymol Acetate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 2.00

1418 β-caryophyllene 0.00 0.50 2.40 1.50 2.70 0.00 2.30 2.70 2.10 2.30 1.20

1453 α-humulene 0.00 0.00 Tr 0.90 1.50 1.30 1.40 0.00 1.20 0.00 0.20

1458 β-farnesene 0.00 0.00 Tr 0.00 0.00 1.30 0.00 1.90 0.00 3.00 Tr
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Table 3. Cont.

RRI 1 Compounds L1 L2 L3 L4 L5 L6 L7 L8a L8b L9a L9b

1480 Germacrene D 0.00 6.90 Tr Tr Tr 0.60 0.00 0.00 Tr 0.50 Tr

1495 Zingiberene 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1530 Hedycaryol 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1547 Elemol 5.70 14.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1581 Caryophyllene oxide Tr 0.00 Tr 0.50 0.60 0.40 0.90 2.30 0.50 1.40 Tr

1595 Guaiol 0.00 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1606 Humulene oxide 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 Tr 0.00

1636 δ-cadinol 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1832 Isopiperitenone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.14 0.00 0.00 0.00

1321.9 Carveyl acetate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 0.00 0.00

% total compounds identified 95.90 98.00 75.50 89.24 96.12 79.09 97.46 97.62 98.42 96.04 59.25

% total compounds unidentified Tr 1.60 5.70 1.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00

Mixture Tr 0.00 0.00 0.00 0.00 0.65 0.00 2.42 0.00 1.40 Tr
1 RRI: Relative retention index [18,58]. Tr: Compounds present in traces; whose percentage is less than 0.10%. Mixture: it is a set of two or more compounds whose peaks cannot be separated and facilitate their identification.
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Table 4. Proportions of the main chemical compound classes identified in the EOs of Lippia multiflora Moldenke.

Sample

Compound Classes (%) L1 L2 L3 L4 L5 L6 L7 L8a L8b L9a L9b

Oxygenated Monoterpenes 47.00 52.90 0.00 0.00 0.00 0.00 0.70 1.50 0.80 14.00 1.40

Monoterpenes
Hydrocarbons 43.20 19.60 73.10 86.34 91.32 75.49 92.16 88.92 93.82 73.64 54.45

Oxygenated
Sesquiterpenes 0.00 7.90 2.40 2.40 4.20 3.20 3.70 4.60 3.30 5.80 1.40

Sesquiterpenes
Hydrocarbons 5.70 17.60 0.00 0.50 0.60 0.40 0.90 2.60 0.50 2.60 2.00

Total Compounds
Unidentified 0.00 1.60 5.70 1.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00
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Figure 3. Representation of the main chemical compound classes identified in the essential oils (Eos) of Lippia multiflora
Moldenke (L1/L2/L3/L4/L5/L6/L7/L8a/L8b/L9a/L9b).

Limonene (p-mentha-1,8-diene) is the only monoterpene that appears in all EOs. It is
the most predominant compound in the EOs of L4 to L8a et L9b with a percentage ranging
from 25.95% to 40.70%. Moreover, it is more present in the plants sampled in M’banza
Kongo (40.70%) and Cazengo (32.83%) than in Tomboco (25.95%). By comparing the
chemical profiles in the table, the synthesis of Limonene showed an evident fluctuation
during the different stages of plant growth. It is present throughout the phases but is slightly
higher in samples taken before flowering than in those selected during and after flowering.
These differences may be due to the type of harvested part of the plant, the physiological
metabolism, phenology or environmental changes in the biotic and abiotic factors and the
geographical aspect, which were not the same in this study [59–62].
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Limonene has wide applications as a flavour additive in food, beverages, fragrances,
cosmetics and household products [63]. It is one of the most common terpenes in nature and
a major constituent of numerous essential oils from Citrus. [64]. In genus Lippia, Limonene
has been identified in Lippia turbinata Griseb. (60.60%) [65], Lippia alnifolia (47.20%) [66],
Lippia alba (Mill.) N.E. Br. ex Britton and P. Wilson (30.60 to 33.00%) [67,68], Lippia junelliana
(Moldenke) Trunk. (23.12%) [65], and Lippia citriodora Kunth (syn. Aloysia citriodora Palau)
(10.70%) [67].

According to the results (Table 3), Piperitenone would also follow Limonene in almost
all EOs profiles. Among the eleven samples, it is present in eight EOs at a rate of 11.58%
to 34.83%. Trans-tagetone is also detected in L4, L5, L6, L7 and L8b, with a proportion
ranging from 8.50% to 12.34%. The two compounds Neral and Citral are only present
in the L1 (25.3%, 21.70%) and L2 (24.40%, 28.30%) samples, respectively. We also notice
the presence of p-cymene in the L1 (10.40%), Carvacrol in L9a (11.50%) and a significant
concentration of Ipsenone in L4 (19.40%). Artemisia ketone has been detected in L6 (20.30%)
and L9a (28.30%) and is not a common compound in the genus Lippia. It is most often
found in different species of the genus Artemisia [69]. As for verbenone, it is present in
large quantities in only L3 (55.90%). It is a natural organic compound classified as bicyclic
monoterpenoids that are found naturally in a variety of plants. Verbenone is a compound
that has an odour and/or flavour of camphor, celery and menthol. It can be found in
many food items such as spearmint, cabbage, white cabbage, and rosemary, which makes
verbenone a potential biomarker for the consumption of these food products [70]. The anti-
aggregation pheromone verbenone has been used to reduce the attack rates on pines by
the mountain pine beetle, Dendroctonus ponderosae Hopkins. In northern America, it the
most damaging insect pest of lodgepole pine Pinus contorta Douglas ex Loudon [71,72].
In genus Lippia, it has been detected in the essential oil of Lippia citriodora (15.64%) and
Lippia alba (Mill.) N.E. Brown (21.74%) [73,74].

It is interesting to note that although Lippia species have grown under the same
edaphic and climatic conditions, there is a difference in the chemical profiles observed in
plants groups from the same geographical areas. Three outgoing lots can be distinguished:
L2 (Citral/Neral/Elemol), L3 (Verbenone/Ocimenone/Limonene), and L9a (Artemisia
ketone/Limonene/Piperitenone). This phenotypic variability within the same species
from the same region can be explained by the spatial influence of the environment on the
plant [56,75]. The importance of spatial distributions in pollination, competition, herbivory,
nutrient cycling and other ecological processes in the variability of the content and quality
of secondary metabolites is well documented [56,57,76–78]. Therefore, detection and
measurement of the spatial pattern are relevant for understanding phenotypic variability
along a geographical gradient within the same community or the same population [79].
However, phenology and genetic or developmental stage of plant organs should also be
considered [80,81]

According to previous studies, a high chemical polymorphism has also been observed
at the level of African Lippia species. In contrast to the Angolan species, high concentra-
tions of 1,8-cineole and Sabinene were found in oils from Nigeria [82], Togo [83], Ivory
Coast [29], Benin [84] and Ghana [18]. A Geraniol, Geranial/Neral, Thymol, Linalool, Tage-
tone/Ipsenol, Epoxy-myrcene, p-cymene/Thymol/Ethyl acetate, Myrtenol/Linalool/1,8-
cineole, and Nerolidol chemotypes were also described [29,37,82,83,85]. These studies thus
demonstrate that the Angolan species is atypical in its chemical composition compared to
its neighbours.

A principal component analysis (PCA) was conducted on the chemical content data
for each Lippia oil to obtain a basic overview of the data structure and to identify similarities
and specific grouping patterns. Data raw (number of principal components (PCs) and per
cent variance of the first three PCs) for eight PCA models are presented in Table S1. Mutual
projections of factor scores and their loadings for the first three PCs have been presented in
Figures 4–6. We obtained the following variance percentage for the principal components:
26.37% (PC1), 18.70% (PC2), and 11.21% (PC3) which resulted in a model that would
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explain approximately 56.28% of the total variance (Figure 4). The scoring plots (Figure 5)
distinguishes three oils that come out of the sample batch (L2, L8a, L9a). The loading plots
(Figure 6) implies that the most influential compounds for discriminating L2 from other
oils are γ-terpinene, Germacrene D, Elemol, Citral, Neral, Hedycaryol, and Zingiberene.
The presence of a high concentration of Carvacrol and Artemisia Ketone separates L9a
from the samples. Humulene oxide, Carvone, Trans-carveol, Trans-carvyl acetate and
Caryophyllene oxide also contribute to the separation of L8a from the plants. Other oils
(L1/L3/L4/L5/L6/L7/L8b/L9b), however, are joined into a single group by their common
chemical composition, including Limonene, α-humulene, Ipsenone, Myrcene, p-cymene,
Trans-tagetone, β-caryophyllene, Piperitenone and p-mentha-trans-2,8-dien-1-ol. We can
also distinguish loading plot of Verbenone, Carveyl acetate and Vervenol in this group.
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Figure 4. PCs scatter plot of Angolan Lippia multiflora Moldenke essential oils. The x, y, and z axes
exhibit the distribution of each oil according to their chemical composition. A = L1; B = L2; C = L3;
D = L4; E = L5; F = L6; G = L7; H = L8a; I = L8b; J = L9a; K = L9b.

For further characterisation of the Lippia EOs, the hierarchical cluster analysis (HCA),
followed by the heat-map using the abundance of individual volatiles were performed
(Figure 7. The total HCA dendrogram (Figure 7a) showed that the volatile profile of
L4/L5/L6/L7 and L3/L9b were close to each other. Also, L2, L8a, and L9a are isolated from
the others by their chemical profiles. The oil distribution is the same as shown by the PCs.
The HCA results generated using the abundance of the volatile compounds (Figure 7b) also
showed variability between the populations from the two provinces, but also intraspecific
variability between sub-groups within a population. This phenomenon has also been
observed in several species of Lippia, such as L. origanoides, L. alba, L. lupulina, L. velutina,
L. sidoides, L. salviifolia, and L. grata [56,86]. Furthermore, it should also be noted that for
the L8/L9 plants, the EO chemical composition of their leaves (L8a/L9a) is different from
that of their flowers (L8b/L9b). Indeed, the functioning of each organ can be independent
of the others through authentic genetic machinery [87,88]. The chemical composition of an
essential oil varies considerably not only according to individual genetic variability but
also according to the phenological stage and organ of the plant.
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Figure 6. Principal component analysis (Loading plots) of the constituents of the essential oil obtained from Angolan Lippia multiflora Moldenke. (a) Loading of PC1 vs. PC2; (b) Loading of
PC3 vs. PC1; (c) Loading of PC2 vs. PC3. V1 = Myrcene; V2 = p-cymene; V3 = Limonene; V4 = Artemisia ketone; V5 = γ-terpinene; V6 = Ipsenone; V7 = Trans-tagetone; V8 = Verbenone;
V9 = Neral; V10 = Citral; V11 = Carvacrol; V12 = Piperitenone; V13 = Germacrene D; V14 = Elemol; V15 = β-farnesene; V16 = β-caryophyllene; V17 = α-humulene; V18 = Caryophyllene
oxide; V19 = Thymol acetate; V20 = Thymol; V21 = Trans-carveol; V22 = Trans carvyl acetate; V23 = Vervenol; V24 = Guaiol; V25 = δ-cadinol; V26 = Isopiperitenone; V27 = Carveyl acetate;
V28 = α-pinene; V29 = Carvone; V30 = Geraniol; V31 = Zingiberene; V32 = Hedycaryol; V33 = Humulene oxide; V34 = p-mentha-trans-2,8-dien-1-ol; V35 = Linalool.
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Figure 7. Hierarchical cluster analysis (a) and heat-map using the abundance (b) of all volatiles compounds of different Angolan Lippia multiflora Moldenke EOs (n = 11). A = L1; B = L2;
C = L3; D = L4; E = L5; F = L6; G = L7; H = L8a; I = L8b; J = L9a; K = L9b. V1 = Myrcene; V2 = p-cymene; V3 = Limonene; V4 = Artemisia ketone; V5 = γ-terpinene; V6 = Ipsenone;
V7 = Trans-tagetone; V8 = Verbenone; V9 = Neral; V10 = Citral; V11 = Carvacrol; V12 = Piperitenone; V13 = Germacrene D; V14 = Elemol; V15 = β-farnesene; V16 = β-caryophyllene;
V17 = α-humulene; V18 = Caryophyllene oxide; V19 = Thymol acetate; V20 = Thymol; V21 = Trans-carveol; V22 = Trans carvyl acetate; V23 = Vervenol; V24 = Guaiol; V25 = δ-cadinol;
V26 = Isopiperitenone; V27 = Carveyl acetate; V28 = α-pinene; V29 = Carvone; V30 = Geraniol; V31 = Zingiberene; V32 = Hedycaryol; V33 = Humulene oxide; V34 = p-mentha-trans-2,8-
dien-1-ol; V35 = Linalool.
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3.2. Antimicrobial Vapour Phase Test

The antibacterial activity of Lippia multiflora Moldenke EOs has been tested using a
vapour evaluation technique. It exclusively allows us to detect the antimicrobial power of
EOs volatile components against three bacterial strains Staphylococcus aureus, Escherichia coli
and Pseudomonas aeruginosa. The results are reported in Table 5.

Table 5. Inhibition zone diameter (values are means ± SD in mm) of essential oil against Staphylococ-
cus aureus, Escherichia coli and Pseudomonas aeruginosa.

Sample Inhibition Zone Diameter (mm)

Tested Microorganisms (Strains)

S. aureus a E. coli b P. aeruginosa c

L1 13.33 ± 1.53 24.00 ± 1.00 10.00 ± 1.00
L2 13.67 ± 0.58 23.33 ± 0.58 9.33 ± 0.58
L3 24.67 ± 0.58 12.00 ± 1.00 9.00 ± 0.00
L4 29.00 ± 1.00 25.67 ± 0.58 26.00 ± 0.00
L5 10.33 ± 0.58 0.00 ± 0.00 19.00 ± 1.00
L6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
L7 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
L8a 17.33 ± 0.58 0.00 ± 0.00 0.00 ± 0.00
L8b 19.33 ± 0.58 0.00 ± 0.00 0.00 ± 0.00
L9a 21.00 ± 0.00 9.00 ± 0.00 0.00 ± 0.00
L9b 19.00 ± 1.00 0.00 ± 0.00 0.00 ± 0.00
DMSO 5% 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

a, b, c All Values differ at p < 0.0001.

The volatile oil of L1/L2/L3/L4/L5/L9a significantly inhibits the growth of tested
microorganisms although they were more potent against S. aureus than against other
strains of bacteria (Figure 8). Among those, L4 gave the strongest inhibition activity
against all investigated pathogens with diameter values in the range of 25.67 ± 0.58 mm to
29.00 ± 1.00 mm. It seems that the presence of a high concentration of Limonene (37.20%),
Ipsenone (19.40%), Piperitenone (14.00%), and Trans-tagetone (12.34%), in its oils was
responsible for this higher antibacterial activity. Other essential oils L8a (17.33 ± 0.58 mm),
L8b (19.33 ± 0.58 mm) and L9b (19.00 ± 1.00 mm) exhibited antimicrobial only against
P. aeruginosa. However, L6/L7 are inefficient.
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Figure 8. Antibacterial activity of Lippia multiflora Moldenke essential oils by vapour phase test.
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It is worthy to note from the results of the study that P. aeruginosa is the most resistant
to the action of EOs. This bacterium is an opportunistic human pathogen responsible for
several different nosocomial infections [89]. Through the presence of intrinsic resistance
mechanisms and the development of irreversible mutations and adaptations, P. aeruginosa
can survive and multiply in several environments and over a wide range of tempera-
tures [90]. It is resistant to all types of conventional antibiotics, as it has an exceptional
capacity to develop biofilms that are difficult to control [91]. The indiscriminate misuse of
antimicrobial drugs would lead to an increase in bacterial resistance in chronic disease [92].
As a result, this bacterium is now a global health threat [92,93]. One approach to overcome
this problem is to use essential plant oils that may represent a promising source for new
resistance modifying agents [93]. In our study, most of the oils were effective against
P. aeruginosa. However, the antibacterial activity depends on the volatility of the chemical
compounds present in these EOs [94]. Indeed, the vapour generated by essential oils has a
more significant antimicrobial effect than that of direct contact with these oils in liquid form.
Lipophilic molecules in the aqueous phase could associate and form micelles which limit
the fixation of EOs to microorganisms [95]. According to Kloucek et al., there is variability
in the phenomenon of essential oils’ volatility. Each EO presents a mixture of chemical
compounds that have specific volatility. Each compound diffuses into the environment
with its specific speed according to its molecular weight. The vapours interact together to
reach an equilibrium that would allow the destruction of microorganisms, but only in a
closed environment [96].

3.3. Well Diffusion Agar Technique

The essential oil from the different L. multiflora Mold. collections were tested for
their antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas
aeruginosa. Three concentrations (C1, C2, C3) of each EO were tested using the wells
diffusion agar technique. The results in terms of inhibition zone diameter (mm) are
summarised in Table 6.

In order to analyse the correlation between the chemical composition of the different
essential oils and their antibacterial activity, the mean values of the diameters of the
inhibition zones were subjected to a PCA and HCA analysis. First, we proceeded to the
classification of essential oils according to the values of the diameters of the inhibition
zones (Table 6): we have EO non-effective for a diameter equal to or less than 8 mm;
effective (+) for a diameter between 8 and 14 mm; highly effective for a diameter between
14 and 20 mm and extremely effective for a diameter equal to or greater than 20 mm [97,98].
The heat-map correlation of the Lippia samples according to their antibacterial activity was
then performed. Data raw (number of principal components (PCs) and per cent variance of
the first three PCs) of PCA models are presented in Table S2. Mutual projections of factor
scores and their loadings for the first three PCs have been presented in Figures 9 and
10. Starting with 11 variables, the PCA calculated three components having eigenvalues
greater than one and representing together 87.97% of the total variance. PC1 accounted for
33.91%, PC2 for 30.02% and PC3 for 24.04% of the variance (Figure 11).
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Table 6. The diameter of the inhibition of Lippia multiflora Moldenke EOs (Values are means ± SD in mm; all values differs at p < 0.05).

Tested Microorganisms (Strains)

S. aureus E. coli P. aeruginosa

Concentrations *

Sample C1 C2 C3 C1 C2 C3 C1 C2 C3

L1 13.66 ± 2.08 15.33 ± 1.53 18.66 ± 0.57 18.00 ± 1.00 14.67 ± 1.15 13.33 ± 1.53 10.33 ± 0.58 11.00 ± 1.00 11.33 ± 1.15
L2 13.33 ± 1.52 14.00 ± 1.00 17.00 ± 1.00 17.33 ± 2.08 13.00 ± 2.65 14.67 ± 1.15 11.00 ± 1.00 11.00 ± 1.00 11.00 ± 1.00
L3 22.66 ± 2.51 25.00 ± 1.00 12.33 ± 1.53 11.67 ± 0.58 11.33 ± 0.58 0.00 ± 0.00 11.33 ± 0.58 15.00 ± 1.00 18.33 ± 1.53
L4 22.00 ± 1.00 26.67 ± 0.58 22.00 ± 5.29 14.00 ± 1.00 12.00 ± 1.00 0.00 ± 0.00 12.33 ± 0.58 18.00 ± 1.00 11.68 ± 0.58
L5 17.00 ± 1.00 19.67 ± 0.58 11.00 ± 1.00 14.00 ± 1.00 12.33 ± 1.15 10.33 ± 0.58 11.33 ± 0.58 14.33 ± 0.58 10.67 ± 1.53
L6 26.00 ± 1.00 23.33 ± 1.53 20.33 ± 1.53 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 15.67 ± 0.58 18.00 ± 3.00 17.00 ± 1.00
L7 12.67 ± 1.15 12.33 ± 0.58 11.67 ± 1.53 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
L8a 17.33 ± 1.15 17.33 ± 1.15 11.00 ± 1.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 13.00 ± 1.00 13.67 ± 1.53 14.33 ± 2.08
L8b 16.67 ± 1.15 15.67 ± 1.53 11.00 ± 1.00 11.67 ± 1.15 12.00 ± 1.00 12.33 ± 1.15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
L9a 15.33 ± 0.58 14.67 ± 0.58 8.00 ± 6.93 11.00 ± 1.00 11.00 ± 1.00 10.67 ± 1.15 14.33 ± 0.58 17.33 ± 2.08 15.33 ± 0.58
L9b 23.00 ± 1.00 23.33 ± 2.52 15.00 ± 3.00 12.00 ± 1.00 11.67 ± 0.58 11.33 ± 0.58 16.00 ± 1.73 15.33 ± 0.58 9.33 ± 2.31

Control Compound A 47.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Control Compound B 45.00 ± 0.00 42.00 ± 0.00 50.00 ± 0.00
Control Compound C 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

* C1 = 63.49 mg/well, C2 = 31.75 mg/well, C3 = 6.35 mg/well. Control compound A: Penicillin = 0.05 mg/mL. Control compound B: Gentamicin A = 10 mg/mL. Control compound C: MHB broth (+5% DMSO).
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Figure 11. PCs scatter plot of Angolan Lippia multiflora Moldenke essential oils. The x, y, and z axes
exhibit the distribution of each oil according to their antibacterial activity against Streptococcus aureus,
Pseudomonas aeruginosa and Escherichia coli. A = L1; B = L2; C = L3; D = L4; E = L5; F = L6; G = L7;
H = L8a; I = L8b; J = L9a; K = L9b.

In the heat map (Figure 12a), almost all the essential oils of the plants used in the study
showed an effect against bacteria. The best results recorded were those against S. aureus,
followed by P. aeruginosa and E. coli, but they remain much lower than those produced by
Gentamicin A (Table 6). L6C1/L3C2/L1C3 observed the most important effects against
S. aureus, L1C1/L1C2/L2C3 against E. coli, and L9bC1/L4C2/L3C3 against P. aeruginosa.
It is also noted that all tested concentrations of L6/L7/L8a were ineffective against E. coli.
Similarly, for L7/L8a against P. aeruginosa. These samples were also recorded as ineffective
by the vapour technique previously performed (Section 3.2).

The dendrogram from HCA (Figure 12b) presents two distinct main clusters, A and B.
Cluster B could correspond to the L7/L8b group, in which L7C3/L8bC3 were observed to
be effective (+) against S. aureus (11.67 ± 1.53 mm/11.00 ± 1.00 mm), while L7C1/C2/C3,
L8bC1/C2/C3 showed negative results against P. aeruginosa. With the formation of sub-
groups in HCA and the results of loading and scores plots in PCA, it can be observed that
oils are effectively divided according to their efficacy against the three bacteria. There
are subgroups of L1/L2, which have shown better efficacy against E. coli, and subgroups
L7/L8b, L5/L9a/L9b, L3/L4 and L6/L8a, which are relatively more effective against
S. aureus and P. aeruginosa.
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Two distinct groups can be observed in cluster A (Figure 12): A1 and A2. In gr. A1,
we first observe subgroups (1) of L1/L2, whose members L1C1/L2C1 are effective (+) and
L1C2/L1C3 highly effective (++) against S. aureus. There are also L1C1/L1C2, which are
effective (+) against P. aeruginosa. and L2C1/L2C3 very effective (++) against E.coli. Sub-
groups (2) L5/L9a/L9b, of which L5C1/L5C2/L9aC1/L9aC1 are highly effective (++)
against S. aureus, while L5C1/L5C2/L5C3/L9aC1/C2/L9aC3 are effective (+) against E. coli.
On the other hand, P. aeruginosa is sensitive (+) to L5C3/L9bC3, and highly sensitive (++)
to L5C2/L9aC2/L9bC1 samples. In subgroup (3) of L3/L4, the L3C1/L3C2/L4C1/L4C2

are extremely effective (+++) against S. aureus. At the same time, L3C1/L3C2/L4C1/L4C2

are effective (+) and L3C3/L4C3 non-effective against E. coli. There are also L3C1/L4C1,
which are effective (+) and L3C2/L4C2 highly effective (++) against P. aeruginosa. Finally,
gr. A2 of L6/L8a showed negative results against E coli (L6C1/C2/C3, L8aC1/C2/C3),
but they are highly effective (++) against P. aeruginosa (L6C3/L8C3).

According to our study, the activity of the EOs against gram-negative bacteria was
greater than that against gram-positive bacteria. The results were not in line with previous
research. Indeed, gram-negative bacteria are more resistant to essential oils than Gram-
positive bacteria. Their outer membrane has a thick layer of impermeable peptidoglycan.
It makes it difficult for antimicrobial agents to pass through and confers rigidity and resis-
tance to gram-negative bacteria [99–101]. The variability of the antibacterial activity of the
different Lippia collections is probably due to the synergistic effect that could occur in the oil
and thus potentiate or not its biological activity. According to several studies, the antibac-
terial activity depends on the quantity of the chemical constituent in the EOs, i.e., at low
concentrations they can interfere with the enzymes involved in energy production and at
higher concentrations they can denature proteins [102,103].

In our study, the plants that have shown the highest activity against the three bacteria
strains are the ones that contain more Limonene. This one is reported to have antimicrobial
properties against a wide range of bacteria [104–108] related to its chemical nature. Indeed,
Limonene belongs to the family of cyclic monoterpene hydrocarbons known for their
effectiveness against bacteria. Their mechanism of action consists of an accumulation in the
plasma membrane and dissipation of the protons motive force causing a loss of membrane
integrity [109,110]. On the other hand, the results of our study also allow us to suggest that
the antibacterial activity of the different Lippia samples could not be attributed solely to
Limonene. Common compounds such as Piperitenone, Ketone artemisia Ipsenone, Oci-
menone, Citral, Neral, Elemol and other minor compounds have been detected. They could
play a critical role by producing a synergistic and additives effect. Their antimicrobial
activity is not attributable to a specific mechanism, but there are several targets in the
cell [101].

In the last part of this study, we were able to determine the Minimum Inhibitory
Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values following
standard guidelines published by the National Committee for Clinical Laboratory Stan-
dards to characterise antibiotic activity [111]. The MIC/MBC ratio was then calculated
to determine the antibacterial power of the EOs studied. The interpretation of the results
was based on the classification of Shanmughapriya et al. (2010). EO is considered to be
bactericidal when the ratio is less than or equal to 2 and bacteriostatic when it is greater
than 2 [112]. The results are summarised in Table 7.

There are bacteriostatic (ration greater or equal to 2), bactericidal (whose ratio is
between 1 and 2) and very bactericidal oils (whose ration is equal or less than 1) according
to the calculated ratios. In the results of activity against S. aureus, different levels of activ-
ity were found with MIC values ranging from 42.52 ± 20.05 to 113.38 µg/mL and MBC
values ranging from 47.24 ± 13.36 µg/mL to 170.07 ± 80.16µg/mL (see Table 7). L7 is the
only oil that is bacteriostatic against bacteria. L1/L2/L6/L8a/L8b/L9b EOs are bacteri-
cidal, whereas L3/L4/L5/L9a are very bactericidal. For E. coli, the MIC values are from
85.04 ± 40.09 to 113.38 ± 0.00 µg/mL, and the MBC values are ranging from 85.04 ± 40.09
to 226.75 ± 0.00 µg/mL. The L6/L7/L8a are bacteriostatic, L3/L4/L6/L7/L8a bactericidal,
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and L1L2/L5/L8b/L9a/L9b very bactericidal EOs. The MIC values for P. aeruginsa are
between 42.52 ± 20.05 and 113.38 ± 0.00 µg/mL, and those for MBC are in the range
56.69 ± 0.00 and 226.75 ± 0.00µg/mL. The oils that have shown bacteriostatic effects are
L4 and L7. The others, L5/L8b/L9a are bactericidal and L1/L2/L3/L6/L8a/L9b very
bactericidal EOs.

Table 7. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of L. multiflora Mold.
essential oils.

Tested Microorganisms (Strains)

S. aureus E. coli P. aeruginosa

MIC/MBC (µg/mL)

Samples MIC MBC MIC MBC MIC MBC

L1 113.38 ± 0.00 170.07 ± 80.16 85.04 ± 40.09 85.04 ± 40.09 113.38 ± 0.00 113.38 ± 0.00
L2 113.38 ± 0.00 170.07 ± 80.16 85.04 ± 40.09 85.04 ± 40.09 113.38 ± 0.00 113.38 ± 0.00
L3 113.38 ± 0.00 113.38 ± 0.00 113.38 ± 0.00 170.07 ± 80.16 56.69 ± 0.00 56.69 ± 0.00
L4 85.04 ± 40.09 85.04 ± 40.09 113.38 ± 0.00 170.07 ± 80.16 113.38 ± 0.00 170.07 ± 80.16
L5 113.38 ± 0.00 113.38 ± 0.00 113.38 ± 0.00 113.38 ± 0.00 113.38 ± 0.00 170.07 ± 80.16
L6 42.52 ± 20.05 75.59 ± 53.45 113.38 ± 0.00 226.75 ± 0.00 42.52 ± 20.05 75.59 ± 53.45
L7 56.69 ± 0.00 113.38 ± 0.00 113.38 ± 0.00 226.75 ± 0.00 113.38 ± 0.00 56.69 ± 0.00

L8a 56.69 ± 0.00 85.04 ± 40.09 113.38 ± 0.00 226.75 ± 0.00 113.38 ± 0.00 113.38 ± 0.00
L8b 56.69 ± 0.00 85.04 ± 40.09 113.38 ± 0.00 113.38 ± 0.00 113.38 ± 0.00 226.75 ± 0.00
L9a 56.69 ± 0.00 56.69 ± 0.00 113.38 ± 0.00 113.38 ± 0.00 42.52 ± 20.05 75.59 ± 53.45
L9b 42.52 ± 20.05 47.24 ± 13.36 113.38 ± 0.00 113.38 ± 0.00 56.69 ± 0.00 56.69 ± 0.00

MHB Broth +5
% DMSO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Due to the wide variation in the chemical profiles of L. multiflora Mold. essential oils,
the antibacterial activity is also well diversified in the literature [10,32,113–115]. According
to the study by Bassolé et al. (2010), Lippia from Burkina-Faso was the most effective among
the plants tested against S. aureus with a MIC = 1.2 ± 0 mg/mL [32]. The Ivory Coast
plant gave better antibacterial activity against S. aureus and P. aeruginosa with MIC = MBC
= 0.9 mg/mL [32,114]. Moreover, MIC values range from 3 to 96 × 10−3mL−1 for Lippia
from Gabon and no antibacterial activity was observed for Nigerian plant against S. aureus
or E. coli [82,116]. The antimicrobial activity of any essential oil is not attributable to just
one mechanism but to several ones widely described in the literature [89]. Factors such
as climatic and environmental conditions, the origin of the plant, the plant’s adaptive
metabolism, the harvesting season, the part of the plant involved in the extraction, the dis-
tillation conditions, the microbiological methods used, as well as the susceptibility of the
bacterial strains would make it difficult to compare the results obtained by different groups
of researchers [117,118].

4. Conclusions

The composition and antibacterial effects of Lippia multiflora Moldenke from two
regions of Angola were assessed. Samples were collected during, before and after flowering.
The highest yield of essential oils among the 11 samples was obtained from flowers (5.2%)
and leaves (3.8%, 1.7% and 1.3%). They were harvested in the municipality of Tombocco,
province of Zaire. During this study, we observed that the composition of EOs also changes
depending on the part of the plant. The main components identified were monoterpene
hydrocarbons which reached proportions ranging from 19.60% to 93.82% of all compounds
identified by GC-MS. The highest accumulation was Limonene (from 25.95% to 40.70%)
in Lippia samples collected before flowering. Piperitenone, Trans-tagetone, Neral, Citral,
Elemol, p-cymene, Myrcene, Carvacrol, and Ipsenone were also identified, and their
proportion varied between-sample. Two new compounds, including Verbenone and
Artemisia ketone, were detected for the first time in the essential oil of Lippia multiflora
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Moldenke from Angola. The analysis of Lippia’s EOs by principal component analysis
(PCA) and hierarchical cluster analysis (HCA), followed by the highlighting of the heat
map of the volatile compounds’ abundance allowed us to identify a variability between the
populations from the two provinces, but also intraspecific variability between sub-groups
within a population. Due to this great chemical variability, the antibacterial activity is
also well-diversified. Thanks to HCA and PCA, we were able to discern the similarities
between subgroup of chemotypes and differentiate their respective antibacterial activity.
According to MIC and MBC values, Lippia essential oils showed remarkable activity against
the three bacteria S. aureus and E. coli, and P. aeruginosa. These results suggest that Angolan
Lippia multiflora Moldenke can be used as a safe alternative source in the pharmaceutical,
cosmetic and food industries.

Supplementary Materials: The following are available online, Table S1: Data raw of PCA models of
Angolan Lippia multiflora Moldenke EOs according to their chemical composition, Table S2: Data raw
of PCA models of Angolan Lippia multiflora Moldenke EOs according to their antibacterial activities
against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa.
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