Exploring structure-property relationships in a bio-inspired family of bipodal and electronically-coupled bistriphenylamine dyes for dye-sensitized solar cell applications

Tamara Al-Faouri, Francis L. Buguis, Saba Azizi-Soldouz, Olga V. Sarycheva, Burhan A. Hussein, Reeda Mahmood, Bryan D. Koivisto*a

Table of Contents

1. General Considerations ... 1
2. Synthesis \& Experimental.. 2
3. Summary of Physicochemical Characterization... 18
4. UV-Vis and Fluorescence Spectroscopy.. 19

UV-Vis in DCM... 19
Absorption and Fluorescence in DCM... 20
5. Cyclic Voltammetry ... 23
6. IV Curves ... 28
7. References... 30

1. General Considerations

All reagents were purchased from Aldrich except palladium complexes which were purchased from Pressure Chemical Co. (Pittsburg, PA). Purification by column chromatography was carried out using silica (Silicycle: ultrapure flash silica). Analytical thin-layer chromatography was performed on aluminumbacked sheets precoated with silica 60 F254 adsorbent (0.25 mm thick; Silicycle) and visualized under UV light. Routine ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, NMR spectra were recorded at 400 and 100 MHz , respectively, on a Bruker AV 400 instrument at ambient temperature. Chemical shifts (δ) are reported in parts per million (ppm) from down to up-field and referenced to a residual nondeuterated solvent $\left(\mathrm{CHCl}_{3} ; 7.26 \mathrm{ppm}\right.$ for $1 \mathrm{H} \& 77.1 \mathrm{ppm}$ for 13C). ${ }^{13}$ C were not able to be recorded for the biscyanoacetic acid dyes because of a lack of solubility. Standard abbreviations indicating multiplicity are used as follows: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad. High resolution mass spectroscopy (HRMS) results were obtained from Queens University (Kingston, Canada) or Ulm University (Ulm, Germany - MALDI only). Electron impact (EI) mass spectrometry and Electrospray ionization (ESI) techniques were used for the ionization; time of flight (TOF) was used for analysis. All physicochemical measurements where performed in dichloromethane, unless otherwise noted. Cyclic voltammetry (CV) data was collected using a MetrOhm-Autolab Type II potentiostat/galvanostat. All CV were ran at $100 \mathrm{mV} / \mathrm{s}$, in $0.1 \mathrm{M} \mathrm{NBu}_{4} \mathrm{PF}_{6}$, at a dye concentration of $\sim 2 \mathrm{mM}$ using a Pt working electrode and counter electrode, and a Ag wire pseudoreference, followed by referencing to an internal standard either OFc (octamethylferrocene: 225 mV vs NHE) or Fc (ferrocene: 700 mV vs NHE) depending on analyte wave overlap. UV-Vis absorption profiles were collected using an Agilent Cary 5000 UV-vis-NIR spectrophotometer. Fluorescence was measured with a Perkin Elmer LS-50B Luminescence Spectrometer. DFT calculations were performed using Gaussian16 Revision C.01. Naming of compounds as done using ChemDraw Professional v.16.

Cell Fabrication. Photoanodes were fabricated by screen-printing methods on fluorine-doped tin-oxide [FTO; Sigma Aldrich; TEC7 ($7 \Omega \mathrm{~cm}^{-2}$)] using 2 layers of 18NR-T (20 nm particles, $12 \mu \mathrm{~m}$ thick), and 1 layer of WER4-O (100 nm particles, $6 \mu \mathrm{~m}$ thick) for a total thickness of $18 \mu \mathrm{~m}$. The FTO glass was treated with $\mathrm{TiCl}_{4}(\mathrm{aq})(0.05 \mathrm{M})$ at $70^{\circ} \mathrm{C}$ for 30 min and subsequently rinsed with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{EtOH} . \mathrm{TiO}_{2}$ paste was applied to FTO glass and was air dried. Then it was heated in an oven at $125^{\circ} \mathrm{C}$ for 6 min . Prior to coating with dye, TiO_{2} substrates were treated with $\mathrm{TiCl}_{4}(\mathrm{aq})(0.05 \mathrm{M})$ at $70^{\circ} \mathrm{C}$ for 30 min and subsequently rinsed with $\mathrm{H}_{2} \mathrm{O}$ and EtOH , then dried prior to heating. The electrodes were heated to $350^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 450^{\circ} \mathrm{C}$ for 15 min , and $500^{\circ} \mathrm{C}$ for 15 min and left to cool to $80^{\circ} \mathrm{C}$ prior to immersing into a DCM solution containing the dye $(0.25 \mathrm{mM})$ for 16 h . The stained films were then rinsed with copious amounts of DCM and dried. The cells were fabricated using Pt-coated counter-electrode [FTO TEC-15 (15 $\left.\Omega \mathrm{cm}^{-2}\right)$] and sealed with a $30 \mu \mathrm{~m}$ Surlyn (Dupont) gasket by resistive heating. The Z1137 electrolyte used for this study was $\mathrm{I}_{3} / \mathrm{II}^{-}\left[1.0 \mathrm{M} 1,3\right.$ - dimethylimidazolium iodide (DMII), $60 \mathrm{mM} \mathrm{I}_{2}, 0.5 \mathrm{M}$ tert-butylpyridine, 0.05 M NaI and 0.1 M GuNCS in acetonitrile. The electrolyte was introduced into the two-sandwiched electrodes via vacuum backfilling through a hole in the counter electrode. In the cases where the $\mathrm{I}_{3} / \mathrm{I}^{-}$electrolyte was used, the hole was sealed with a 1 x 1 cm Surlyn sheet and a glass cover slip. The active area of the TiO_{2} was 1 cm^{2}. Silver bus bars were added to all cells after sealing. Devices were tested with a mask of $0.25 \mathrm{~cm}^{2}$ using a ScienceTech Xe Solar simulator with SciRunIV software connected to a Kiethley 2400 Source meter. Electrochemical Impedance Spectroscopy was performed using a MetrOhm-Autolab Type III potentiostat/galvanostat equipped with an FRA2 processor.

2. Synthesis \& Experimental

Scheme S1. Synthesis of aldehyde family $\mathbf{6}$ a-d and dye family $\mathbf{1 a - d}$. Reaction conditions: a) A (1.1 eq.), $\mathrm{K}_{3} \mathrm{PO}_{4}(3.3 \mathrm{eq}),. \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2$ or $4 \mathrm{~mol} \%),\left[(\mathrm{t}-\mathrm{Bu})_{3} \mathrm{PH}^{2} \mathrm{BF}_{4}(1\right.$ or $2 \mathrm{~mol} \%)$, THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$, reflux 16 h . b) cyanoacetic acid (6.0 eq.), piperidine (0.100 mL), $\mathrm{CHCl}_{3}:$ Hex ($1: 1 \mathrm{v} / \mathrm{v}$), reflux 16 h .

Molecules $\mathbf{A a},{ }^{1} \underline{\mathbf{A b},}{ }^{2} \mathbf{A c},{ }^{3} \mathbf{A d},{ }^{4} \underline{\mathbf{5},}{ }^{1} \underline{\mathbf{6 a}},{ }^{1} \mathbf{6 b},{ }^{5} \underline{\mathbf{1 b}}{ }^{5}$ have been previously reported

4,4'-((4'-(bis(4-(hexyloxy)phenyl)amino)-[1,1'-biphenyl]-4-yl)azanediyl)dibenzaldehyde (6c): In a 250
 mL RBF with a magnetic stir bar, $\mathbf{5}(0.166 \mathrm{~g}, 0.44 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.336 \mathrm{~g}$, $1.59 \mathrm{mmol})$ were dissolved in 20 mL of THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The bisOHex-TPA-BPin $\left(\mathbf{A}_{\mathbf{C}}, 0.288 \mathrm{~g}\right.$, $0.480 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.009 \mathrm{~g}, 0.009 \mathrm{mmol})$, and $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}^{2} \mathrm{BF}_{4}\right.$ ancillary ligand $(0.010 \mathrm{~g}, 0.035 \mathrm{mmol})$ were added and the mixture was heated to reflux under N_{2} overnight ($\sim 12 \mathrm{~h}$). The mixture was concentrated in vacuo. DCM (25 mL) was added and the solution was washed with water ($3 \times 50 \mathrm{~mL}$). The organics were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with Hex:EtOAc ($3: 1 \mathrm{v} / \mathrm{v}$) as the eluent to afford $\mathbf{6 c}(232 \mathrm{mg}$, $0.30 \mathrm{mmol}, 68.2 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.90(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.79$
$\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.55\left(\mathrm{H} e, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.40\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23\left(\mathrm{H} c, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8\right.$ $\mathrm{Hz}, 4 \mathrm{H}), 7.18\left(\mathrm{H} d, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.08\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.98\left(\mathrm{Hg}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.84$ $\left(\mathrm{H} i, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.94\left(\mathrm{H} j, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.78(\mathrm{H} k, \mathrm{dt}, 4 \mathrm{H}), 1.46(\mathrm{H} l, \mathrm{dt}, 4 \mathrm{H}), 1.35(\mathrm{H} m, \mathrm{H} n$, $\mathrm{m}, 8 \mathrm{H}), 0.92(\mathrm{Ho}, \mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.6,155.8,152.1,148.7,143.9,140.6$, $139.0,131.5,128.1,127.4,127.3,126.9,123.0,120.5,115.5,68.4,31.8,29.5,25.9,22.8,14.2$.

4,4'-((4'-(bis(4-(methylthio)phenyl)amino)-[1,1'-biphenyl]-4-yl)azanediyl)dibenzaldehyde (6d): In a 250
 mL RBF with a magnetic stir bar, $5(0.166 \mathrm{~g}, 0.44 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.336 \mathrm{~g}$, $1.59 \mathrm{mmol})$ were dissolved in 20 mL of THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The SMe-TPA-BPin ($0.225 \mathrm{~g}, 0.48 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.009 \mathrm{~g}, 0.009 \mathrm{mmol})$, and $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}\right] \mathrm{BF}_{4}$ ancillary ligand $(0.010 \mathrm{~g}, 0.035 \mathrm{mmol})$ were added and the mixture was heated to reflux under N_{2} overnight. The mixture was concentrated in vacuo. DCM (25 mL) was added and the solution was washed with water (3 x 50 mL). The organics were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with Hex:EtOAc ($3: 1$ $\mathrm{v} / \mathrm{v})$ as the eluent to afford $\mathbf{6 d}(210 \mathrm{mg}, 0.33 \mathrm{mmol}, 75.5 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=9.90(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.79\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.57\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25-7.16\left(\mathrm{H} c, \mathrm{H} d, \mathrm{H} h, \mathrm{~m},{ }^{3} J_{\mathrm{HH}}=4\right.$ $\mathrm{Hz}, 10 \mathrm{H}), 7.11\left(\mathrm{Hg}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.06\left(\mathrm{Hi}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 2.48(-S M e, \mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (100 MHz, CDCl_{3}): $\delta 190.5,152.0,147.2,145.1,144.3,138.5,133.8,132.4,131.5,131.4,128.6,128.2$, 127.7, 127.2, 125.1, 123.5, 123.0, 16.9.

3,3'-(((4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)azanediyl)bis(4,1-phenylene))bis(2-cyanoacrylic acid) 1a: Precursor $6 \mathbf{a}(70 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in minimal CHCl_{3} : Hex $(1: 1 \mathrm{v} / \mathrm{v})$ sparged with N_{2} for 30
 minutes. Cyanoacetic acid $(0.066 \mathrm{~g}, 0.776 \mathrm{mmol})$ and piperidine $(0.01 \mathrm{~mL}$, 0.957 mmol) were added and the solution was heated to reflux under N_{2} overnight (12 h). The solvent was removed, and the precipitate was dissolved in neat CHCl_{3} and was stirred with $1.2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine, dried over MgSO_{4} and concentrated in vacuo to yield the product as a dark-orange/red solid $1 \mathbf{1 a}(75 \mathrm{mg}, 0.11 \mathrm{mmol}$, $87.6 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.06(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.85\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.51\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.39\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.24\left(\mathrm{H} d, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.20\left(\mathrm{Hi}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.14-7.12(\mathrm{Hg}$, $\mathrm{H} c, \mathrm{~m}, 6 \mathrm{H}), 7.06\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.97\left(\mathrm{H} j, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right)$. HRMS (ESI): m/z 678.22671 calculated for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$: found m / z 678.22346. To help with $1 H-N M R$ solubility, 2 drops of DMSO- d^{6} was added. Poor solubility prevented the acquisition of 13C data.

3,3'-(((4'-(bis(4-(hexyloxy)phenyl)amino)-[1,1'-biphenyl]-4-yl)azanediyl)bis(4,1-phenylene))bis(2-
cyanoacrylic acid) 1c: Precursor $\mathbf{6 c}(100 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in
 minimal CHCl_{3} : Hex ($1: 1 \mathrm{v} / \mathrm{v}$) sparged with N_{2} for 30 minutes. Cyanoacetic $\operatorname{acid}(0.066 \mathrm{~g}, 0.776 \mathrm{mmol})$ and piperidine $(0.01 \mathrm{~mL}, 0.957 \mathrm{mmol})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was removed, and the precipitate was dissolved in neat CHCl_{3} and was stirred with $1.2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine, dried over MgSO_{4} and concentrated in vacuo to yield the product as a dark-orange/red solid 1c ($95 \mathrm{mg}, 0.10 \mathrm{mmol}, 81.0 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.86\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.48\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.22-7.20(\mathrm{H} d, \mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{H} c$, $\left.\mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.01\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.91\left(\mathrm{Hg}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 6.77\left(\mathrm{Hi}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.87\left(\mathrm{H} j, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.71(\mathrm{H} k, \mathrm{~d}$, $4 \mathrm{H}), 1.39(\mathrm{H} l$, dt, 4H), 1.28-1.19 (Hm,Hn, m, 8H), $0.84(\mathrm{Ho}, \mathrm{m}, 6 \mathrm{H})$. To help with $1 H-N M R$ solubility, 2 drops of DMSO-d ${ }^{6}$ was added. Poor solubility prevented the acquisition of 13 C data.

3,3'-(((4'-(bis(4-(methylthio)phenyl)amino)-[1,1'-biphenyl]-4-yl)azanediyl)bis(4,1-phenylene))bis(2-
 cyanoacrylic acid) 1d: Precursor $\mathbf{6 d}(80 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in minimal CHCl_{3} : Hex ($1: 1 \mathrm{v} / \mathrm{v}$) sparged with N_{2} for 30 minutes. Cyanoacetic acid $(0.066 \mathrm{~g}, 0.776 \mathrm{mmol})$ and piperidine $(0.01 \mathrm{~mL}, 0.957 \mathrm{mmol})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was removed, and the precipitate was dissolved in neat CHCl_{3} and was stirred with $1.2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine, dried over MgSO_{4} and concentrated in vacuo to yield the product as a dark-orange $/$ red solid 1d ($80 \mathrm{mg}, 0.10 \mathrm{mmol}, 82.6 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.85\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.50\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38\left(\mathrm{H} f, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.15-7.07(\mathrm{H} c, \mathrm{H} h, \mathrm{H} d, \mathrm{~m}, 10 \mathrm{H})$, $7.03\left(\mathrm{Hg}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.98\left(\mathrm{Hi}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 2.41(-S M e, \mathrm{~s}$, 6 H). HRMS (ESI): m/z 770.20215 calculated for $\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$: Found m/z 770.20032. To help with 1H-NMR solubility, 2 drops of DMSO-d ${ }^{6}$ was added. Poor solubility prevented the acquisition of 13C data

Scheme S2. Synthesis of aldehyde family $\mathbf{9}$ a-d and dye family $\mathbf{2}$ a-d. Reaction conditions: a) B (1.1 eq.), $\mathrm{K}_{3} \mathrm{PO}_{4}(5.1 \mathrm{eq}),. \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2$ or $4 \mathrm{~mol} \%),\left[(\mathrm{t}-\mathrm{Bu})_{3} \mathrm{PH}^{2} \mathrm{BF}_{4}(1\right.$ or $2 \mathrm{~mol} \%)$, THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$, reflux 16 h . b) NBS (1.0 eq.), THF:EtOAc ($2: 1 \mathrm{v} / \mathrm{v}$), $\left.0^{\circ} \mathrm{C} 5 \mathrm{~h} . \mathrm{c}\right) \mathbf{A}(1.1 \mathrm{eq}),. \mathrm{K}_{3} \mathrm{PO}_{4}(3.2 \mathrm{eq}),. \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2$ or $4 \mathrm{~mol} \%)$, THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$, reflux $\left.16 \mathrm{~h} . \mathrm{d}\right)$ cyanoacetic acid (6.0 eq .), piperidine (0.100 mL), $\mathrm{CHCl}_{3}: \mathrm{Hex}(1: 1 \mathrm{v} / \mathrm{v})$, reflux 16 h .

4,4'-((4-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)phenyl)azanediyl)dibenzaldehyde (9a): In a 250 mL
 RBF equipped with a magnetic stir bar, $8(0.150 \mathrm{~g}, 0.325 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ $(0.227 \mathrm{~g}, 1.07 \mathrm{mmol})$ were dissolved in 30 mL of THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The TPA-BPin ($\mathbf{A}_{\mathbf{a}}, 0.125 \mathrm{~g}, 0.34$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.007 \mathrm{~g}, 0.006 \mathrm{mmol})$, and $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}^{2}\right] \mathrm{BF}_{4}$ ancillary ligand $(0.007 \mathrm{~g}, 0.026 \mathrm{mmol})$ were added and the mixture was heated to reflux under N_{2} overnight. The mixture was concentrated, extracted with DCM (100 mL) was washed with water ($3 \times 100 \mathrm{~mL}$). The organic phases were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with Hex:EtOAc ($3: 1 \mathrm{v} / \mathrm{v}$) as the mobile phase to yield the product $9 \mathbf{9 a}(120 \mathrm{mg}, 0.19 \mathrm{mmol}, 59.0 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.80\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, $7.62\left(\mathrm{He}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.49\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.29-7.20(\mathrm{H} d$, $\mathrm{H} c, \mathrm{H} f, \mathrm{Hg}, \mathrm{m}, 8 \mathrm{H}), 7.17\left(\mathrm{H} i, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.13\left(\mathrm{H} j, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 7.10-7.02(\mathrm{H} k, \mathrm{H} l, \mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=190.7$, $151.9,147.6,147.5,144.6,144.2,141.4,132.4,131.6,131.5,129.5,128.2,127.2,127.1,126.5,124.7$, 124.5, 123.7, 123.4, 123.1.

4,4'-((4-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophen-2-yl)phenyl)azanediyl)dibenzaldehyde

(9c): In a 250 mL RBF with a magnetic stir bar, $8(0.150 \mathrm{~g}, 0.325 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.227 \mathrm{~g}, 0.107 \mathrm{mmol})$ were dissolved in 10 mL of THF: $\mathrm{H}_{2} \mathrm{O}$ $(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The HexO-TPA-BPin ($\mathbf{A}_{\mathbf{c}}, 0.20 \mathrm{~g}, 0.33 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.007 \mathrm{~g}, 0.007$ $\mathrm{mmol})$, and $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}\right] \mathrm{BF}_{4}$ ancillary ligand ($0.007 \mathrm{~g}, 0.026 \mathrm{mmol}$) were added and the mixture was heated to reflux under N_{2} overnight. The mixture was concentrated in vacuo. DCM (50 mL) was added and the solution was washed with water ($3 \times 100 \mathrm{~mL}$). The organics were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with $\mathrm{Hex}: \mathrm{EtOAc}(5: 1 \mathrm{v} / \mathrm{v})$ as the mobile phase to yield the product $9 \mathrm{c}(175 \mathrm{mg}, 0.20 \mathrm{mmol}, 63.1 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.10(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.79\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 7.61\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25-$ $7.22(\mathrm{H} c, \mathrm{H} d, \mathrm{~m}, 6 \mathrm{H}), 7.17\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15\left(\mathrm{Hg}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06\left(\mathrm{Hj}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.92\left(\mathrm{H} i, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83$ $\left(\mathrm{H} k, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.94\left(\mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.78(\mathrm{H} m, \mathrm{dt}, 4 \mathrm{H}), 1.50-1.43(\mathrm{H} n, \mathrm{~m}, 4 \mathrm{H}), 1.36-$ $1.34(\mathrm{Ho}, \mathrm{H} p, \mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{H} q, \mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=190.5,155.7,151.8,148.6$, $144.5,144.3,140.7,140.4,132.4,131.5,131.4,127.1,126.9,126.8,126.2,125.9,124.3,122.9,122.6$, $120.3,115.3,68.3,31.6,29.3,25.8,22.6,14.0$.

4,4'-((4-(5-(4-(bis(4-(methylthio)phenyl)amino)phenyl)thiophen-2-yl)phenyl)azanediyl)dibenzaldehyde
(9d): In a 250 mL RBF with a magnetic stir bar, $8(0.150 \mathrm{~g}, 0.325 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.227 \mathrm{~g}, 0.1 .07$ $\mathrm{mmol})$ were dissolved in 10 mL of THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes.
 The SMeO-TPA-BPin $\left(\mathbf{A}_{\mathbf{d}}, 0.18 \mathrm{~g}, 0.39 \mathrm{mmol}\right), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.007 \mathrm{~g}$, $0.007 \mathrm{mmol})$, and $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}^{2}\right] \mathrm{BF}_{4}$ ancillary ligand $(0.007 \mathrm{~g}, 0.026 \mathrm{mmol})$ were added and the mixture was heated to reflux under N_{2} overnight. The mixture was concentrated in vacuo. DCM (50 mL) was added and the solution was washed with water ($3 \times 100 \mathrm{~mL}$). The organics were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with Hex:EtOAc $(5: 1 \mathrm{v} / \mathrm{v})$ as the eluent to yield the product $9 \mathbf{d}(165 \mathrm{mg}, 0.23 \mathrm{mmol}$, $70.7 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{H} b, \mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.62\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.48\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.28\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25-7.15(\mathrm{H} d, \mathrm{H} c, \mathrm{H} g, \mathrm{H} j, \mathrm{~m}, 11 \mathrm{H})$, 7.10-7.01 (Hk, Hi, m, 6H), $2.48(-S M e, ~ s, ~ 6 H) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 190.4,151.9,147.2,145.0,144.6,144.0,141.5,132.5,132.3$, 131.6, 131.5, 128.6, 127.2, 127.1, 126.6, 125.1, 124.4, 123.4, 123.1, 16.7.

3,3'-(((4-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)phenyl)azanediyl)bis(4,1-phenylene))bis(2-

cyanoacrylic acid) (2a): Precursor $\mathbf{9 a}(100 \mathrm{mg}, 0.16 \mathrm{mmol})$ was dissolved in minimal $\mathrm{CHCl}_{3}: \mathrm{Hex}(1: 1 \mathrm{v} / \mathrm{v})$ and sparged with N_{2} for 30 minutes. Cyanoacetic acid ($0.082 \mathrm{~g}, 0.957 \mathrm{mmol}$) and piperidine $(0.01 \mathrm{~mL})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was decanted, and the precipitate was dissolved in neat CHCl_{3} and was stirred with $1.2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine, dried over MgSO_{4} and concentrated in vacuo to yield the product as a dark-orange/red solid $\mathbf{2 a}(95 \mathrm{mg}, 0.12 \mathrm{mmol}, 78.3 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.99\left(\mathrm{H} b, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8\right.$ $\mathrm{Hz}, 4 \mathrm{H}), 7.65\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.50\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.30-7.02 (H $\left.d, \mathrm{H} c, \mathrm{H} f, \mathrm{Hg}, \mathrm{H} i, \mathrm{~m},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 10 \mathrm{H}\right), 7.13\left(\mathrm{H} j, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.10-7.02 (Hk, Hl, m, 6H). HRMS (ESI): m/z 760.21443 calculated for $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$: found $\mathrm{m} / \mathrm{z} 760.21082$. To help with $1 H-N M R$ solubility, 2 drops of DMSO-d d^{6} was added. Poor solubility prevented the acquisition of 13C data.

3,3'-(((4-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophen-2-yl)phenyl)azanediyl)bis(4,1-phenylene))bis(2-cyanoacrylic acid) (2c): Precursor 9c ($135 \mathrm{mg}, 0.16 \mathrm{mmol}$) was dissolved in minimal $\mathrm{CHCl}_{3}: \mathrm{Hex}(1: 1 \mathrm{v} / \mathrm{v})$ sparged with N_{2} for 30 minutes. Cyanoacetic acid $(0.082 \mathrm{~g}, 0.957 \mathrm{mmol})$ and piperidine $(0.01 \mathrm{~mL})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was removed and the precipitate was dissolved in neat CHCl_{3} and was stirred with $1.2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine, dried over MgSO_{4} and concentrated in vacuo to yield the product as a dark-orange $/$ red solid $\mathbf{2 c}(112 \mathrm{mg}, 0.11 \mathrm{mmol}$, $71.7 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.14(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.87(\mathrm{H} b$, br m, 4H), 7.56 (He, br m, 2H), 7.40 (Hh, Hd, br m, 4H), 7.30-7.00 ($\mathrm{H} c, \mathrm{H} f, \mathrm{Hg}, \mathrm{H} i, \mathrm{~m}, 8 \mathrm{H}), 6.91(\mathrm{Hj}, \mathrm{m}, 4 \mathrm{H}), 6.82(\mathrm{H} k, \mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{Hl}$, $\mathrm{m}, 4 \mathrm{H}), 1.76$ ($\mathrm{m}, \mathrm{m}, 4 \mathrm{H}$), 1.45 ($\mathrm{n}, \mathrm{m}, 4 \mathrm{H}$), 1.30-1.28 (Ho, Hp, m, 8H), $0.91(\mathrm{H} q, \mathrm{~m}, 6 \mathrm{H})$. To help with $1 \mathrm{H}-\mathrm{NMR}$ solubility, 2 drops of DMSOd^{6} was added. Poor solubility prevented the acquisition of 13C data.
(2Z,2'Z)-3,3'-(((4-(5-(4-(bis(4-(methylthio)phenyl)amino)phenyl)thiophen-2-yl)phenyl)azanediyl)bis(4,1-
 phenylene))bis(2-cyanoacrylic acid) (2d): Precursor 9d (115 mg, 0.16 $\mathrm{mmol})$ was dissolved in minimal $\mathrm{CHCl}_{3}: \mathrm{Hex}(1: 1 \mathrm{v} / \mathrm{v})$ sparged with N_{2} for 30 minutes. Cyanoacetic acid ($0.082 \mathrm{~g}, 0.957 \mathrm{mmol}$) and piperidine $(0.01 \mathrm{~mL})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was removed and the precipitate was dissolved in neat CHCl_{3} and was stirred with $1.2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine, dried over MgSO_{4} and concentrated in vacuo to yield the product 2d as a darkorange/red solid ($110 \mathrm{mg}, 0.13 \mathrm{mmol}, 80.6 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.99\left(\mathrm{H} b, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.65(\mathrm{He}$, $\left.\mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.49\left(\mathrm{H} h, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.30-7.15(\mathrm{H} f, \mathrm{H} d$, $\mathrm{H} c, \mathrm{Hg}, \mathrm{Hj}, \mathrm{m}, 12 \mathrm{H}$), 7.10-6.95 (Hk, Hi, m, 6H), 2.48 (-SMe, s, 6 H). HRMS (ESI-negative mode): $\mathrm{m} / \mathrm{z} 851.18259$ calculated for $\mathrm{C}_{50} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$: Found m/z 851.18658. To help with 1H-NMR solubility, 2 drops of DMSO-d ${ }^{6}$ was added. Poor solubility prevented the acquisition of 13C data.

Scheme S3. Synthesis of aldehyde family $\mathbf{1 2}$ a-d and dye family $\mathbf{1}$ a-d. Reaction conditions: a) B (1.1 eq.), $\mathrm{K}_{3} \mathrm{PO}_{4}(5.1 \mathrm{eq}),. \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2$ or $4 \mathrm{~mol} \%),\left[(\mathrm{t}-\mathrm{Bu})_{3} \mathrm{PH}^{2}\right] \mathrm{BF}_{4}(1$ or $2 \mathrm{~mol} \%)$, THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$, reflux 16 h . b) NBS (1.0 eq.), THF:EtOAc ($2: 1 \mathrm{v} / \mathrm{v}$), $0^{\circ} \mathrm{C} 5 \mathrm{~h}$. c) B (1.1 eq.), $\mathrm{K}_{3} \mathrm{PO}_{4}\left(3.3 \mathrm{eq}\right.$.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(10 \mathrm{~mol} \%)$, THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$, reflux 16 h. d) NBS (1.0 eq.), THF:EtOAc ($2: 1 \mathrm{v} / \mathrm{v}$), $0^{\circ} \mathrm{C} 5 \mathrm{~h}$. e) A (1.1 eq .), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.2 eq.), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2$ or $4 \mathrm{~mol} \%)$, THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$, reflux $16 \mathrm{~h} . \mathrm{f}$) cyanoacetic acid (6.0 eq .), piperidine $(0.100 \mathrm{~mL}), \mathrm{CHCl}_{3}:$ Hex ($1: 1 \mathrm{v} / \mathrm{v}$), reflux 16 h .

Molecules $\mathbf{A a},{ }^{1} \underline{\mathbf{A b},}{ }^{2} \mathbf{A c},{ }^{3} \mathbf{A d},{ }^{4} \mathbf{B},{ }^{6} \underline{\mathbf{8}^{7}}{ }^{7}$ have been previously reported

4,4'-((4-([2,2'-bithiophen]-5-yl)phenyl)azanediyl)dibenzaldehyde (10): In a 250 mL RBF with a magnetic stir bar, $\mathbf{8}(0.500 \mathrm{~g}, 1.08 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.758 \mathrm{~g}, 3.57 \mathrm{mmol})$ were dissolved in 20 mL THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst ($0.045 \mathrm{~g}, 0.043 \mathrm{mmol}$), $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}^{2}\right] \mathrm{BF}_{4}$ ancillary ligand $(0.024 \mathrm{~g}, 0.087 \mathrm{mmol})$ and thiophene boronic ester ($\mathbf{B}, 0.273 \mathrm{~g}, 1.30 \mathrm{mmol}$) were added and the mixture was heated to reflux under N_{2} overnight. The solution was concentrated in vacuo, re-dissolved in DCM (50 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and brine (50 mL). The organics collected and dried over MgSO_{4} and concentrated in vacuo. The product was purified by silica gel chromatography in 5:1 Hex:EtOAc to afford a yellow solid as $\mathbf{1 0}(450 \mathrm{mg}, 0.97 \mathrm{mmol}, 89.4 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.80\left(\mathrm{H} b, \mathrm{~d},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.60\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.24-7.21 (Hd, Hc, Hf, Hg, Hg, Hj, m, 10H), $7.05(\mathrm{H} i, \mathrm{dd}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.5$, $151.8,144.78,141.9,137.3,137.2,131.9,131.6,131.45,128.0,127.2,127.1,124.8,124.7,124.1,123.9$, 123.1.

4,4'-((4-(5'-bromo-[2,2'-bithiophen]-5-yl)phenyl)azanediyl)dibenzaldehyde (11): In a 250 mL RBF with a magnetic stir bar, $\mathbf{1 0}(0.250 \mathrm{~g}, 0.537 \mathrm{mmol})$ was dissolved in 45 mL of $2: 1 \mathrm{THF}: E t O A c$ and cooled in an ice bath. The solution was sparged with N_{2} vigorously for 30 minutes. The flask was covered with aluminium foil and the NBS ($0.096 \mathrm{~g}, 0.537 \mathrm{mmol}$) was added. The mixture was capped with a rubber septum and stirred at $0^{\circ} \mathrm{C}$ for 1 h , brought up to room temperature and stirred for another 5 h . The solvents were removed in vacuo and the product was purified via a short silica gel plug with 4:1 Hex:EtOAc (v/v) as the eluent to yield
 $11(275 \mathrm{mg}, 0.51 \mathrm{mmol}, 94.1 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.80\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.58\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23\left(\mathrm{Hc}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 7.20\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.17\left(\mathrm{H} d, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.10\left(\mathrm{Hg}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.99(\mathrm{H} h$, d, $\left.{ }^{3} J_{\mathrm{HH}}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.95\left(\mathrm{H} i, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.5,151.8$, 145.0, 142.4, 138.8, 136.1, 131.7, 131.7, 131.5, 130.8, 127.2, 127.1, 125.0, 124.1, 123.9, 123.2.

4,4'-((4-(5'-(4-(diphenylamino)phenyl)-[2,2'-bithiophen]-5yl)phenyl)azanediyl)dibenzaldehyde (12a): In a 100 mL RBF with a magnetic stir bar, $\mathbf{1 1}(0.150 \mathrm{~g}, 0.275 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.193 \mathrm{~g}, 0.909 \mathrm{mmol})$ were dissolved in 50 mL of THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The TPA-BPin $\left(\mathbf{A}_{\mathbf{a}}, 0.106 \mathrm{~g}, 0.286 \mathrm{mmol}\right), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.006 \mathrm{~g}, 0.006 \mathrm{mmol})$, and $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}\right] \mathrm{BF}_{4}$ ancillary ligand $(0.003$ $\mathrm{g}, 0.009 \mathrm{mmol}$) were added and the mixture was heated to reflux under nitrogen overnight. The mixture was then concentrated in vacuo. DCM (50 mL) was added and the solution was washed with water ($3 \times 100 \mathrm{~mL}$). The organics were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with Hex:EtOAc (5:1 v/v) to yield 12a as a yellow solid $(175 \mathrm{mg}, 0.25 \mathrm{mmol}, 89.7 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.91(\mathrm{H} a, \mathrm{~s}$, $2 \mathrm{H}), 7.80\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.60\left(\mathrm{H} e, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.46(\mathrm{H} j$, $\left.\mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.30-7.22(\mathrm{H} f, \mathrm{H} c, \mathrm{H} d, \mathrm{Hg}, \mathrm{H} h, \mathrm{~m}, 9 \mathrm{H}), 7.20-7.10(\mathrm{H} i$, $\mathrm{H} l, \mathrm{H} m, \mathrm{~m}, 9 \mathrm{H}), 7.10-7.00(\mathrm{H} k, \mathrm{H} n, \mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.6,151.8$, $147.5,144.7,143.5,131.6,131.5,129.4,127.1,126.5,124.7,124.1,123.6,123.3,123.1$; Poor solubility prevented the acquisition of complete 13C data.

4,4'-((4-(5'-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophen]5 -yl)phenyl)azanediyl)dibenzaldehyde (12b): In a 100 mL RBF with a magnetic stir bar, $11(0.150 \mathrm{~g}, 0.275 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.193 \mathrm{~g}, 0.909$ $\mathrm{mmol})$ were dissolved in 50 mL of THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The OMe-TPA-BPin ($\mathbf{A}_{\mathbf{b}}, 0.140$ $\mathrm{g}, 0.325 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.011 \mathrm{~g}, 0.011 \mathrm{mmol})$, and $[(t-$ $\left.\mathrm{Bu})_{3} \mathrm{PH}\right] \mathrm{BF}_{4}$ ancillary ligand $(0.006 \mathrm{~g}, 0.022 \mathrm{mmol})$ were added and the mixture was heated to reflux under nitrogen overnight. The mixture was then concentrated in vacuo. DCM (50 mL) was added and the solution was washed with water ($3 \times 100 \mathrm{~mL}$). The organics were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with Hex:EtOAc ($5: 1 \mathrm{v} / \mathrm{v}$) to yield $\mathbf{1 2 b}$ as a yellow solid ($170 \mathrm{mg}, 0.22 \mathrm{mmol}$, $80.3 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{H} b, \mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.59\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.39\left(\mathrm{Hj}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8\right.$
 $\mathrm{Hz}, 2 \mathrm{H}), 7.24-7.07(\mathrm{H} f, \mathrm{H} c, \mathrm{H} d, \mathrm{H} g, \mathrm{H} h, \mathrm{H} i, \mathrm{H} l, \mathrm{~m}, 14 \mathrm{H}), 6.92(\mathrm{H} k, \mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.85\left(\mathrm{H} m, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.81(-O M e, \mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: Poor solubility or aggregation prevented the acquisition of complete 13C data.
((4-(5'-(4-(bis(4-formylphenyl)amino)phenyl)-[2,2'-bithiophen]-5-
 yl)phenyl)azanediyl)bis(4,1-phenylene) dihexanoate (12c): In a 100 mL RBF with a magnetic stir bar, $11(0.150 \mathrm{~g}, 0.275 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.193 \mathrm{~g}, 0.909$ $\mathrm{mmol})$ were dissolved in 50 mL of THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The OHex-TPA-BPin ($\mathbf{A}_{\mathbf{c}}, 0.182 \mathrm{~g}, 0.303$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.006 \mathrm{~g}, 0.006 \mathrm{mmol})$, and $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}\right] \mathrm{BF}_{4}$ ancillary ligand $(0.003 \mathrm{~g}, 0.009 \mathrm{mmol})$ were added and the mixture was heated to reflux under nitrogen overnight. The mixture was then concentrated in vacuo. DCM (50 mL) was added and the solution was washed with water (3 x 100 mL). The organics were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with Hex:EtOAc (5:1 v/v) to yield 12c as a yellow oil that solidified upon standing ($200 \mathrm{mg}, 0.21 \mathrm{mmol}, 77.5 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.80\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.60\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39\left(\mathrm{Hj}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25-7.21(\mathrm{H} f, \mathrm{H} c, \mathrm{~m}, 5 \mathrm{H}), 7.17$ $\left(\mathrm{H} d, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.13(\mathrm{Hg}, \mathrm{H} h, \mathrm{~m}, 2 \mathrm{H}), 7.09\left(\mathrm{H} i, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=4 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.06\left(\mathrm{Hl}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.91\left(\mathrm{H} k, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.84\left(\mathrm{H} m, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.94$ $\left(\mathrm{H} n, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.78(\mathrm{H} o, \mathrm{dt}, 4 \mathrm{H}), 1.46(\mathrm{H} p, \mathrm{dt}, 4 \mathrm{H}), 1.36-1.34(\mathrm{H} q, \mathrm{Hr}, \mathrm{m}, 8 \mathrm{H}), 0.92(\mathrm{H} s, \mathrm{t}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=190.6,155.8,151.8,148.6,144.7,144.0,141.4,140.4,137.6,135.0$, $132.0,131.6,131.5,127.2,127.1,126.9,126.3,125.8,124.8,124.2,124.1,123.1,122.4,120.3,115.4,68.4$, 31.7, 29.4, 25.9, 22.7, 14.1.

4,4'-((4-(5'-(4-(bis(4-(methylthio)phenyl)amino)phenyl)-[2,2'-bithiophen]-5yl)phenyl)azanediyl)dibenzaldehyde (12d): In a 100 mL RBF with a magnetic stir bar, $11(0.150 \mathrm{~g}, 0.275 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.193 \mathrm{~g}, 0.909 \mathrm{mmol})$ were dissolved in 50 mL of THF: $\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ and the mixture was sparged with N_{2} for 30 minutes. The SMe-TPA-BPin $\left(\mathbf{A}_{\mathbf{d}}, 0.170 \mathrm{~g}, 0.370 \mathrm{mmol}\right), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst $(0.016 \mathrm{~g}, 0.015 \mathrm{mmol})$, and $\left[(t-\mathrm{Bu})_{3} \mathrm{PH}\right] \mathrm{BF}_{4}$ ancillary ligand $(0.009 \mathrm{~g}$, 0.031 mmol) were added and the mixture was heated to reflux under nitrogen overnight. The mixture was then concentrated in vacuo. DCM (50 mL) was added and the solution was washed with water ($3 \times 100 \mathrm{~mL}$). The organics were collected, washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography with Hex:EtOAc (5:1 v/v) to yield 12d as a yellow solid ($180 \mathrm{mg}, 0.22 \mathrm{mmol}$, $81.7 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.80\left(\mathrm{H} b, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $8 \mathrm{~Hz}, 4 \mathrm{H}), 7.60\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.45\left(\mathrm{H} j, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.26-$ $7.13(\mathrm{H} f, \mathrm{H} c, \mathrm{H} d, \mathrm{H} g, \mathrm{H} h, \mathrm{H} i, \mathrm{H} l, \mathrm{~m}, 14 \mathrm{H}), 7.04\left(\mathrm{H} m, \mathrm{H} k, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 6 \mathrm{H}\right)$, 2.48 (-SMe, s, 6H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.6,151.8,147.2,144.9,144.8,143.4,141.7$, $137.4,135.7,132.5,131.9,131.7,131.5,128.6,128.1,127.1,126.5,125.1,124.8,124.5,124.2,123.4$, 123.1, 123.0, 16.8.

3,3'-(((4-(5'-(4-(diphenylamino)phenyl)-[2,2'-bithiophen]-5-yl)phenyl)azanediyl)bis(4,1-phenylene))bis(2-cyanoacrylic acid) (3a): Precursor 12a ($0.100 \mathrm{~g}, 0.141 \mathrm{mmol}$) was dissolved in minimal $\mathrm{CHCl}_{3}: \mathrm{Hex}$ $(1: 1 \mathrm{v} / \mathrm{v})$ and was sparged with N_{2} for 30 minutes. Cyanoacetic acid (0.072 $\mathrm{g}, 0.846 \mathrm{mmol})$ and piperidine $(0.1 \mathrm{~mL})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was decanted. The precipitate was dissolved in CHCl_{3} and was washed with $1.2 \mathrm{M} \mathrm{HCl}(2 \times 50$ mL). The organic phase was washed with brine, dried over MgSO_{4} and concentrated in vacuo to yield 3a as a dark red solid ($105 \mathrm{mg}, 0.125 \mathrm{mmol}$, $88.2 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.62\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.25\left(\mathrm{He}, \mathrm{H} j, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.98-6.68(\mathrm{H} f, \mathrm{H} c, \mathrm{H} d$, $\mathrm{H} g, \mathrm{H} h, \mathrm{H} i, \mathrm{H} l, \mathrm{H} k, \mathrm{H} m, \mathrm{H} n, \mathrm{~m}, 23 \mathrm{H})$. To help with $1 H-N M R$ solubility, 2 drops of DMSO- d^{6} was added. Poor solubility prevented the acquisition of 13C data.

3,3'-(((4-(5'-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)phenyl)azanediyl)bis(4,1-phenylene))bis(2-cyanoacrylic acid) (3b): Precursor 12b ($0.110 \mathrm{~g}, 0.141 \mathrm{mmol}$) was dissolved in minimal $\mathrm{CHCl}_{3}: \mathrm{Hex}$ $(1: 1 \mathrm{v} / \mathrm{v})$ and was sparged with N_{2} for 30 minutes. Cyanoacetic acid (0.072 $\mathrm{g}, 0.846 \mathrm{mmol})$ and piperidine $(0.1 \mathrm{~mL})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was decanted. The precipitate was dissolved in CHCl_{3} and was washed with $1.2 \mathrm{M} \mathrm{HCl}(2 \times 50$ $\mathrm{mL})$. The organic phase was washed with brine, dried over MgSO_{4} and concentrated in vacuo to yield $\mathbf{3 b}$ as a dark-orange/red solid ($110 \mathrm{mg}, 0.122$ mmol, $85.1 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.67(\mathrm{H} b$, br m, 4H), 7.40-6.50 (all other protons, m), 3.57 (-OMe, s, 6H). HRMS (ESI-negative mode): $\mathrm{m} / \mathrm{z} 901.21600$ calculated for $\mathrm{C}_{54} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}^{-}$: found $\mathrm{m} / \mathrm{z} 901.22018$. To help with $1 H-N M R$ solubility, 2 drops of DMSO- d^{6} was added.Still the $1 H N M R$ data is incomplete, but a lack of aldehyde signal, physicochemical data and similar clustering of signal suggest the product is present without aldehyde contamination. Poor solubility/aggregation prevented the acquisition of 13C data.

3,3'-(((4-(5'-(4-(bis(4-(methylthio)phenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)phenyl)azanediyl)bis(4,1-phenylene))bis(2-cyanoacrylic acid) (3d): Precursor 12d $(0.115 \mathrm{~g}, 0.141 \mathrm{mmol})$ was dissolved in minimal CHCl_{3} : Hex ($1: 1 \mathrm{v} / \mathrm{v}$) and was sparged with N_{2} for 30 minutes. Cyanoacetic acid $(0.072 \mathrm{~g}, 0.846 \mathrm{mmol})$ and piperidine $(0.1 \mathrm{~mL})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was decanted, and the precipitate was dissolved in CHCl_{3} and was washed with $1.2 \mathrm{M} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$. The organic phase was washed with brine, dried over MgSO_{4} and concentrated in vacuo to yield $\mathbf{3 d}$ as a dark red solid (110 $\mathrm{mg}, 0.118 \mathrm{mmol}, 81.8 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{H} a, \mathrm{~s}$, $2 \mathrm{H}), 7.89\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.56\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.42(\mathrm{H} j$, $\left.\mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.30-7.05(\mathrm{H} f, \mathrm{H} c, \mathrm{H} d, \mathrm{Hg}, \mathrm{H} h, \mathrm{H} i, \mathrm{~m}, 10 \mathrm{H}), 7.01(\mathrm{H} l$, $\mathrm{H} m, \mathrm{H} k, \mathrm{~m}, 10 \mathrm{H}), 2.44$ (-SMe, s, 6H). To help with $1 H-N M R$ solubility, 2 drops of DMSO- d^{6} was added. Poor solubility prevented the acquisition of $13 C$ data.

3,3'-(((4-(5'-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)phenyl)azanediyl)bis(4,1-phenylene))bis(2cyanoacrylic acid) (3c): Precursor 12c ($0.130 \mathrm{~g}, 0.141 \mathrm{mmol}$) was dissolved in minimal $\mathrm{CHCl}_{3}: \operatorname{Hex}(1: 1 \mathrm{v} / \mathrm{v})$ and was sparged with N_{2} for 30 minutes. Cyanoacetic acid ($0.072 \mathrm{~g}, 0.846 \mathrm{mmol}$) and piperidine $(0.1 \mathrm{~mL})$ were added and the solution was heated to reflux under N_{2} overnight. The liquid phase was decanted. The precipitate was dissolved in CHCl_{3} and was washed with $1.2 \mathrm{M} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$. The organic phase was washed with brine, dried over MgSO_{4} and concentrated in vacuo to yield 3c as a dark orange solid ($120 \mathrm{mg}, 0.112 \mathrm{mmol}, 80.7 \%$) ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.15(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.91\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.58(\mathrm{H} e, \mathrm{H} j$, $\mathrm{m}, 2 \mathrm{H}), 7.92\left(d, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41-6.88$ (all other protons), 6.83 $(\mathrm{H} l, \mathrm{H} m, \mathrm{~m}, 8 \mathrm{H}), 3.93(\mathrm{H} n, \mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{H} o, \mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{H} p, \mathrm{~m}, 4 \mathrm{H})$, $1.45(\mathrm{H} q, \mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{Hr}, \mathrm{m}, 4 \mathrm{H}), 0.91(\mathrm{Hs}, \mathrm{m}, 6 \mathrm{H})$. To help with 1 H NMR solubility, 2 drops of DMSO- d^{6} was added. Poor solubility prevented the acquisition of better quality 1 H and 13C data.

Scheme S4. Synthesis of dye 4. Reaction conditions: a) NBS (2.1 eq.), THF:EtOAc ($1: 1 \mathrm{v} / \mathrm{v}$), $22^{\circ} \mathrm{C}, 8 \mathrm{~h} . \mathrm{c}$) $\mathbf{C}(2.5 \mathrm{eq}),. \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.5 eq.), $\mathrm{Pd}^{(}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, dioxane: $\mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v})$, reflux $\left.16 \mathrm{~h} . \mathrm{c}\right)$ cyanoacetic acid (5.5 eq .), piperidine (0.100 mL), MeCN , reflux 16 h .

Molecules 6a ${ }^{1}$ has been previously reported.

4,4'-((4'-(bis(4-bromophenyl)amino)-[1,1'-biphenyl]-4-yl)azanediyl)dibenzaldehyde (13): To a sparged
 (15 min with Ar) solution of $\mathbf{6 a}(1.11 \mathrm{~g}, 2.04 \mathrm{mmol}$) in THF:EtOAc ($1: 1,50 \mathrm{~mL}$) was added NBS ($763 \mathrm{mg}, 4.28 \mathrm{mmol}$). The RBF reaction vessel was wrapped in aluminium foil, and stirred at room temperature overnight to yield an orange solution. The solvent was removed in vacuo and the crude mixture was subjected to column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM}\right)$, to afford $\mathbf{1 3}$ a yellow oil $\left(\mathrm{R}_{f}=0.40,1.30\right.$ $\mathrm{g}, 1.85 \mathrm{mmol}, 90.7 \%$), that solidified as a foam when the solvent was removed. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.80\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.58$ $\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.49\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34\left(\mathrm{H} c, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 7.23\left(\mathrm{H} d, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.12\left(\mathrm{Hg}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.98\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.87\left(\mathrm{Hi}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.1$, 151.6, 147.4, 142.0, 131.5, 131.4, 130.8, 129.4, 128.6, 128.2, 127.7, 127.4, 127.1, 126.9, 124.6, 122.9, 119.5. HRMS (MALDI): m/z 700.03561 calculated for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z} 700.03610$.

4,4'-((4'-(bis(4-(thiophen-3-yl)phenyl)amino)-[1,1'-biphenyl]-4-yl)azanediyl)dibenzaldehyde (14): To a sparged (30 min with Ar) solution of 3-thienyl boronic acid, \mathbf{C}, ($550 \mathrm{mg}, 4.27 \mathrm{mmol}$) and $\mathbf{1 3}(1.00 \mathrm{~g}, 1.42$ $\mathrm{mmol})$ in dioxane: water ($4: 1,50 \mathrm{~mL}$) was added tripotassium phosphate $(1.50 \mathrm{~g}, 7.10 \mathrm{mmol}$) and finally $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(150 \mathrm{mg}, 0.14 \mathrm{mmol})$. The reaction mixture was then stirred and heated $\left(105^{\circ} \mathrm{C}\right)$ overnight (12 hrs) under Ar. After extracting with DCM and washing with water, the organic fractions were dried over sodium sulphate, filtered and rotovapped to dryness. The crude mixture was then subjected to gradient column chromatography $\left(\mathrm{SiO}_{2}\right)$ initially eluting with DCM and shifting to DCM:EtOAc (48:2). The product ($\mathrm{R}_{f}=0.5$ in DCM:EtOAc, 95:5) was isolated as a yellow solid ($720 \mathrm{mg}, 1.01 \mathrm{mmol}, 71.5 \%$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=9.91(\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}), 7.79\left(\mathrm{H} b, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.59\left(\mathrm{He}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50\left(\mathrm{H} f, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38\left(\mathrm{H} c, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, $7.33(\mathrm{H} l, \mathrm{~s}, 2 \mathrm{H}), 7.26-7.20(\mathrm{H} d, \mathrm{H} g, \mathrm{H} j, \mathrm{H} k, \mathrm{~m}, 8 \mathrm{H}), 7.19\left(\mathrm{H} h, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8\right.$ $\mathrm{Hz}, 4 \mathrm{H}), 6.99\left(\mathrm{Hi}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.5$, $151.9,146.2,141.8,131.5,131.4,130.8,129.4,128.6,128.2,127.7,127.4$, 127.1, 126.9, 126.1, 124.6, 123.0, 122.9, 122.1, 119.5, 119.0. HRMS (MALDI): $\mathrm{m} / \mathrm{z} 708.19018$ calculated for $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{m} / \mathrm{z} 708.19052$.

(3,3'-(((4'-(bis(4-(thiophen-3-yl)phenyl)amino)-[1,1'-biphenyl]-4-yl)azanediyl)bis(4,1-phenylene))bis(2-cyanoacrylic acid) (4): To a solution of $\mathbf{1 4}(370 \mathrm{mg}, 0.52 \mathrm{mmol})$ and cyanoacetic acid ($250 \mathrm{mg}, 2.94 \mathrm{mmol}$) in $\mathrm{MeCN}(25 \mathrm{~mL})$ was added piperidine $(0.1 \mathrm{~mL})$ and the reaction mixture was then stirred and refluxed for 6 hrs (and the colour change from orange to red). After removing the solvent, the mixture was triturated with CHCl_{3}, to remove the starting materials affording the desired product as a red solid ($280 \mathrm{mg}, 0.33 \mathrm{mmol}, 63.6 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=8.01$ ($\mathrm{H} a, \mathrm{~s}, 2 \mathrm{H}$), $7.85-7.72(\mathrm{H} b, \mathrm{H} e, \mathrm{~m}, 6 \mathrm{H}), 7.59-7.32(\mathrm{H} f, \mathrm{H} c, \mathrm{H} l, \mathrm{~m}, 8 \mathrm{H}), 7.13-6.98$ $(\mathrm{H} d, \mathrm{H} g, \mathrm{H} h, \mathrm{H} j, \mathrm{H} k, \mathrm{~m}, 12 \mathrm{H}), 6.86\left(\mathrm{H} i, \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$. HRMS (MALDI): m/z 842.20164 calculated for $\mathrm{C}_{52} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}: \mathrm{m} / \mathrm{z} 842.20215$. To help with $1 H-N M R$ solubility, 2 drops of DMSO-d ${ }^{6}$ was added. Poor solubility prevented the acquisition of 13C data.

3. Summary of Physicochemical Characterization

Table S1. Physicochemical characterization of Bichromic Bipodal dyes.

Compound	Code	$\begin{gathered} \text { ETPA } 1_{\mathrm{ox}} \\ (\mathrm{~V} \text { vs } \mathrm{NHE})^{a} \end{gathered}$	$\begin{aligned} & \text { ETPA 2 }_{\text {ox }} \\ & (\mathrm{V} \text { vs NHE })^{a} \end{aligned}$	UV-vis $\lambda_{\text {max }} \boldsymbol{n m}$ $\left(\varepsilon \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	
L1-OFe	L1	1.23		483 (3.2) ${ }^{\text {b }}$	
$\mathrm{TPA}_{2} \mathrm{CHO}_{2}$ - fc	6 a	1.14	1.38	366 (3.9)	
TPA ${ }_{2}$ Dye - ofc	1a	1.12	1.36	471 (3.6)	407 (2.7)
$\mathbf{T P A}_{2}$ thio CHO_{2} - fc	9a	1.06	1.23	389 (5.7)	304 (1.6)
TPA ${ }_{2}$ thio Dye - Ofc	2 a	1.04	1.18	421 (3.3)	
TPA_{2} thio $_{2} \mathrm{CHO}_{2}$ - fc	12a	1.02	1.15	397 (7.3)	
TPA ${ }_{2}$ thio ${ }_{2}$ Dye - ofc	3a	0.98	1.14	436 (1.5)	
$\mathrm{OMe}_{2} \mathrm{TPA}_{2} \mathrm{CHO}_{2}-\mathrm{fc}$	6b	0.93	1.39	373 (4.4)	
$\mathrm{OMe}_{2} \mathrm{TPA}_{2}$ Dye - ofc	1b	0.89	1.36	470 (3.8)	416 (3.2)
$\mathrm{OMe}_{2} \mathrm{TPA}_{2}$ thio CHO_{2} - fc	9b	0.90	1.24	391 (4.1)	
$\mathrm{OMe}_{2} \mathrm{TPA}_{2}$ thio Dye - ofc	2b	0.86	1.19	433 (6.2)	
$\mathrm{OMe}_{2} \mathrm{TPA}_{2} \mathrm{thio}_{2} \mathrm{CHO}_{2}-\mathrm{fc}$	12b	0.89	1.16	398 (4.5)	
$\mathrm{OMe}_{2} \mathrm{TPA}_{2}$ thio $_{2}$ Dye - ofc	3b	0.86	1.10	433 (0.27)	
$\mathrm{OHex}_{2} \mathrm{TPA}_{2} \mathrm{CHO}_{2}-\mathrm{fc}$	6 c	0.91	1.39	373 (3.0)	306 (1.2)
$\mathrm{OHex}_{2} \mathrm{TPA}_{2} \mathrm{Dye}-$ ofc	1c	0.87	1.34	423 (4.9)	302 (2.8)
$\mathrm{OHex}_{2} \mathrm{TPA}_{2}$ thio CHO_{2} - fc	9c	0.88	1.23	391 (8.0)	
$\mathrm{OHex}_{2} \mathrm{TPA}_{2}$ thio Dye - ofc	2c	0.84	1.14	415 (3.4)	
$\mathrm{OHex}_{2} \mathrm{TPA}_{2}$ thio $_{2} \mathrm{CHO}_{2}$ - fc	12c	0.88	1.16	397 (6.4)	
$\mathrm{OHex}_{2} \mathrm{TPA}_{2}$ thio $_{2}$ Dye - ofc	3c	0.84	1.10	437 (3.1)	
$\mathrm{SMe}_{2} \mathrm{TPA}_{2} \mathrm{CHO}_{2}-\mathrm{fc}$	6d	0.99	1.42	373 (6.4)	329 (4.2)
$\mathrm{SMe}_{2} \mathrm{TPA}_{2} \mathrm{Dye}$ - ofc	1d	0.98	1.39	471 (4.8)	410 (3.9), 328 (4.2)
$\mathrm{SMe}_{2} \mathrm{TPA}_{2}$ thioCHO-fc	9d	0.98	1.24	391 (6.4)	332 (3.0)
$\mathrm{SMe}_{2} \mathbf{T P A}_{2}$ thio Dye - ofc	2d	0.94	1.21	428 (6.0)	322 (3.5)
$\mathrm{SMe}_{2} \mathrm{TPA}_{2}$ thio $_{2} \mathrm{CHO}_{2}$ - fc	12d	0.97	1.17	399 (8.7)	331 (4.4)
SMe $_{2}$ TPA $_{2}$ thio $_{2}$ Dye - ofc	3d	0.93	1.13	438 (5.2)	326 (2.4)
3Thio2 $\mathrm{TPA}_{2} \mathrm{CHO}_{2}-\mathrm{Fc}$	14	1.09	1.43		
Thio2TPA2 Dye - Ofc	4	1.06	1.39	344 (3.3)	469 (2.9), 399 (2.4)

${ }^{a}$ Data collected using $0.1 \mathrm{M} \mathrm{NBu}_{4} \mathrm{PF}_{6} \mathrm{DCM}^{2}$ solutions at $100 \mathrm{mVs}^{-1}$ and referenced to a ferrocene $[\mathrm{Fc}] /[\mathrm{Fc}]^{+}$internal standard for the aldehyde precursors and Octamethylferrocene (OFc) $[\mathrm{OFc}] /[\mathrm{OFc}]^{+}$internal standard for the furnished dyes. Calibrated vs. 0.700 V for Fc and 0.225 V for OFc . ${ }^{b}$ value from previous work. ${ }^{5}$

4. UV-Vis and Fluorescence Spectroscopy

UV-Vis in DCM

Figure S1. UV-vis absorption in DCM for dyes and their aldehyde precursors.

Absorption and Fluorescence in DCM

UV-Vis \& Fluorescence Spectra of 1b (OMe2TPA2 Dye), in DCM

UV-Vis \& Fluorescence Spectra of 2b
(OMe2TPA2Thio Dye), in DCM

Figure S2a. UV-vis absorption and fluorescence spectra in DCM for dyes.

Figure S2b. UV-vis absorption and fluorescence spectra in DCM for dyes.

UV-Vis \& Fluorescence Spectra of 4 Dye, in DCM

Figure S2c. UV-vis absorption and fluorescence spectra in DCM for dyes.

5. Cyclic Voltammetry

Cyclic Voltammetry of $\mathbf{6 a}\left(\mathrm{TPA}_{2} \mathrm{CHO}_{2}-\mathrm{fc}\right)$
—— With Fc - - - Without Fc

$\begin{array}{lllllllllllllllll}-0.5 & -0.3 & -0.1 & 0.1 & 0.3 & 0.5 & 0.7 & 0.9 & 1.1 & 1.3 & 1.5 & 1.7 & 1.9 & 2.1 & 2.3 & 2.5\end{array}$
Potential (V)
Cyclic Voltammetry of 9a (TPA $_{2}$ thioCHO ${ }_{2}$-fc)
WithFc - - - Without Fc

$\begin{array}{lllllllllllllll}-0.5 & -0.3 & -0.1 & 0.1 & 0.3 & 0.5 & 0.7 & 0.9 & 1.1 & 1.3 & 1.5 & 1.7 & 1.9 & 2.1 & 2.3 \\ 2.5\end{array}$ Potential (V)

Cyclic Voltammetry of 12a (TPA $_{2}$ thio ${ }_{2} \mathrm{CHO}_{2}$ - fc)
With $\mathrm{Fc} \quad-\quad-$ - Without Fc

-0.5	-0.3	-0.1	0.1	0.3	0.5	0.7	0.9	1.1	1.3
	Potential (V)								

Cyclic Voltammetry of 1a (TPA 2 Dye-ofc)
—— With OFc $---\cdot$ Without Ofc

Cyclic Voltammetry of 2a (TPA ${ }_{2}$ thio Dye-ofc)
——With OFc $\quad-\quad$ - Without Ofc

Cyclic Voltammetry of 3a(TPA thio $_{2}$ Dye-ofc)
With OFc \quad - . Without OFc

Cyclic Voltammetry of $\mathbf{6 b}\left(\mathrm{OMe}_{2} \mathrm{TPA}_{2} \mathrm{CHO}_{2}-\mathrm{fc}\right)$

Cyclic Voltammetry of $\mathbf{9 b}\left(\mathrm{OMe}_{2} \mathrm{TPA}_{2}\right.$ thio CHO_{2}-fc)

Cyclic Voltammetry of $\mathbf{1 2 b}\left(\mathrm{OMe}_{2} \mathrm{TPA}_{2}\right.$ thio $\left.\mathrm{CHO}_{2}-\mathrm{fc}\right)$

Cyclic Voltammetry of $\mathbf{1 b}\left(\mathrm{OMe}_{2} \mathrm{TPA}_{2}\right.$ Dye-ofc)

With Ofc $\quad-\quad$ - Without Ofc

Cyclic Voltammetry of $\mathbf{2 b}$ ($\mathrm{OMe}_{2} \mathrm{TPA}_{2}$ thio Dye-ofc)

Cyclic Voltammetry of 3b ($\mathrm{OMe}_{2} \mathrm{TPA}_{2}$ thio $_{2}$ Dye-ofc)

Cyclic Voltammetry of $\mathbf{6 d}\left(\mathrm{SMe}_{2} \mathrm{TPA}_{2} \mathrm{CHO}_{2}-\mathrm{fc}\right)$

Cyclic Voltammetry of 9d ($\mathrm{SMe}_{2} \mathrm{TPA}_{2}$ thioCHO ${ }_{2}$-fc)

Cyclic Voltammetry of 12d ($\mathrm{SMe}_{2} \mathrm{TPA}_{2}$ thio $_{2} \mathrm{CHO}_{2}$ - fc)
—_ With $\mathrm{Fc} \quad-\quad-$. Without Fc

Cyclic Voltammetry of 1d (SMe ${ }_{2} \mathrm{TPA}_{2}$ Dye-ofc)

Cyclic Voltammetry of 2d (SMe $\mathbf{S P A}_{2}$ thio Dye-ofc)

Cyclic Voltammetry of 3d (SMe TPA $_{2}$ thio $_{2}$ Dye-ofc)

Cyclic Voltammetry of 4 (thio TPA $_{2}$ Dye-ofc)

6. IV Curves

7. References

1. Fang, Y. et al. Phenylenevinylene copolymers of dihexylthienylbenzothiadiazole and triphenylamine or tetraphenylbenzidine: Synthesis, characterization and photovoltaic properties. J. Mater. Sci. 47, 5706-5714 (2012).
2. Amthor, S. \& Lambert, C. [2.2]Paracyclophane-bridged mixed-valence compounds: Application of a generalized mulliken-hush three-level model. J. Phys. Chem. A 110, 1177-1189 (2006).
3. Ferdowsi, P. et al. Molecular Design of Efficient Organic D-A-П-A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye-Sensitized Solar Cells. ChemSusChem 11, 494-502 (2018).
4. Yin, X. et al. Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy 51, 680-687 (2018).
5. Abdi, O. K. et al. Bipodal dyes with bichromic triphenylamine architectures for use in dyesensitized solar cell applications. RSC Adv. 8, 42424-42428 (2018).
6. Dienes, Y. et al. Selective tuning of the band gap of π-conjugated dithieno[3,2-6: $\left.2^{\prime}, 3^{\prime}-\mathrm{d}\right]$ phospholes toward different emission colors. Chem. - A Eur. J. 13, 7487-7500 (2007).
7. Bonnier, C., Machin, D. D., Abdi, O. K., Robson, K. C. D. \& Koivisto, B. D. The effect of donormodification in organic light-harvesting motifs: Triphenylamine donors appended with polymerisable thienyl subunits. Org. Biomol. Chem. 11, 7011-7015 (2013).
