
molecules

Article

Imaging Sequences for Hyperpolarized Solids

Xudong Lv 1 , Jeffrey Walton 2 , Emanuel Druga 1, Raffi Nazaryan 1, Haiyan Mao 3, Alexander Pines 1,
Ashok Ajoy 1 and Jeffrey Reimer 3,4,*

����������
�������

Citation: Lv, X.; Walton, J.; Druga, E.;

Nazaryan, R.; Mao, H.; Pines, A.;

Ajoy, A.; Reimer, J. Imaging

Sequences for Hyperpolarized Solids.

Molecules 2021, 26, 133. https://

doi.org/10.3390/molecules26010133

Received: 11 November 2020

Accepted: 16 December 2020

Published: 30 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, University of California, Berkeley, CA 94720, USA; david.lv@berkeley.edu (X.L.);
epieon@berkeley.edu (E.D.); rnazaryan@berkeley.edu (R.N.); pines@berkeley.edu (A.P.);
ashokaj@berkeley.edu (A.A.)

2 Nuclear Magnetic Resonance Facility, University of California Davis, Davis, CA 95616, USA;
jhwalton@ucdavis.edu

3 Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA;
maohaiyan@berkeley.edu

4 Lawrence Berkeley National Laboratory, Materials Science Division, University of California,
Berkeley, CA 94720, USA

* Correspondence: reimer@berkeley.edu

Abstract: Hyperpolarization is one of the approaches to enhance Nuclear Magnetic Resonance (NMR)
and Magnetic Resonance Imaging (MRI) signal by increasing the population difference between the
nuclear spin states. Imaging hyperpolarized solids opens up extensive possibilities, yet is challenging
to perform. The highly populated state is normally not replenishable to the initial polarization
level by spin-lattice relaxation, which regular MRI sequences rely on. This makes it necessary
to carefully “budget” the polarization to optimize the image quality. In this paper, we present a
theoretical framework to address such challenge under the assumption of either variable flip angles
or a constant flip angle. In addition, we analyze the gradient arrangement to perform fast imaging to
overcome intrinsic short decoherence in solids. Hyperpolarized diamonds imaging is demonstrated
as a prototypical platform to test the theory.

Keywords: hyperpolarization; magnetic resonance imaging; flip angle

1. Introduction

NMR is central to many chemical, biological and material analysis due to the rich
chemical information it can provide [1,2]. MRI, as the imaging counter part of NMR, is a
powerful tool in medicine and biology [3,4]. However, the sensitivity of both techniques
relies on nuclear spin polarization, which is intrinsically low at thermal equilibrium.
One compelling approach to tackle this insensitivity is hyperpolarization. This approach
brings the nuclear spin polarization level beyond thermal equilibrium to produce many
orders of magnitude higher signal. Routes to hyperpolarization includes dynamic nuclear
polarization (DNP) [5], parahydrogen induced hyperpolarization (PHIP) [6], as well as
chemically-induced DNP (CIDNP) [7]. While the methods of hyperpolarization can be
applied in both liquids and solids, hyperpolarized solids are particularly attractive as an
imaging agent in nano-medicine [8], or as a polarization hub to deliver hyperpolarization
for general chemicals [9]. However, challenges remain on how to image hyperpolarized
solids given the none-replenishable nature of the polarization and short coherence times
of solids.

In the work, we use diamond particles (Figure 1A) as a prototypical platform to test
the imaging sequences (Figure 1C,D) and to provide some theoretical understanding of the
results as well as some insight into sequence design for imaging similar hyperpolarized
materials. The hyperpolarization in diamond is enabled by one type of special atom-like
defect — the Nitrogen Vacancy (NV) center [10] and a recently developed protocol [9,11].
The electronic spins of NV centers are optically polarizable to ≈99% at room tempera-
ture [10], and their long coherence time ensures its efficiency at polarizing surrounding 13C
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nuclear spins via chirped MW (Figure 1B,C). 13C imaging of natural abundance diamond
powders (Figure 1F) is only possible with such highly polarized signal (Figure 1E). The
ability to image micron/nanodiamonds through MRI can open up possibilities in directions
including physics, chemical and biological analysis. For instance, hyperpolarized diamond
particles that “light up” in MRI mode can potentially be applied as a targeting and tracking
agent given their bio-compatibility and surface modifiability [11–14]. Additional advantage
of high surface-to-volume ratio can also enable polarization transfer to external nuclei
when brought into close contact with other chemicals for high-SNR and high-resolution
NMR [15].

The analysis of the imaging sequence for a diamond prototypical system relies on a
theoretical framework we develop herein for imaging hyperpolarized solids in general.
The theoretical framework considers two major components of an MRI sequence — flip
angle and gradients (Figure 1C), which determine the quality of an MR image.

In an MRI sequence, a radio frequency pulse is normally applied at the beginning of
each repetition, in order to rotate the magnetization from z direction to the xy plane, so
that the nuclear Larmor precession can be detected. The angle of such rotation is referred
as flip angle. In conventional MRI without hyperpolarization, the z magnetization can be
recovered after each repetition by the T1 relaxation process. In contrast, for the cases of
hyperpolarization, the initial polarization is much higher beyond the equilibrium state;
thus, relaxation tends to reduce it towards a much lower level. As a results, some sequence
design principles in conventional MRI no long hold in such cases, and it requires careful
engineering of flip angles to be suited for imaging hyperpolarized objects. The high level
of the magnetization, if effectively distributed, can enhance the image SNR and resolution
by orders of magnitude.

Not only does flip angle have to be designed uniquely for hyperpolarized solid state
imaging, better arrangement of the gradient and pulses are critical as well. As a result of
the nature of solids, static coupling between nuclei leads to short coherence times. This
suggests that one has to either perform imaging rapidly or apply pulse sequences to protect
coherence. We present strategies that either facilitate fast imaging or refocus signals by
decoupling sequences with a focus of 13C MRI in diamonds.
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Figure 1. Experiment schematic. (A) A picture of diamond particles (∼200 µm in size) contained in an NMR tube as an
imaging phantom (taken from the bottom of a NMR tube). (B) Green laser excitation and MW irradiation is applied on the
sample in order to transferred polarization to lattice 13C nuclei from optically polarized NV- electrons in the microscopic
scale. (C) Experimental protocol of hyperpolarizing and imaging diamonds. 13C hyperpolarization occurs at 38 mT under
MW sweeps across the NV-ESR spectrum, and then transferred to a MRI machine for imaging. Flip angles and gradient
arrangement determine the quality of the MRI. (D) Illustration of flip angles for the nth repetitions. (E) Typical signal
enhancement by hyperpolarization, showing signal gain against signal at 7 T. For a fair comparison, the noise in both is
normalized to be 1 (dash line). (F) A typical MR image of diamond phantom in (A).
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2. Results
2.1. Image Equation

We analyze the dynamic of the magnetization change under certain flip angle pulses
and theoretically present optimal solutions. In this section, we consider two major scenarios,
i.e. dynamically changeable flip angles and a constant flip angle over different repetitions.
We also consider two metrics for our optimization – total magnetization, which corresponds
to total signal of the image, and the uniformity of the signal across repetitions.

More explicitly, we write down the signal equation of an MR image in terms of the xy
plane magnetization Mx [16]:

S
(
kx, ky

)
=
∫∫

Mx(x, y, kx, ky)e−i2π(kx x+kyy)e−t(kx ,ky)/T∗2 dxdy (1)

where kx = γ/2π
∫ t

0 Gx(t)dt, ky = γ/2π
∫ t

0 Gy(t)dt (γ is the gyromagnetic ratio, and Gx,
Gy are gradients along x and y axis). Note that this signal equation takes into consideration
that the transverse magnetization Mx as a function of kx and ky can be different for each
repetition. This dependence can be expressed as:

Mx(x, y, kx, ky) = K(kx, ky) · ρ(x, y) (2)

where K(kx, ky) (we refer as magnetization factor) is the factor representing non-uniform
excitation in each repetitions (for instance a progression of small tip angle pulses), and
ρ(x, y) is the nuclear spin density at location (x, y). Performing a Fourier transform of
S
(
kx, ky

)
, we obtain the image represented in the real space:

I(x, y) = F (K) ∗ F (e−t(kx ,ky)/T∗2 ) ∗ ρ(x, y) (3)

where F represents Fourier transformation and ∗ represents convolution. Note that by
taking the limit of t << T∗2 , and assuming uniform excitation cross different repetition, the
Equation (3) reduces to I(x, y) = ρ(x, y).

The image equation (Equation (3)) is different from a typical image equation as the first
term represents the effect of flip angles, which is special to the case of hyperpolarization.
In repetition n, we denote this effect to be Kn. In the case of Cartesian sampling, we can
write n = kx without losing generality.

2.2. Flip Angle Consideration

How does Kn depend on the flip angle θ? We address this question by considering two
cases: dynamically changing flip angles and a constant flip angle. In practice, whether one
has the ability to program the flip angle for each repetition on the MRI machine determines
which case will be utilized.

Variable flip angle — First we consider the most general scenario where one has con-
trol on the flip angle of each repetition. This stems from an intuitive demand that magneti-
zation remains same in each repetition, similar to the magnetization in saturation recovery
sequences. More specifically, if we implement an imaging sequence with a repetition time
TR to a nuclear spin system with relaxation time T1 and an equilibrium magnetization M0,
we can write the dynamic equation as following [17]:{

Mn = (Mn−1 cos θn−1 −M0)e
− TR

T1 + M0
Mx,n = Mn sin θn

(4)

where we denote in the nth repetition, the flip angle to be θn, the longitudinal and transverse
magnetization to be Mn and Mx,n respectively. Given that magnetization can be written
as multiplication of the magnetization factor and the spin density: Mn = Kn ∗ ρ(x, y),
Mx,n = Kx,n ∗ ρ(x, y), and M0 = K0 ∗ ρ(x, y), we can eliminate the location information in
ρ(x, y), and simplify the dynamic equation in terms of magnetization factor K.
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{
Kn = (Kn−1 cos θn−1 − K0)e

− TR
T1 + K0

Kx,n = Kn sin θn
(5)

The initial magnetization factor in the hyperpolarization case is Khp, in contrast to the
thermal polarization case K0. With such initial condition, we solve the recurrent dynamic
equation (Equation (5)) and obtain:

Kx,n = Khp

[
n−1

∏
k=1

(Γ cos θk) +
1

Khp/K0
(1− Γ)×

{
n

∑
i=2

n−1

∏
k=i

(Γ cos θk)

}]
sin θn (6)

where Γ = e−
TR
T1 . We assume hyperpolarization enhances signal much higher than thermal

signal, suggesting Khp >> K0. With such approximation, we have the leading order

Kx,n = Khp

[
∏n−1

k=1 (Γ cos θk)
]

sin θn.
One of the advantages of having ability to dynamically varying the flip angle is that

the transverse magnetization Mx in each repetition can be constant by carefully design the
flip angles. This allows one to avoid image distortion along the phase encoding direction
(further detailed in the Discussion section). Applying the condition of Kx,n = constant ,
we can obtain (see Appendix A.1):

tan2 θn = (1− Γ3) · Γ2N−2n−1

1− Γ2N−2n−1 (7)

where N is the total number of repetitions.
As shown in Figure 2A, flip angles have to increase with the number of repetitions

in order to maintain same transverse magnetization, and all three curves with different
TR/T1 converge to 90◦ to saturate all the magnetization. As a result, the relative transverse
magnetization stays flat throughout the scan confirmed by simulation (see Figure 2B).
Such uniform magnetization factor allows K(kx, ky) to be constant, resulting in F (K) to
be a delta function, and the reconstructed image I(x, y) in Equation (3) to be: I(x, y) ∝
F (e−t(kx ,ky)/T∗2 ) ∗ ρ(x, y), immune from image blur cased by excitation.

In addition to constant magnetization, one desires to gain as large cumulative signal
as possible, which leads to a different optimization problem.

arg maxθn
{Scumulative =

N

∑
n=1

Mx,n} (8)

If θN is optimal, it should satisfy: ∂Scumulative
∂θN

= ΓN−1 cos θ1 · · · cos θN−1 cos θN = 0.
Similarly, we can get:

∂Scumulative
∂θN−1

= ΓN−1 cos θ1 · · · (− sin θN−1) sin θN + ΓN−2 cos θ1 · · · cos θN−1 = 0
⇒ Γ sin θN−1 sin θN = cos θN−1

(9)

In general, the relationship between two consecutive flip angles is: sin θn+1 = Γ tan θn.
Iteratively solving this sequence from the end where sin θN = 1 (see Appendix A.2),
we have:

θn = tan−1

√
1
Γ2 ·

1− Γ2

1− Γ2(N−n)
(10)

And such results of N =16 and 32 are presented in Figure 2C,D.
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Figure 2. Variable flip angles for constant signal and maximum signal. (A) The flip angles to enable
constant magnetization in a 32 repetition imaging sequence are determined based on Equation (7).
(B) Implementing flip angles in (A), the relative transverse magnetization signal is simulated tak-
ing Khp = 1 and K0 = 10−3. (C,D) The flip angles to maximize the cumulative signal under
different TR/T1.

So far, we have derived the design principle of variable flip angle pulses to achieve
either constant magnetization or maximum total magnetization. We here briefly comment
on images we may acquire in these two cases. In the case where there is a fixed transverse
magnetization in each repetition to start with, the image may display less SNR than the
total signal optimized case. However, the constant signal guarantees high fidelity due to
eliminated distortion in the phase encoding dimension. In contrast, in the case of maximum
total magnetization, image distortion cannot be avoided but the image SNR is optimal.

Constant flip angle — In spite of the stable magnetization and high cumulative signal
that is brought by variable flip angles, it posts technical challenges on MRI facilities to
implement different flip angles in each repetition. A more widely used case is the constant
flip angle, where the excitation pulses remain the same for all of the repetitions. We consider
such case in this section and optimize the cumulative signal under such scenario.

The recurrent dynamic equation is similar despite the fact that θ is constant:{
Kn = (Kn−1 cos θ − K0)e

− TR
T1 + K0

Kx,n = Kn sin θ
(11)

Solving the recurrent dynamic equation:

Kx,n = ±Khp(Γ cos θ)n−1 sin θ + K0(1− Γ)
n−1

∑
k=1

(Γ cos θ)k−1 sin θ (12)

Simulating this process, we observe the change of the magnetization with respect to n
given a certain θ and TR/T1 in Figure A1. Note that in this case, we do not ignore the first
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term in Equation (12) because constant flip angle can lead to comparable magnitude of the
first term with the second term.

Similarly, we calculate cumulative signal: Scumulative = ∑N
n=1 Mx,n in Figure 3. Not

surprisingly, there is an optimal flip angle given certain TR/T1 and total number of scans
N. Under such optimal angle, the case of N = 32 displays a more than 4 times higher
cumulative signal than 90◦ pulse could (Figure 3A). When TR/T1 is less, increasing scan
counts may become very effective for signal enhancement (Figure 3B). We compare this
optimal flip angle with Ernst angle which is the flip angle for excitation of a particular
spin that gives the maximal signal intensity in the least amount of time in the thermal
polarization cases. We find that the optimal flip angle deviates from Ernst angle, however,
approaching it when N increases.

It is difficult to optimize Scumulative analytically, and we use a gradient descent method
to numerically solve the problem, and the result is shown in Figure 3C,D.
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Figure 3. Constant flip angle. In the simulation, Khp = 10−3 and K0 = 10−5, which is on the same
orders of magnitude of magnetization with our diamond imaging case at 9.4T. (A) Cumulative signal
with different total repetitions N is displayed when the ratio of TR/T1 is fixed. The black dash line is
the Ernst angle, optimal for initial magnetization to be M0. (B) Fixing the ratio TR/T1, we simulate
the cumulative signal with different N. (C) Optimal flip angles and (D) resultant cumulative signals
when such angle is restricted to a constant are shown as a function of TR/T1.

2.3. Gradient Consideration

Gradient arrangement is another critical component in hyperpolarized solid state
imaging. This determines timing for signal acquisition and k-space sampling trajectory
and ultimately dictates image SNR, fidelity as well as resolution. Here we consider three
categories of gradient arrangement, i.e. spin echo, gradient echo, and more exotic sequences.
By analyzing different types of sequences, we provide insight into the gradient arrangement
and sequence parameter determination for a given sample.

A typical spin echo sequence with small flip angle is shown in Figure 4. For a
certain voxel (x, y, z), we consider the signal at the peak of the echo S(TE), which is a
good indication of the image SNR. This signal within one voxel is subject to decoherence
posterior to the flip angle pulse, and the decay factor is e−TEse/T2 (see Figure 4A), where
TEse is the echo time of a spin echo sequence. Similarly, in a gradient echo sequence, this
factor becomes e−TEge/T∗2 (see Figure 4B). When assuming that both sequences use the
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same flip angle strategy, the decay factors imply that if TEse/T2 < TEge/T∗2 , the spin echo
sequence is favorable for higher signal; otherwise, one should choose gradient echo given
that the signal at the peak of the echo is higher in such cases.

TR
Small flip angle pulse θSmall flip angle pulse θ π pulse

TR
θ pulse θ pulse

TETE
T2* relaxationT2 relaxation

AA BSpin echo sequence Gradient echo sequences

Figure 4. Spin echo and gradient echo sequence with small flip angle. (A) The π pulse refocuses dephasing caused by
field inhomogeneity, chemical shift, and gradients. (B) The reversed gradient refocuses the effect of gradients. The phase
encoding dimension implements same gradient arrangement for both of the two echo sequences, and is omitted here.

The RARE (Rapid Acquisition with Refocused Echoes) sequence, also known as TSE
(turbo spin echo) is a sequence which takes advantage of multiple spin echo train followed
by a single π/2 pulse. This sequence is originally designed for saturation recovery, can
however be implemented with small flip angle excitation pulses, which may be enhance
SNR in hyperpolarized solid state imaging. In this case, there can be T echo trains following
a small flip angle excitation in each repetition.The cumulative signal depends on

N

∑
j=1

T

∑
k=1

e−k·TEse/T2 (13)

where two summations of j and k represent repetitions and echo trains respectively. Care-
fully selection of N and T can possibly enhance the cumulative signal further than conven-
tional spin echo or gradient echo sequences.

The sequences that decouple nuclear spins in solids, which we refer to here as “exotic
sequences”, include magic echo sequence [18], as well as quadratic echo sequence [19].
However, those sequences are challenging to calibrate and implement due to the precise
requirement of the spacing between pulses and the phase of the pulses.

Apart from forming spin echo or gradient echo, one can design the gradient ar-
rangement so that signal acquisition can start immediately after the excitation pulse. For
instance, steady gradient on both phase encoding and frequency encoding dimensions
can be applied while the acquisition channel opens right after RF excitation, which corre-
sponds to a radial trajectory in k-space. Such sequences are normally called Ultrashort TE,
or UTE sequences [20]. Such methods can eliminate the decoherence happening before
echo formation, although may have disadvantages in motion and gradient imperfection
robustness [21].

2.4. Hyperpolarized Diamond Imaging Results

We test the above simulations using our hyperpolarized diamond imaging system [11].
A 5mm NMR tube is filled with diamond particles (average particle size ∼200 µm) and the
particles are tightly held at the bottom of the tube. The MRI images of such phantoms are
shown in Figure 5 with different flip angles. We acquired images with flip angles ranging
from 13–333◦ by varying pulse length from 5 µs to 80 µs in Figure 5A, and we zoom in



Molecules 2021, 26, 133 8 of 13

in the range of 4 µs to 19 µs to identify the optimal flip angle in Figure 5B. It turns out
that the 6 µs presents the highest image fidelity and contrast. This shows agreement with
Figure 3C, in which diamond particle imaging residents at low TR/T1 limit. Our diamond
particles have a measured T1 of 15s and a repetition time TR of 6ms for imaging, leading
to TR/T1 ∼ 10−3, and corresponding θoptim of 16◦. Such flip angle can be translated as a
predicted 5.5 µs pulse length. Note that according to our nutation calibration, the pulse
duration ttip = θ

360◦ × 84.58 µs + 1.73 µs, indicating a 1.73µs delay of the pulse application
by the MRI machine.

AA B

Figure 5. Diamond MRI with different flip angles. (A) The pulse durations are 5, 10, 15, ..., 80 µs respectively for each
image. We can determine that optimal pulse duration should be within 20 µs. (B) The pulse durations are 4, 5, 6, ...,
19 µs respectively for each image. The text on each image is the frame number, time when the images are taken, and
FOV (1.41 × 2.41 cm).

We can study the total signal in k-space and real-space by taking the integral of
intensities across all the pixels, shown in Figure 6. The k-space signal maximizes at the
optimal flip angle in Figure 6A,B. Note that, a 90◦ pulse can maximize the intensity of
the center of the k-space, which is equivalent to the integral of real-space intensities (see
Figure 6C,D). However such image has no high frequency information, which will be a
constant in real-space along x direction. Such effect is precisely illustrated in Figure 5A first
image in the second row.
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Figure 6. Total signal in k- and real- space as a function of flip angle. (A,B) The integration of absolute
value in k-space is simulated and measured using the diamond particle phantom. (C,D) Display
the integration of absolute value in real-space. The simulations are conducted assuming a uniform
profile in real-space, i.e., ρ(x, y) =constant, in which case only the effect of magnetization factor K
is emphasized.

3. Discussion

In the image equation (Equation (3)), the spin density function ρ(x, y) convolutes with
F (e−t(ky)/T∗2 ) and F (Kx(kx)). The two terms correspond to two types of blur of the image.
The term F (e−t(ky)/T∗2 ) caused by T2 is similar to the linewidth in NMR spectroscopy. The
Lorentzian profile leads to a resolution limit of ∝ 1

γGT2
in real-space, where G is imaging

gradient. The second term is a Fourier transform of the profile of magnetization as a
function of repetition (see Appendix B Figure A1), originating from the uniformity of the
magnetization distribution over repetitions. The term will reduce to 1 when flip angles in
Figure 2A is applied. In our experiment, the two types of blur happen on x and y direction
respectively. Our phase encoding is on x direction, therefore, the stripe line in Figure 5
originates from the Fourier transform of the magnetization factor profile K along kx direc-
tion. We write down Kx(kx) = ±Khp(Γ cos θ)kx−1 sin θ + K0(1− Γ)∑kx−1

j=1 (Γ cos θ)j−1 sin θ.
If we take the 5th frame in Figure 5A as an example, the flip angle of that is close to 90◦.
The magnetization of such pulse sequence distributes mainly on the first repetition (green
line in Appendix B Figure A1). A nearly constant F (Kx(kx)) indicates the extreme case of
blur — constant intensity along x direction when convoluting with ρ(x, y).

We would also like to discuss the total signal gained by the small tip angle RARE
sequence. From Equation (13), we can tell that increasing number of echo trains will
increase the signal, however extends the total acquisition times at the same time. Here we
try to determine the optimal sequence design to maximize the total signal given a finite
total time Ttotal . We take the case where one is allowed to vary the flip angle, and the
signal is constant in each repetition (as described in Equation (7)). We assume that in each
repetition TR = TEse × T, where T is total number of echos within this repetition. We can
rewrite Equation (13) to estimate total signal as a function of total repetition number S(N):

S(N) =
N

∑
j=1

T(N)

∑
k=1

e−k·TEse/T2

= N ·Mx(N) · χ 1− χT

1− χ

(14)
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where χ = eTEse/T2 is a constant when minimized TE is set by instrumentation limit and
T2 is the intrinsic property of certain sample. The above derivation used the sum of a
geometric sequence. In this equation Mx = M0 × sin(θ1) where θ1 defined in Equation (7)
is a function of TR, and TR = Ttotal

N . T can also be written as a function of N: T(N) = Ttotal
N·TEse

.
We plot S(N) in Figure 7. We note that N values that can maximize S(N) for Ttotal = 0.1 s
and 0.2 s are ∼70 and ∼120 respectively. And when Ttotal is long enough (0.5 s), S(N) is
not yet saturated at N = 256.

0 100 200
Total repetition N

2

4

6

8

10

12

14

To
ta

l s
ig

na
l (

AU
)

Ttotal  = 0.1s
Ttotal  = 0.2s
Ttotal  = 0.5s

Figure 7. Total signal with RARE sequence. The simulation is conducted based on parameters close
to diamonds (T1 =50 s, T2 = 1 ms, TE = 0.5 ms). The total signal curve S(N) maximize at different N
when ttotal is set to different values.

4. Materials and Methods
4.1. Simulation and Optimization

The simulations and optimizations are conducted in Matlab, where the “fminunc”
function is used to numerically optimize the flip angles in Figure 3C,D. In the simulation
of Figure 6, the K(kx)e−t(kx ,ky)/T∗2 component is simulated with K(kx) in Equation (12),
substituting n with kx.

4.2. Hyperpolarization and Imaging

The diamond powder utilized in experiments in Figure 1 has ∼40 mg mass with
natural abundance 13C. The particles are purchased from Element6. They are enriched with
∼1 ppm NV centers and fabricated by a high pressure high temperature (HPHT) protocol.
The particle size is measured in SEM (scanning electron microscopy) images. The face to
face distances are 200 µm to 250 µm and diagonal edge to edge distances are approximately
400 µm.

The entire experimental setup consists of three parts: a pneumatic field-cycling device,
a wide-bore 9.4T superconducting magnet, an a miniaturized hyperpolarizer [22]. The
pneumatic field-cycling device [11] is uses air flow to rapidly transfer a 5mm NMR tube
from low field (40 mT) to the 9.4 T detection field, within which a 10 mm 1H/13C volume
coil is installed. The air driven by a pump flows in a quartz channel and moves the NMR
tube in the channel. Diamond samples are contained in the NMR tube. A concave-shaped
stopper is located at the bottom end of the channel and a rubber stopper is placed at the high
field. The transport time of the sample to high field is under 1s, much shorter compared to
the 13C T1 times (normally on the order of minitues). MR imaging was conducted with a
Bruker DRX system equipped with microgradients running ParaVision 4 software with a
modified FLASH pulse sequence. The miniaturized hyperpolarizer is a self-contained unit,
which encapsulates devices for laser excitation, MW irradiation as well as an electromagnet
for field fine-tuning. A 1W 520nm diode laser (Lasertack PD-01289) is employed and the
beam passes through an aspheric lens and a set of anamorphic prisms to form a 4 mm
diameter beam. The beam was guided by two mirrors and illuminates the sample from
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the bottom. MW irradiation that drives polarization transfer is generated by three voltage
controlled oscillator (VCO) sources (Minicircuits ZX95-3800A+). For frequency sweeps, the
VCOs are driven by phase shifted triangle waves from a home-built PIC microprocessor
(PIC30F2020) driven quad ramp generator.

Please find more details of experimental methods in Ref. [11].

5. Conclusions

In this paper, we studied two major components — small flip angles and gradient
arrangement in a MRI sequence in the quest for optimal sequences for hyperpolarized
solids. Both variable and constant flip angles are analyzed, and strategies to achieve
maximum cumulative signal or flat signal profile are provided. Beyond designing flip
angle progressions to take advantage of the significant initial magnetization produced
by hyperpolarization, we propose to combine these excitation pulse progressions with
traditional gradient arrangements in spin echo and gradient echo sequences in order to
accommodate short decoherence times in solids. Experimental results of hyperpolarized
diamond MRI show agreement with theoretical analysis. Beyond diamond particles, this
study can provide guidance in hyperpolarized solids MRI in systems such as such as
silicon [23] and silicon carbide [24] particles.
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Appendix A. Derivation

Appendix A.1. Variable Flip Angle for Constant Magnetization

Kx,n = Khp

[
n−1

∏
k=1

(Γ cos θk)

]
sin θn = constant (A1)

Since we want to saturate the magnetization at the last pulse, we have sin θN = 1.
Using such equation, we can first write down the Kx,N = Kx,N−1 as:

Khp

[
N−1

∏
k=1

(Γ cos θk)

]
sin θN = Khp

[
N−2

∏
k=1

(Γ cos θk)

]
sin θN−1 (A2)

This implies Γ cos θN−1 sin θN = sin θN−1, and we can get: tan θN−1 = sin θN/Γ =
1/Γ. Similarly, if we take the equality between Kx,j and Kx,j−1, the recursion formula is:

tan θj−1 = Γ sin θj (A3)

Then, we need to solve θn based on the equation above. We define an = tan2 θn, and
we will have:

an =
an+1

1 + an+1
· Γ2 (A4)
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This is equivalent to:
1
an

=

(
1

an+1
− Γ2

)
Γ2 (A5)

Solving the series, we can get:

an = (1− Γ3) · Γ2N−2n−1

1− Γ2N−2n−1 (A6)

which leads to:

tan2 θn = (1− Γ3) · Γ2N−2n−1

1− Γ2N−2n−1 (A7)

Appendix A.2. Variable Flip Angle for Maximum Cumulative Magnetization

With
Γ tan θj−1 = sin θj (A8)

We define an = tan2 θn, and we will have:

an =
an+1

1 + an+1
· 1

Γ2 (A9)

This is equivalent to:
1
an

=

(
1

an+1
− Γ2

)
/Γ2 (A10)

Solving the series, we can get:

an =
1
Γ2 ·

1− Γ2

1− Γ2(N−n)
(A11)

which leads to:

tan2 θn =
1
Γ2 ·

1− Γ2

1− Γ2(N−n)
(A12)

Appendix B. Magnetization Simulation

The magnetization of each repetition when applying constant flip angle is presented.

Figure A1. Simulation of signal of each individual repetition as a function of scan number of given TR/T1 in (A) and given θ

in (B). In the simulation, we assume Khp = 10−3 and K0 = 10−5, which approximates the magnetization with our diamond
imaging case at 9.4T.
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