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Abstract: Guava (Psidium guajava) leaves are commonly used in the treatment of diseases. They are
considered a waste product resulting from guava cultivation. The leaves are very rich in essential
oils (EOs) and volatiles. This work represents the detailed comparative chemical profiles of EOs
derived from the leaves of six guava varieties cultivated in Egypt, including Red Malaysian (RM),
El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red Indian (RI),
cultivated on the same farm in Egypt. The EOs from the leaves of guava varieties were extracted
by hydro-distillation and analyzed with GC-MS. The EOs were categorized in a holistic manner
using chemometric tools. The hydro-distillation of the samples yielded 0.11–0.48% of the EO (v/w).
The GC-MS analysis of the extracted EOs showed the presence of 38 identified compounds from
the six varieties. The sesquiterpene compounds were recorded as main compounds of E, EQ, ESEG,
RI, and WI varieties, while the RM variety attained the highest content of monoterpenes (56.87%).
The sesquiterpenes, β-caryophyllene (11.21–43.20%), and globulol (76.17–26.42%) were detected as
the major compounds of all studied guava varieties, while trans-nerolidol (0.53–10.14) was reported
as a plentiful compound in all of the varieties except for the RM variety. A high concentration of
D-limonene was detected in the EOs of the RM (33.96%), WI (27.04%), and ESEG (9.10%) varieties.
These major compounds were consistent with those reported for other genotypes from different
countries. Overall, the EOs’ composition and the chemometric analysis revealed substantial variations
among the studied varieties that might be ascribed to genetic variability, considering the stability of
the cultivation and climate conditions. Therefore, this chemical polymorphism of the studied varieties
supports that these varieties could be considered as genotypes of P. guajava. It is worth mentioning
here that the EOs, derived from leaves considered to be agricultural waste, of the studied varieties
showed that they are rich in biologically active compounds, particularly β-caryophyllene, trans-
nerolidol, globulol, and D-limonene. These could be considered as added value for pharmacological
and industrial applications. Further study is recommended to confirm the chemical variations of the
studied varieties at a molecular level, as well as their possible medicinal and industrial uses.

Keywords: Psidium guajava; guava; volatile oils; chemometric analysis; chemical polymorphism;
endogenous factors
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1. Introduction

Since the beginning of humanity, plants have been used as the main resources of
foods, medicines, clothing, and other goods [1]. Many pharmaceutical drugs are derived
from plant resources with potent biological activities, along with the low side effects and
costs [2]. There are more than 250,000 identified plant species worldwide; among them,
7000 species are cultivated plants that are used in various human activities [3] to provide a
myriad of bioactive components, i.e., dietary fiber, minerals, vitamins, and diverse amounts
of phytochemicals or secondary metabolites [4].

The guava tree (Psidium guajava; Family: Myrtaceae) is cultivated for its nutritive
fruit characterized by high contents of minerals and vitamins [5]. However, other parts
(the leaves, bark, and root) of the guava tree are used in traditional medicines to treat
several diseases. The guava tree produces a large quantity of biomass that results from
the continuous pruning process. This biomass—a waste or byproduct—can be considered
as an added value where it can be integrated into the production of various bioactive
compounds with pharmacological and industrial application [6]. Different extracts from
the guava leaf exhibit potent biological activities, such as anti-inflammatory, antipyretic,
neuroprotective, antihypertensive, hypolipidemic, anti-obesity, cardioprotective, antioxi-
dant, hepatoprotective, antidiarrheal, anticancer, immune-strengthening, anti-osteo-renal,
antimicrobial, antivirus, and antiplatelet aggregation activities [5,7–11]. In addition, several
chemical investigations described the identification of several vitamins (A, C, B, E, and K),
carbohydrates, tannins, triterpenoids, flavonoids, benzophenones, and phenolics [8,12–14].

The biological activities of P. guajava leaves usually correlate to its essential oils (EOs)
and volatiles that represent the main constituents of the leaves. Many compounds can be
characterized from the EOs that are extracted from guava leaves around the world, especially
the terpenoids, such as limonene, α-pinene, eucalyptol, caryophyllene isomers, α-humulene,
γ-murolene, selinene isomers, β-bisabolene, caryophyllene oxide, and epi-β-cubenol [5–7,15,16].
The EOs’ composition is reported to be affected by various exogenous factors, such as precipi-
tation, light, season, altitude, and soil characteristics. In addition, various endogenous factors
such as anatomical, physiological, and genetic characteristics can modify either the qualitative
or quantitative amounts of the EOs’ chemical compounds [17–19]. Chemical polymorphism is a
phenomenon wherein the same species show variation in the chemical composition of the bioac-
tive compounds [20,21]. This phenomenon is well known in the EOs of various plants [20,22–24].
The study of the plants’ variations in chemotypes is essential from a taxonomic point of view,
as well as for agronomic and pharmacological applications [6,25]. The chemical polymorphism
of the EOs from 22 genotypes of P. guajava grown in two Brazilian environments was observed
by de Souza et al. [6]. However, the chemical polymorphism in P. guajava that grows in Egypt
is not well studied. Therefore, the present work aims to (i) construct the chemical profiles of
EOs extracted from the leaves of six cultivated varieties of P. guajava growing under similar
environmental conditions in Egypt, and (ii) to establish a chemical-based relationship among
the six varieties using chemometric analysis.

2. Results and Discussion
2.1. Chemical Profiles of the EOs from Different Varieties of P. guajava

The EOs were extracted via hydro-distillation from the leaves of six varieties of guava:
Red Malaysian (RM), El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida
(ESEG), and Red Indian (RI). The extracted EOs showed considerable variation in the
yields, wherein they produced 0.48, 0.25, 0.21, 0.19, 0.18, 0.15, and 0.11% (v/w) for ESEG, RI,
E, RM, WI, EQ, and RT, respectively. The oil obtained from the ESEG guava variety was
comparable to that extracted from varieties of P. guajava cultivated in Pakistan (0.60%) [15],
Tunisia (0.66%) [26], Brazil (0.40%) [6], and Oman (0.38%) [16]. In contrast, other studied
varieties attained lower yields compared to other investigated varieties (Brazilian, Tunisian,
and Omani). These variations could be related to seasonal variations, climatic conditions,
or habitat [27–31]. The high yield in the ESEG variety showed that it is a premium variety
for the production of guava essential oil.
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The GC-MS chromatograms revealed substantial variations among the six different
varieties (Figure 1). The GC-MS analysis revealed that the chemical compounds can be
categorized under four classes (Figure 2). The sesquiterpenes of the E variety were classi-
fied into sesquiterpene hydrocarbons (62.15%) and oxygenated sesquiterpenes (37.15%).
Meanwhile, the ESEG variety attained 60.95% as sesquiterpene hydrocarbons and 26.11%
as oxygenated sesquiterpenes (Figure 2a).
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On the other side, the RM variety attained the highest content of monoterpenes
(56.87%), composed mostly of monoterpene hydrocarbons (55.72%), while oxygenated
monoterpenes were minor (1.15%). The RI, E, EQ, WI, and ESEG varieties attained 28.88,
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13.41, 12.22, 3.55, and 0.68% of the monoterpene compounds (Figure 2a). In general, RI
attained the highest content of oxygenated compounds (73.72%), followed by E (37.83%),
EQ (31.49%), ESEG (26.38%), WI (26.24%), and RM (25.51%). In contrast, the RM, WI,
and ESEG varieties exhibited 74.48, 73.72, and 72.90% as non-oxygenated compounds,
which suggested that terpene hydrocarbon biosynthesis is more activated in these varieties
(Figure 2b).

The observed variations among the different varieties could be ascribed to genetic
variability [32]. Therefore, this chemical polymorphism of the studied varieties supports
that these varieties could be considered as genotypes of P. guajava. This phenomenon
is known to exist for other species such as Thymus carnosus [23], Salvia fruticose [20],
Calotropis procera [17], Origanum libanoticum [24], Origanum syriacum [20], and Cinnamomum
osmophloeum [22]. The exogenous factors such as precipitation, light, season, altitude,
and soil characteristics can modify either the qualitative or quantitative amounts of the
chemical compounds in the EOs [18,19,29,33]. However, the samples of the different va-
rieties in the present study were collected from the same location in the same period;
therefore, the exogenous factors can be excluded as controlling factors.

The chemical profiles of the EOs of different P. guajava varieties are shown in Table 1.
A total of 38 chemical compounds were identified in the EOs of the studied guava varieties.
The WI variety attained the highest number of compounds (29), while RM, ESEG, RI, E,
and EQ had 28, 26, 25, 23, and 20 compounds, respectively. This composition was relatively
higher than those reported for the Tunisian variety [26].

The sesquiterpenes β-caryophyllene and globulol were detected as major compounds
of all studied guava varieties, while trans-nerolidol was reported as a major compound in all
except for the RM variety (Table 1). The preponderance of caryophyllene in these varieties
was in accordance with those reported by de Souza et al. [6], where they investigated 22
guava genotypes grown in two environments. However, globulol was not detected in the
genotypes of de Souza et al.’s [6] study. Although Arain et al. [15] reported that P. guajava
leaves collected from Pakistan present an excellent source of β-caryophyllene, our study
revealed that the ESEG and E varieties of P. guajava had approximately twice the amount
of β-caryophyllene compared to that of the Pakistani variety.

The EOs of the RM guava variety showed the presence of D-limonene, α-pinene,
globulol, and β-caryophyllene, and they are represented by 33.96, 20.58, 14.13, and 11.21%,
respectively. In the EQ variety, the main compounds detected were β-caryophyllene,
globulol, trans-nerolidol, and α-copaene, recorded at 43.20, 10.57, 9.03, and 6.71%, respec-
tively (Table 1). The EQ EO results were similar to the figures reported for the Pakistani
variety [15]. According to these results, D-limonene and α-pinene might be assigned
as a chemo-taxonomical fingerprint for the RM guava variety, while trans-nerolidol and
α-copaene can be assigned for the EQ variety.

On the other side, β-caryophyllene (30.33%), D-limonene (27.04%), trans-nerolidol
(8.27%), and globulol (6.17%) were reported as significant compounds in the WI variety.
β-caryophyllene (43.12%), globulol (18.47%), and trans-nerolidol (5.81%) were the major
constituents of the E variety of P. guajava.

The ESEG variety showed a high content of sesquiterpenes, exemplified by β-
caryophyllene (38.42%), globulol (10.75%), α-copaene (7.00%), and trans-nerolidol (5.39%).
Moreover, the RI variety was characterized by a preponderance of globulol (26.42%),
β-caryophyllene (13.40%), eucalyptol (10.89%), eudesm-7(11)-en-4-ol (10.59%), and trans-
nerolidol (10.14%). In our study, the six varieties were cultivated in the same garden with
the same cultivation, soil, and climate conditions that directly affect the EO chemical com-
positions [18,19,29,33]. Thus, these observed variations in the chemical composition of the
studied varieties confirmed the polymorphism phenomenon. Consequently, these varieties
can be considered as different chemotypes of P. guajava. In addition, these variations could
be attributed to endogenous factors such as individual genetic variability [32].
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Table 1. Chemical compositions of the essential oils (EOs) extracted from the leaves of six varieties of P. guajava.

No Compound Name RT KIExp KILit
P. guajava Varieties

Identification
RM EQ WI E ESEG RI

Monoterpene hydrocarbons
1 α-Pinene 9.76 940 939 20.58 ± 0.60 — 0.48 ± 0.03 * — 2.76 ± 0.04 0.48 ± 0.01 MS, KI
2 β-Pinene 11.57 982 980 0.49 ± 0.03 — — — 0.09 ± 0.02 — MS, KI
3 β-Myrcene 11.82 990 991 0.54 ± 0.03 — — — — — MS, KI
4 δ-3-Carene 12.98 1009 1010 0.15 ± 0.01 — — — — — MS, KI
5 D-Limonene 13.68 1033 1031 33.96 ± 0.70 3.55 ± 0.07 27.04 ± 0.52 — 9.10 ± 0.08 — MS, KI

Oxygenated monoterpenes
6 Eucalyptol 13.91 1034 1033 0.97 ± 0.0 — 0.63 ± 0.03 0.68 ± 0.02 0.16 ± 0.01 10.89 ± 0.21 MS, KI
7 Linalool 16.75 1104 1104 — — 0.26 ± 0.02 — — 0.75 ± 0.02 MS, KI
8 α-Terpineol 21.86 1195 1197 0.18 ± 0.01 — 0.09 ± 0.01 — 0.11 ± 0.01 1.29 ± 0.04 MS, KI
9 Geraniol formate 22.65 1313 1312 — 0.38 ± 0.02 — — — MS, KI

Sesquiterpene hydrocarbons
10 α-Copaene 29.82 1376 1376 0.93 ± 0.03 6.71 ± 0.08 3.41 ± 0.06 0.50 ± 0.03 7.00 ± 0.08 0.49 ± 0.03 MS, KI
11 α-Gurjunene 30.90 1411 1409 — — — — 0.13 ± 0.01 — MS, KI
12 β-Caryophyllene 31.91 1419 1418 11.21 ± 0.33 43.20 ± 0.24 30.33 ± 0.31 43.12 ± 0.26 38.42 ± 0.34 13.40 ± 0.11 MS, KI
13 Aromadendrene 32.74 1437 1439 1.55 ± 0.06 1.48 ± 0.04 1.55 ± 0.04 4.78 ± 0.06 0.02 ± 0.01 1.21 ± 0.02 MS, KI
14 cis-Muurola-3,5-diene 32.97 1452 1450 — — 0.41 ± 0.01 — — — MS, KI
15 α-Humulene 33.55 1454 1455 1.27 ± 0.04 4.99 ± 0.07 3.56 ± 0.04 4.84 ± 0.07 4.03 ± 0.05 1.96 ± 0.06 MS, KI
16 β-Copaene 34.27 1460 1460 0.19 ± 0.01 0.49 ± 0.02 0.62 ± 0.02 0.58 ± 0.03 0.50 ± 0.03 — MS, KI
17 β-Selinene 34.85 1486 1485 — — 0.21 ± 0.01 0.41 ± 0.01 — 1.31 ± 0.02 MS, KI
18 α-Bisabolene 35.05 1503 1504 0.20 ± 0.02 — — 3.27 ± 0.05 2.08 ± 0.04 2.02 ± 0.05 MS, KI
19 β-Bisabolene 35.34 1510 1509 0.20 ± 0.02 0.85 ± 0.02 0.72 ± 0.02 1.99 ± 0.04 1.55 ± 0.06 0.59 ± 0.03 MS, KI
20 δ-Cadinene 36.12 1513 1514 0.39 ± 0.03 2.19 ± 0.05 1.77 ± 0.04 0.73 ± 0.01 1.40 ± 0.07 — MS, KI
21 trans-Calamenene 36.47 1520 1519 0.34 ± 0.02 1.53 ± 0.04 0.70 ± 0.03 — 1.01 ± 0.03 — MS, KI
22 Junipene 41.58 1553 1555 2.48 ± 0.05 3.50 ± 0.08 2.92 ± 0.07 1.93 ± 0.03 4.58 ± 0.09 4.61 ± 0.08 MS, KI
23 α-Calacorene 42.05 1565 1566 — — — — 0.23 ± 0.03 — MS, KI
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Table 1. Cont.

No Compound Name RT KIExp KILit
P. guajava Varieties

Identification
RM EQ WI E ESEG RI

Oxygenated sesquiterpenes
24 cis-Lanceol 37.23 1527 1525 — — 0.23 ± 0.01 0.82 ± 0.03 0.66 ± 0.01 0.89 ± 0.03 MS, KI
25 Ledol 37.50 1564 1565 1.23 ± 0.03 2.40 ± 0.04 2.02 ± 0.04 0.34 ± 0.01 1.30 ± 0.03 0.64 ± 0.02 MS, KI
26 trans-Nerolidol 37.88 1566 1564 0.53 ± 0.02 9.03 ± 0.07 8.27 ± 0.10 5.81 ± 0.11 5.39 ± 0.21 10.14 ± 0.13 MS, KI
27 Epiglobulol 38.30 1579 1580 2.31 ± 0.06 1.58 ± 0.05 1.60 ± 0.05 2.47 ± 0.07 — 3.73 ± 0.07 MS, KI
28 Spathulenol 38.66 1580 1579 — — 0.33 ± 0.02 — — 0.26 ± 0.01 MS, KI
29 Caryophyllene oxide 38.79 1582 1583 0.32 ± 0.03 — 0.38 ± 0.02 0.96 ± 0.01 — 0.66 ± 0.03 MS, KI
30 Globulol 39.32 1586 1585 14.13 ± 0.09 10.57 ± 0.07 6.17 ± 0.09 18.47 ± 0.12 10.75 ± 0.08 26.42 ± 0.36 MS, KI
31 Viridiflorol 39.74 1590 1591 1.00 ± 0.03 0.48 ± 0.02 0.77 ± 0.01 1.68 ± 0.09 — 1.46 ± 0.03 MS, KI

32 Alloaromadendrene
oxide-(1) 39.96 1625 1625 0.73 ± 0.03 0.55 ± 0.01 — — — — MS, KI

33 γ-Eudesmol 40.21 1628 1626 — — — 0.49 ± 0.01 1.07 ± 0.01 0.42 ± 0.02 MS, KI
34 tau-Muurolol 40.45 1644 1642 1.09 ± 0.05 1.72 ± 0.03 0.96 ± 0.03 0.69 ± 0.03 1.69 ± 0.03 — MS, KI
35 Cubenol 40.98 1645 1644 2.56 ± 0.06 3.96 ± 0.06 1.99 ± 0.05 2.31 ± 0.05 2.98 ± 0.06 2.26 ± 0.04 MS, KI
36 δ-Cadinol 41.87 1646 1647 0.34 ± 0.03 0.73 ± 0.02 1.99 ± 0.03 1.98 ± 0.06 0.80 ± 0.03 1.65 ± 0.06 MS, KI
37 α-Acorenol 42.01 1655 1656 0.12 ± 0.01 0.47 ± 0.01 0.17 ± 0.01 1.13 ± 0.08 1.47 ± 0.02 1.67 ± 0.03 MS, KI
38 Eudesm-7(11)-en-4-ol 42.22 1689 1688 — — — — — 10.59 ± 0.21 MS, KI

Total 99.99 99.99 99.96 99.98 99.28 99.79

* The values represent means of the concentration (%) ± SD. RM: Red Malaysian, EQ: El-Qanater, WI: White Indian, E: Early, ESEG: El-Sabahya El-Gedida, RI: Red Indian. Rt: Retention time; KILit: Kovats
retention index on a DB-5 column in reference to n-alkanes; KIExp: Experimental Kovats retention index. The identification of EO components was established on the mass spectral data (MS) and Kovats indices
(RI) with those of Wiley spectral library collection and NIST library databases.
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β-Caryophyllene is reported to possess anticancer, analgesic [34], anticonvulsant [35],
anti-inflammatory [36], antioxidant, and antimicrobial activities [37], and its abundance, es-
pecially in the E, EQ, and ESEG varieties, makes them a possible source of this compounds.
As a result, β-caryophyllene was described as a potential agent to treat several diseases due
to its activity [38]. In addition, globulol, which was the highest compound in the RI variety,
is reported to have various biological activities, such as antifungal [39] and antibacterial
activities [40]. RI is also abundant in nerolidol and reported to possess antileishmanial [41],
antiparasitic [42], antimalarial [43], and antimicrobial activities [44].

The biologically active monoterpenes α-pinene and limonene were found in the
main compounds of the RM variety. α-pinene was described as the main component of
most EOs derived from the plant kingdom [45,46]. This compound is integrated as a
basic intermediate in bakery and chilled dairy products [47]. Several studies report that
the isomers of pinenes, especially α-pinene, have various biological potentialities such
as anti-inflammatory, antimicrobial, anticancer, antiviral, flavor, fragrance, antiallergy,
and fungicidal activities [45]. On the other hand, D-limonene was reported as a safe
anticancer agent, particularly for breast cancer [48]. As a result, the guava leaves’ high
biomass yield could be considered a rich resource for these effective and sustainable
bioactive compounds.

2.2. Multivariate Data Analysis of the EOs GC-MS Dataset

Although differences in chromatographic patterns were observed among essential
oil specimens, we attempted to categorize them in a holistic manner using chemometric
tools. Principal component multivariate data analysis (PCA) was applied to model the EO
compounds dataset (Figure 3A) and extracted using Metabolomics Ion-based Data Extrac-
tion Algorithm (MET-IDEA), and led to the detection of 867 Mass Spectral (MS) signals.
The model accounted for 77% of the total variance described by principal components
(PC1 and PC2). The PCA score plot (Figure 3A) revealed the distant separation of RM with
positive score values along PC1 (right in PC1), whereas the ESEG variety was positioned
on the other side with negative score values along with PC. On the other side, all other
varieties were clustered together in the center of the PCA and had positive score values.
Moreover, the examination of the loading plot revealed that α-pinene and limonene con-
tributed the most to oil segregation and were more abundant in the RM variety. In contrast,
the position of the ESEG variety was attributed to its abundance in sesquiterpenes, i.e.,
caryophyllene, α-copaene, and junipene. Hierarchical clustering analysis further confirmed
the EOs segregation pattern, where RM and ESEG varieties were placed separately away
in the dendrogram (Figure 3C).
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mers of pinenes, especially α-pinene, have various biological potentialities such as anti-
inflammatory, antimicrobial, anticancer, antiviral, flavor, fragrance, antiallergy, and fun-
gicidal activities [45]. On the other hand, D-limonene was reported as a safe anticancer 
agent, particularly for breast cancer [48]. As a result, the guava leaves’ high biomass yield 
could be considered a rich resource for these effective and sustainable bioactive com-
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2.2. Multivariate Data Analysis of the EOs GC-MS Dataset 
Although differences in chromatographic patterns were observed among essential 

oil specimens, we attempted to categorize them in a holistic manner using chemometric 
tools. Principal component multivariate data analysis (PCA) was applied to model the EO 
compounds dataset (Figure 3A) and extracted using Metabolomics Ion-based Data Extrac-
tion Algorithm (MET-IDEA), and led to the detection of 867 Mass Spectral (MS) signals. 
The model accounted for 77% of the total variance described by principal components 
(PC1 and PC2). The PCA score plot (Figure 3A) revealed the distant separation of RM with 
positive score values along PC1 (right in PC1), whereas the ESEG variety was positioned 
on the other side with negative score values along with PC. On the other side, all other 
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tributed the most to oil segregation and were more abundant in the RM variety. In con-
trast, the position of the ESEG variety was attributed to its abundance in sesquiterpenes, 
i.e., caryophyllene, α-copaene, and junipene. Hierarchical clustering analysis further con-
firmed the EOs segregation pattern, where RM and ESEG varieties were placed separately 
away in the dendrogram (Figure 3C). 
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3. Materials and Methods
3.1. Plant Materials Collection and Preparation

The fresh, healthy, and well-developed (mature) leaves of the six guava (P. guajava)
varieties were collected during the fruiting period (June 2019) from the same garden in
Almansouria, Alharam, Egypt. These varieties were characterized as Red Malaysian (RM),
El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red
Indian (RI). The garden is located in a semi-urban area, and the soil in the garden is
loamy. The climate of the study area has an average temperature of 30–35 ◦C and average
relative humidity of 60%. All of the collected varieties were authenticated by Mohamed
El Gebaly, Professor of Taxonomy at the El-Orman Garden and National Research Center.
The leaves were dried in the shade at room temperature (25 ± 3 ◦C) for two days before
they were ground into a fine powder and packed in paper bags at −4 ◦C until further
analysis [30]. Because air-drying aromatic plants at high temperature causes isoprenoid
loss [49], leaf samples were dried in a shady place at room temperature, and all samples
were treated with same procedures to avoid bias.

3.2. EOs, Extraction, GC-MS Analysis, and Components Characterization

The air-dried leaves (200 g) of the six varieties were subjected separately to hydro-
distillation using Clevenger-type apparatuses (Shiva Scientific Glass Private Limited, New
Delhi, India) for three hours. The oil layer was collected using hexane, dried with 0.5 g of
sodium sulfate (anhydrous), and stored in glass vials until GC-MS analysis. The six extracted
EOs were separately analyzed via the GC-MS technique using the GC-MS instrument
(THERMO Scientific ™ Corporate, Waltham, MA, USA) at the Department of Medicinal
and Aromatic Plants Research, National Research Center, Egypt [17]. The specifications of
the used GC-MS instrument were adjusted according to the following conditions: TRACE
GC Ultra Gas Chromatographs (THERMO Scientific™ Corporate, Waltham, MA, USA),
lined with a Thermo Scientific ISQ™ EC single quadrupole mass spectrometer. The GC-MS
system was equipped with a TR-5 MS column with dimensions of 30 m × 0.32 mm, i.d.,
0.25 µm film thickness. Helium was used as carrier gas at a flow rate of 1.0 mL/min with
a split ratio of 1:10 using the following temperature program: 60 ◦C for 1 min, rising at
4.0 ◦C/min to 240 ◦C, and held for 1 min. Both the injector and detector were held at 210 ◦C.
An aliquot of 1 µL of diluted samples in hexane (1:10, v/v) was always injected. Mass spectra
were recorded by electron ionization (EI) at 70 eV, using a spectral range of m/z 40–450.

Chemical constituents of the EOs under investigation were characterized by Auto-
mated Mass spectral Deconvolution and Identification (AMDIS) software, version 2.71
(Gaithersburg, MD, USA) (www.amdis.net), retention indices (relative to n-alkanes C8–C22),
and comparison of the mass spectrum with authentic compounds (if available) from the
Wiley spectral library collection and NIST library database (Gaithersburg, MD, USA; Wiley,
Hoboken, NJ, USA).

3.3. GC-MS Multivariate Data Analyses

The chemical compounds of the identified EOs were extracted using MET-IDEA
software with default parameter settings for GC-MS [50]. The aligned peak abundance
data table was further exported to principal component analysis (PCA) using the SIMCA-
P version 13.0 software package (Umetrics, Umeå, Sweden). All variables were mean-
centered and scaled to the Pareto variance.

4. Conclusions

The GC-MS analysis of the six studied varieties of P. guajava revealed a substantial
variation either in the quantity or quality of their EOs’ chemical composition. This variation
reflects the chemical polymorphism phenomenon, and these varieties are considered to be
different chemotypes. Based on the main compounds and the PCA analysis, it is evident
that some main compounds such as β-caryophyllene and globulol were reported in all
studied varieties, while trans-nerolidol was reported as a major compound in all varieties

www.amdis.net
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except for the RM variety. Other major compounds characterize specific varieties; for ex-
ample, α-pinene and limonene characterize the RM variety, and caryophyllene, α-copaene,
and junipene distinguish the ESEG variety. Therefore, these compounds could be used as a
chemical fingerprint to identify these varieties. In practical terms, these major compounds
are biologically effective compounds with various activities. The large biomass of guava
trees that results from the pruning process, which is considered a waste or byproduct,
can be a potential source for these important compounds. The characterization of chemo-
types in cultivated plants is crucial for agricultural applications, chemistry purposes,
and pharmacological uses. Further study is recommended to characterize the studied
varieties at the molecular level to confirm their chemotaxonomic differences.
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